高考数学压轴专题人教版备战高考《数列》易错题汇编附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高中数学】数学《数列》期末复习知识要点
一、选择题
1.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( )
A .
23
B .
32
C .23
-
D .32
-
【答案】A 【解析】 【分析】
根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】
设等差数列{}n a 的公差为d .
101010,70a S ==Q ,11910109
10702a d a d +=⎧⎪
∴⎨⨯+=⎪⎩
解得2
3
d =
. 故选:A . 【点睛】
本题考查等差数列的通项公式和前n 项和公式,属于基础题.
2.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =
C .1024是三角形数
D .123111121
n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】
对每一个选项逐一分析得解. 【详解】
∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;
将前面的所有项累加可得1(1)(2)(1)22
n n n n n a a -++=+=,∴20210a =,故B 正确; 令
(1)
10242
n n +=,此方程没有正整数解,故C 错误;
121111111
1212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝
⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】
本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.
3.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件
【答案】B 【解析】 【分析】
根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】
因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得
111242a a q a q >+,化简后可得()
2
1210q a -<.
因为(
)
2
2
1
0q -≥
所以不等式的解集为10a < 若210n S -<
当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】
本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.
4.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则 A .140,0a d dS >> B .140,0a d dS << C .140,0a d dS >< D .140,0a d dS <>
【答案】B 【解析】
∵等差数列,,,成等比数列,∴

∴,∴,,故
选B.
考点:1.等差数列的通项公式及其前项和;2.等比数列的概念
5.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则26
3
n n S a ++的最小值为( )
A .4
B .3
C .232
D .2
【答案】D 【解析】 【分析】
由题意得2
(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,
从而可得26
3
n n S a ++,换元,利用基本不等式,即可求出函数的最小值.
【详解】
解:11a =Q ,1a 、3a 、13a 成等比数列,
2(12)112d d ∴+=+. 得2d =或0d =(舍去),
21n a n ∴=-,
2(121)
2
n n n S n +-∴=
=, ∴()()2
221142626332211
2n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则
2644
22223n n S t t a t t
+=+-≥⋅=+ 当且仅当2t =,即1n =时,∴26
3
n n S a ++的最小值为2.
故选:D . 【点睛】
本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.
6.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51
C .61
D .68
【答案】B 【解析】 【分析】
由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】
在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,
3156a a ∴+=.
()()117315171717176
51222
a a a a S ++⨯∴=
===. 故选:B . 【点睛】
本题考查等差数列的性质和前n 项和公式,属于基础题.
7.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972
C .3 973
D .3 974
【答案】D 【解析】 【分析】
先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12
n n +=个数,运算即可得解.
【详解】
解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()
12
n n +=
个数,
设第2019个数在第n 组中,
则()
()120192
120192
n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,
即第2019个数在第64组中,
则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】
本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.
8.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9
C .10
D .11
【答案】C 【解析】 【分析】
根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】
等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()
()120201*********a a S a a +=
=+>,10110a a ∴+>,
()
1212111212102
a a S a +=
=<,所以,110a <,则100a >,
因此,当10n =时,n S 最大. 故选:C. 【点睛】
本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.
9.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,33
4
S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]
1,0-
B .11,2
⎡⎤-⎢⎥⎣

C .1,12⎡⎤⎢⎥⎣⎦
D .[]
0,1
【答案】B 【解析】 【分析】
先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】
由1220,a a += 33
4S =
,得11211,,1232n
n a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦

当1n =时,n S 取最大值1,当2n =时,n S 取最小值
1
2
, 所以12
21
a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】
本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.
10.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取
lg30.4771≈,lg 20.3010≈)
A .16
B .17
C .24
D .25
【答案】D 【解析】 【分析】
由折线长度变化规律可知“n 次构造”后的折线长度为43n
a ⎛⎫ ⎪⎝⎭,由此得到410003n
⎛⎫≥ ⎪⎝⎭
,利
用运算法则可知3
2lg 2lg 3
n ≥⨯-,由此计算得到结果.
【详解】
记初始线段长度为a ,则“一次构造”后的折线长度为
4
3
a ,“二次构造”后的折线长度为
243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n
a ⎛⎫ ⎪⎝⎭
, 若得到的折线长度为初始线段长度的1000倍,则410003n
a a ⎛⎫≥ ⎪⎝⎭,即410003n
⎛⎫≥ ⎪⎝⎭,
()()44lg lg lg 4lg32lg 2lg3lg1000333n
n n n ⎛⎫
∴==-=-≥= ⎪⎝⎭,
即3
24.0220.30100.4771n ≥
≈⨯-,∴至少需要25次构造.
故选:D . 【点睛】
本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.
11.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()
A .18
B .24
C .36
D .72
【答案】C 【解析】 【分析】
由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622
a a a a
S ++=⨯=⨯可得结果. 【详解】
∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,
∴1634657
66636222
a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】
本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.
12.数列{}n a 的通项公式为(
)n a n c n N *
=-∈.则“2c <”是“{}n
a 为递增数列”的
( )条件. A .必要而不充分 B .充要
C .充分而不必要
D .即不充分也不必要
【答案】A 【解析】 【分析】
根据递增数列的特点可知10n n a a +->,解得1
2
c n <+
,由此得到若{}n a 是递增数列,则
3
2c <
,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()2
2
1n c n c +->-,化简得:12
c n <+, 又n *∈N ,1322n ∴+≥,32
c ∴<, 则2c <¿
{}n a 是递增数列,{}n a 是递增数列2c ⇒<,
∴“2c <”是“{}n a 为递增数列”的必要不充分条件.
故选:A . 【点睛】
本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.
13.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,
(2)(4)(6)(2018)
(1)(3)(5)(2017)
f f f f f f f f ++++L 的值是( )
A .1008
B .1009
C .2016
D .2018
【答案】D 【解析】 【分析】
由题意结合()()()f a b f a f b +=⋅求解()()
()()
()()
()()
24620181352017f f f f f f f f +
+
++
L 的值即可.
【详解】
在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则
()()12f a f a +=,据此可知: ()()
()()
()()
()()
24620181352017f f f f f f f f +
+++
L 2222210092018=++++=⨯=L .
本题选择D 选项. 【点睛】
本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.
14.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊
蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺
C .3.5尺
D .4.5尺
【答案】C 【解析】 【分析】
结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】
解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,
∴()()111913631.598
985.52a a d a d S a d ⎧++++=⎪
⎨⨯=+=⎪⎩
, 解得113.5a =,1d =-,
∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】
本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.
15.数列{}n a 满足12a =,对于任意的*
n N ∈,11
1n n
a a +=
-,则2018a =( ) A .-1 B .
12
C .2
D .3
【答案】A 【解析】 【分析】
先通过递推公式11
1n n
a a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】
111n n
a a +=-Q ,
21111
11111n n n n
a a a a ++∴===-
---,
32
1
11111n n
n n a a a a ++∴=
=
=-⎛⎫-- ⎪⎝⎭
,故有3n n a a +=,
则20183672221
1
11a a a a ⨯+====-- 故选:A 【点睛】
本题考查根据数列递推公式求数列各项的值,属于中档题.
16.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .
32
B .32
-
C .
23
D .23
-
【答案】D 【解析】 【分析】
根据等差数列公式直接计算得到答案. 【详解】 依题意,()()
183********
a a a a S ++=
==,故364a a +=,故33a =,故632
33a a d -=
=-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.
17.正项等比数列{}n a 中的1a 、4039a 是函数()3
214633
f x x x x =
-+-
的极值点,则2020a =( )
A .1-
B .1
C
D .2
【答案】B 【解析】 【分析】
根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】
解:依题意1a 、4039a 是函数()3
214633
f x x x x =
-+-的极值点,也就是()2860f x x x '=-+=的两个根
∴140396a a =
又{}n a
是正项等比数列,所以2020a =
∴20201a ==.
故选:B
【点睛】
本题主要考查了等比数列下标和性质以应用,属于中档题.
18.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )
A .48
B .90
C .105
D .106
【答案】C
【解析】
【分析】
根据4841281612,,,S S S S S S S ---成等比数列即可求出16S .
【详解】
由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,
所以1216127,14,21,S S S --成等比数列,
所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.
故选:C
【点睛】
本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.
19.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n
++=
(*n ∈N ),则n S =( )
A .121n -+
B .2n n ⋅
C .31n -
D .123n n -⋅ 【答案】B
【解析】
【分析】 由题得122,1
n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121
n n n n n n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1
n n a n a n ++=⨯+(2n ≥)
由题得22166,32
a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n
-+=⨯=⨯=⨯=⨯L , 所以11112,(1)22
n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222
n n n n S n n n =
⨯+⋅=⋅+. 故选:B
【点睛】
本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.
20.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( )
A .23岁
B .32岁
C .35岁
D .38岁
【答案】C
【解析】
【分析】
根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案.
【详解】
设这位公公的第n 个儿子的年龄为n a ,
由题可知{}n a 是等差数列,设公差为d ,则3d =-, 又由9207S =,即91989(3)2072
S a ⨯=+
⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁.
故选C .
【点睛】 本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.。

相关文档
最新文档