2021高考数学大题限时训练四文3

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021高考数学大题限时训练四文3
大题限时训练(四)
1.[2021・福州康桥中学质量检测]在△ABC中,内角A,B,C所对的边分别为a,b,c,3已知a>b,a=5,c=6,sinB=. 5(1)求b和sinA的值;π??(2)求sin?2A+?的值. 4?? 2.[2021・安徽合肥一中最后一卷]某企业生产的某种产品被
检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生
产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品为样本,测出它们
的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.下表是甲流水线样本的频数分布表,如图所示是乙流水线样本的频率分布直方
图.表1 甲流水线样本的频数分布表表2 乙流水线样本的频率分布直方图质量指标
值频数 (190,195] 2 (195,200] 13 (200,205] 23 (205,210] 8 (210,215] 4 (1)
若将频率视为概率,某个月内甲、乙两条流水线均生产了6万件产品,则甲、乙两条流水
线分别生产出不合格品约多少件? (2)在甲流水线抽取的样本的不合格品中随机抽取两件,求两件不合格品的质量指标值
均偏大的概率; (3)根据已知条件完成下面2×2列联表,并判断在犯错误概率不超
过0.1的前提下能否认为“该企业生产的这种产品的质量指标值与甲、乙两条流水线的选
择有关”?甲生产线乙生产线合计合格品不合格品合计 2nad-bc2附:
K=(其中n=a+b+c+d为样本容量) a+bc+da+cb+dP(K2≥k) 0.15 0.10 0.05
0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 3.[2021・黑龙江大庆实验中学月考]如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O,将
菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=32. (1)求证OD⊥平面ABC; (2)求M到平面ABD的距离. x2y214.[2021・遂宁三诊]已知椭圆C1:2+2=1(a>b>0)的离心率为,右焦点为圆C2:(xab2222-1)+y=r的圆心,且圆C2截y
轴所得弦长为4. (1)求椭圆C1与圆C2的方程; (2)若直线l与曲线C1,C2都只有一个
公共点,记直线l与圆C2的公共点为M,求点M的坐标. x5.[2021・安
徽安庆二模]设f(x)=e(2x+m),(m∈R). (1)试讨论f(x)在[0,+∞)上的单调性; (2)令g(x)=ax-a(a<1),当m=-1时,若恰有两个整数x1,x2使得f(x1)-g(x1)<0,
f(x2)-g(x2)<0,求实数a的最小值.
请在6,7两题中任选一题作答 6.【选修4-4 坐标系与参数方程】[2021・黑龙江齐齐哈尔月考]在直角坐标系xOy22中,直线C1:x=-2,圆C2:(x-1)+(y-2)=1,以
坐标原点为极点,x轴的正半轴为极轴建立极坐标系. (1)求C1,C2的极坐标方程;
π(2)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面
4积. 7.【选修4-5 不等式选讲】[2021・山西太原六校联考]已知函数f(x)=|x-2|
-|x+1|. (1)求函数f(x)的最大值; (2)若?x∈R,都有4f(x)≤|2m-1|+|m+5|恒成立,求实数m的取值范围.大题限时训练(四) 31.解析:(1)∵sinB=,
a>b,∴B为锐角,54∴cosB=,54222∴b=a+c-2accosB=25+36-2×5×6×=13,5∴b=13.
感谢您的阅读,祝您生活愉快。

相关文档
最新文档