阳朔县外国语学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阳朔县外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )
A .
B .
C .
D .
2. 设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4﹣2,3S 2=a 3﹣2,则公比q=( ) A .3
B .4
C .5
D .6
3. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )
A .
B .5
C .3
D .
4. 已知函数()sin f x a x x =关于直线6
x π
=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为
A 、
6π B 、
3
π
C 、
56π D 、23π 5. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A ∩B=( )
A .(1,2)
B .[1,2]
C .[1,2)
D .(1,2]
6. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )
A .(2,+∞)
B .(0,2)
C .(4,+∞)
D .(0,4)
7. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )
A .﹣2
B .2
C .﹣
D .
8. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin
2
,则该数列的前10项和为( )
A .89
B .76
C .77
D .35
9. 双曲线的焦点与椭圆
的焦点重合,则m 的值等于( )
A .12
B .20
C .
D .
10.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]
A .10
B .51
C .20
D .30
11.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 12.已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )
A .
B .或36+
C .36﹣
D .或36﹣
二、填空题
13.【泰州中学2018届高三10月月考】设函数()()21x
f x e
x ax a =--+,其中1a <,若存在唯一的整数
0x ,使得()00f x <,则a 的取值范围是
14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .
15.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .
16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;
④若()
()0f x f x x
'+
>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()x
e x
f x f x x
'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.
其中所有正确结论的序号是 .
17.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
18.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和
CN 所成角的余弦值为 .
三、解答题
19.已知曲线y=Asin (ωx+φ)(A >0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点
间的曲线与x 轴交于点(π,0),φ∈(﹣,).
(1)求这条曲线的函数解析式; (2)写出函数的单调区间.
20.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:
(1)求出频率分布表中①、②、③、④、⑤的值;
(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?
(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S
21.如图,过抛物线C:x2=2py(p>0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=﹣4.
(Ⅰ)p的值;
(Ⅱ)R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求△MNT的面积的最小值.
22.已知抛物线C :y 2=2px (p >0)过点A (1,﹣2).
(Ⅰ)求抛物线C 的方程,并求其准线方程;
(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 的
距离等于?若存在,求直线L 的方程;若不存在,说明理由.
23.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知
1cos )sin 3(cos 2
cos 22
=-+C B B A
. (I )求角C 的值;
(II )若2b =,且ABC ∆的面积取值范围为,求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.
24.在平面直角坐标系xOy中,F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,B为短轴的一
个端点,E是椭圆C上的一点,满足,且△EF
F2的周长为.
1
(1)求椭圆C的方程;
(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.
阳朔县外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减
结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C
当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B
故选D
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
2.【答案】B
【解析】解:∵S n为等比数列{a n}的前n项和,3S3=a4﹣2,3S2=a3﹣2,
两式相减得
3a3=a4﹣a3,
a4=4a3,
∴公比q=4.
故选:B.
3.【答案】D
【解析】解:由题意可知三角形的面积为S===AC•BCsin60°,
∴AC•BC=.由余弦定理AB2=AC2+BC2﹣2AC•BCcos60°=(AC+BC)2﹣3AC•BC,
∴(AC+BC)2﹣3AC•BC=3,
∴(AC+BC)2=11.
∴AC+BC=
故选:D
【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.4.【答案】D
【解析】:()sin)(tan
==-=
f x a x x xϕϕ
12(),
()()46
3
f x x k f x f x π
π
ϕπ=-
∴=+
⋅=-对称轴为
112212min
522,2,6
6
3
x k x k x x π
π
πππ∴=-
+=
+∴+=
5. 【答案】D
【解析】解:由A 中不等式变形得:﹣2≤2x ≤4,即﹣1≤x ≤2
∴A=[﹣1,2],
由B 中y=lg (x ﹣1),得到x ﹣1>0,即x >1, ∴B=(1,+∞), 则A ∩B=(1,2], 故选:D .
6. 【答案】C
【解析】解:令f (x )=x 2
﹣mx+3,
若方程x 2
﹣mx+3=0的两根满足一根大于1,一根小于1,
则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),
故选:C .
【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.
7. 【答案】A
【解析】解:∵ =(2,﹣3,1),=(4,2,x ),且⊥, ∴
=0,
∴8﹣6+x=0; ∴x=﹣2; 故选A .
【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x 的方程求出x 的值.
8. 【答案】C
【解析】解:因为a 1=1,a 2=2,所以a 3=(1+cos 2
)a 1+sin
2
=a 1+1=2,a 4=(1+cos 2π)a 2+sin 2π=2a 2=4.
一般地,当n=2k ﹣1(k ∈N *
)时,
a 2k+1=[1+cos 2
]a 2k ﹣1+sin 2
=a 2k ﹣1+1,即a 2k+1﹣a 2k ﹣1=1.
所以数列{a 2k ﹣1}是首项为1、公差为1的等差数列,因此a 2k ﹣1=k .
当n=2k (k ∈N *)时,a 2k+2=(1+cos
2
)a 2k +sin
2
=2a 2k .
所以数列{a 2k }是首项为2、公比为2的等比数列,因此a 2k =2k

该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77 故选:C .
9. 【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得
=4,解得m=12.
故选:A .
10.【答案】D 【解析】
试题分析:分段间隔为5030
1500
=,故选D. 考点:系统抽样 11.【答案】C
【解析】根据分层抽样的要求可知在C 社区抽取户数为249
2
108180270360180108=⨯=++⨯.
12.【答案】D
【解析】
【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:


故选D
二、填空题
13.【答案】
【解析】试题分析:设
,由题设可知存在唯一的整数0x ,使得
在直线
的下方.因为
,故当
时,
,函数
单调递减;
当时,
,函数
单调递增;故,而当
时,
,故当

,解之得,应填答案
3,12e ⎡⎫
⎪⎢⎣⎭
. 考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线
的下方.然后再借助导数的知识求出函数的最小值,依
据题设建立不等式组求出解之得.
14.【答案】 甲 .
【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,
方差是
= [(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;
乙的平均数是=(78+88+89+96+99)=90,
方差是= [(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;


,∴成绩较为稳定的是甲.
【解法二】根据茎叶图中的数据知,
甲的5个数据分布在87~93之间,分布相对集中些,方差小些; 乙的5个数据分布在78~99之间,分布相对分散些,方差大些; 所以甲的成绩相对稳定些. 故答案为:甲.
【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.
15.【答案】 [1,5)∪(5,+∞) .
【解析】解:整理直线方程得y ﹣1=kx ,
∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,
由于该点在y 轴上,而该椭圆关于原点对称,
故只需要令x=0有 5y 2=5m
得到y 2
=m
要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是
y 2≥1
得到m ≥1
∵椭圆方程中,m ≠5
m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)
【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.
16.【答案】②④⑤
【解析】解析:构造函数()()x
g x e f x =,()[()()]0x
g x e f x f x ''=+>,()g x 在R 上递增,
∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;
构造函数()()x f x g x e =
,()()
()0x
f x f x
g x e
'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;
构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴
1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;
由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x
'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递
减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;
由()()x e xf x f x x '+=得2
()()x e xf x f x x
-'=,设()()x
g x e xf x =-,则()()()x
g x e f x xf x ''=--(1)x x x e e e x x x
=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当
0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.
17.【答案】 [﹣1,3] .
【解析】解:∵函数y=sin 2x ﹣2sinx=(sinx ﹣1)2
﹣1,﹣1≤sinx ≤1,
∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.
∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
18.【答案】.
【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角
设边长为1,则B
E=B1F=,EF=
1
∴cos∠EB1F=,
故答案为
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题
19.【答案】
【解析】解:(1)由题意可得A=,=﹣,求得ω=.
再根据最高点的坐标为(,),可得sin(×+φ)=,即sin(×+φ)=1 ①.
再根据由此最高点到相邻最低点间的曲线与x轴交于点(π,0),可得得sin(×+φ)=0,即sin(+φ)
=0 ②,
由①②求得φ=,故曲线的解析式为y=sin(x+).
(2)对于函数y=sin(x+),令2kπ﹣≤+≤2kπ+,求得4kπ﹣≤x≤4kπ+,
可得函数的增区间为[4kπ﹣,4kπ+],k∈Z.
令2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,
可得函数的减区间为[4kπ+,4kπ+],k∈Z.
【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点求出φ的值,正弦函数的单调性,属于中档题.
20.【答案】
【解析】解:(1)由分布表可得频数为50,故①的数值为50×0.1=5,
②中的值为=0.40,③中的值为50×0.2=10,
④中的值为50﹣(5+20+10)=15,⑤中的值为=0.30;
(2)不低于85的概率P=×0.20+0.30=0.40,
∴获奖的人数大约为800×0.40=320;
(3)该程序的功能是求平均数,
S=65×0.10+75×0.40+85×0.20+95×0.30=82,
∴800名学生的平均分为82分
21.【答案】
【解析】解:(Ⅰ)由题意设MN:y=kx+,
由,消去y得,x2﹣2pkx﹣p2=0(*)
由题设,x1,x2是方程(*)的两实根,∴,故p=2;
(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),
∵T在RQ的垂直平分线上,∴|TR|=|TQ|.
得,又,
∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).
而y3≠y4,∴﹣4=y3+y4﹣2t.
又∵y3+y4=1,∴,故T(0,).
因此,.
由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,
=

因此,当k=0时,S △MNT 有最小值3.
【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.
22.【答案】
【解析】解:(I )将(1,﹣2)代入抛物线方程y 2
=2px , 得4=2p ,p=2
∴抛物线C 的方程为:y 2
=4x ,其准线方程为x=﹣1
(II )假设存在符合题意的直线l ,其方程为y=﹣2x+t ,

得y 2
+2y ﹣2t=0,
∵直线l 与抛物线有公共点,
∴△=4+8t ≥0,解得t ≥﹣
又∵直线OA 与L 的距离d==
,求得t=±1
∵t ≥﹣ ∴t=1
∴符合题意的直线l 存在,方程为2x+y ﹣1=0
【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程
思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.
23.【答案】 【解析】(I )∵1cos )sin 3(cos 2
cos 22
=-+C B B A
, ∴0cos sin 3cos cos cos =-+C B C B A , ∴0cos sin 3cos cos )cos(=-++-C B C B C B ,
∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B , ∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C 又∵C 是三角形的内角,∴3
π
=
C .
24.【答案】
【解析】(本小题满分12分)
解:(1)由已知F
(﹣c,0),设B(0,b),即=(﹣c,0),=(0,b),
1
∴=(﹣c,),即E(﹣c,),
∴,得,①…
又△PF
F2的周长为2(),
1
∴2a+2c=2+2,②…
又①②得:c=1,a=,∴b=1,
∴所求椭圆C的方程为:=1.…
(2)设点M(m,0),(0<m<1),直线l的方程为y=k(x﹣1),k≠0,
由,消去y,得:(1+2k2)x2﹣4k2x+2k2﹣2=0,
设P(x1,y1),Q(x2,y2),PQ中点为N(x0,y0),
则,∴y1+y2=k(x1+x2﹣2)=,
∴,=,
即N(),…
∵△MPQ是以M为顶点的等腰三角形,∴MN⊥PQ,
即=﹣1,
∴m=∈(0,),…
设点M到直线l:kx﹣y﹣k=0距离为d,
则d2==<=,
∴d∈(0,),
即点M到直线距离的取值范围是(0,).…
【点评】本题考查椭圆方程的求法,考查点到直线的距离的取值范围的求法,解题时要认真审题,注意韦达定理、中点坐标公式、点到直线的距离公式的合理运用.。

相关文档
最新文档