霞浦实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霞浦实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】平行线的判定
【解析】【解答】解:①过两点有且只有一条直线,正确;
②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故本小题错误;
③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,该说法正确;
④经过直线外一点有且只有一条直线与已知直线平行,正确,
【分析】②两条不相同的直线如果相交,有且只有一个公共点,如果平行,没有公共点。

2、(2分)边长为2的正方形的面积为a,边长为b的立方体的体积为27,则a-b的值为()
A. 29
B. 7
C. 1
D. -2
【答案】C
【考点】立方根及开立方
【解析】【解答】∵边长为2的正方形的面积为a,∴a=22=4,∵边长为b的立方体的体积为27,∴b3=27,∴
b=3,∴a-b=1,故答案为:C.
【分析】根据正方形的面积=边长的平方和算术平方根的意义可求解;根据立方体的体积=边长的立方和立方根的意义可求解。

3、(2分)小明只带2元和5元两种面值的人民币,他买一件学习用品要支付23元,则付款的方式有()
A.1种
B.2种
C.3种
D.4种
【答案】B
【考点】二元一次方程的应用
【解析】【解答】解:设用了2元x张,5元y张,则
2x+5y=23,
2x=23-5y,
x= ,
∵x,y均为正整数,
∴或.
即付款方式有2种:(1)2元9张,5元1张;(2)2元4张,5元3张.
故答案为:B.
【分析】设用了2元x张,5元y张,根据学习用品的费用=23元,列方程,再求出方程的正整数解。

4、(2分)如图,直线AB与CD相交于点O,若∠AOC= ∠AOD,则∠BOD的度数为()
A. 30°
B. 45°
C. 60°
D. 135°
【答案】B
【考点】对顶角、邻补角
【解析】【解答】∵∠AOC= ∠AOD,∴∠AOD=3∠AOC,又∵∠AOC+AOD=180°,∴∠AOC+3∠AOC=180°,解得∠AOC=45°,∴∠BOD=∠AOC=45°(对顶角相等).故答案为:B.
【分析】根据图形得到对顶角相等即∠AOC=∠BOD,再由已知∠AOD=3∠AOC,∠AOD+∠AOC=180°,求出∠BOD的度数.
5、(2分)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案.小明说:“我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4.”小新接着说:“那么问题就成了问这个方程有几个正整数解.”现在请你说说看:这个方程正整数解的个数是()
A. 6个
B. 5个
C. 4个
D. 3个
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:①当x=1时,y=1,z=2或y=2,z=1;
②当y=1时,x=1,z=2或x=2,z=1;
③当z=1时,x=1,y=2或y=1,x=2.故答案为:D.
【分析】根据题意列出三元一次方程,根据每人至少1只,分三种情况:当x=1;当y=1;当z=1,求出其整数解即可。

6、(2分)关于下列问题的解答,错误的是()
A.x的3倍不小于y的,可表示为3x>y
B.m的与n的和是非负数,可表示为+n≥0
C.a是非负数,可表示为a≥0
D.是负数,可表示为<0
【答案】A
【考点】不等式及其性质
【解析】【解答】解:A、根据列不等式的意义,可知x的3倍不小于y的,可表示为3x≥y,故符合题意;
B、由“m的与n的和是非负数”,表示为+n≥0,故不符合题意;
C、根据非负数的性质,可知a≥0,故不符合题意;
D、根据是负数,表示为<0,故不符合题意.
故答案为:A.
【分析】A 先表示x的3倍与y的,再根据“不小于”即“大于或等于” 列出不等式即可,再作出判断即可。

B 先表示m的与n的和(最后求的是和)是“是非负数”即正数和0,列出不等式,再注册判断。

C “ 非负数”即正数和0,D
7、(2分)若整数同时满足不等式与,则该整数x是()
A.1
B.2
C.3
D.2和3
【答案】B
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.
故答案为:B.
【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.
8、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()
A. 5
B. 7
C. 9
D. 11
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设第二份餐的单价为x元,
由题意得,(120+x)×0.9≤200,
解得:x≤102,
故前9种餐都可以选择.
故答案为:C
【分析】先利用一元一次不等式求得第二份餐的单价的取值范围,再参照价格表及优惠即可知道可以选餐的种类.
9、(2分)已知是二元一次方程组的解,则2m﹣n的算术平方根是()
A.4
B.2
C.
D.±2
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:由题意得:,
解得;
∴= = =2;
故答案为:B.
【分析】将代入方程组,建立关于m、n的方程组,解方程组求出m、n的值,然后代入求出2m-n的算术平方根。

10、(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()
A. B. C. D.
【答案】D
【考点】三元一次方程组解法及应用
【解析】【解答】解:,
②−①,得3a+b=3④
①×3+③,得5a−2b=19⑤
由④⑤可知,选项D不符合题意,
故答案为:D.
【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c 消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。

11、(2分)在数轴上标注了四段范围,如图,则表示的点落在()
A. 段①
B. 段②
C. 段③
D. 段④
【答案】C
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】解:∵2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,
∴7.84<8<8.41,
∴2.8<<2.9,
∴表示的点落在段③
故答案为:C
【分析】分别求出2.62,2.72,2.82,2.92,32值,就可得出答案。

12、(2分)如图,下列能判定AB∥EF的条件有()
①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】平行线的判定
【解析】【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;
②∵∠1=∠2,∴DE∥BC,故本小题错误;
③∵∠3=∠4,∴AB∥EF,故本小题正确;
④∵∠B=∠5,∴AB∥EF,故本小题正确.
故答案为:C.
【分析】本题关键在于找到直线AB与EF被第三条直线所形成的的同位角、内错角与同旁内角,再根据平行线的判定定理来判断两直线平行.
二、填空题
13、(1分)如图,直线a//b,点C在直线b上,AC⊥BC,∠1=55°,则∠2=________°
【答案】35°
【考点】垂线,平行线的性质
【解析】【解答】解:如图
∵a//b
∴∠1=∠3=55°
∵AC⊥BC,
∴∠4=90°
∵∠2+∠3+∠4=180°
∴∠2=180°-90°-55°=35°
故答案为:35°
【分析】根据平行线的性质,可求出∠3的度数,再根据垂直的定义,求出∠4的度数,再根据平角的定义,可求出结果。

14、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。

15、(1分)=________.
【答案】
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,立方根及开立方
【解析】【解答】解:应先求出的值再计算,因为,所以原式=【分析】先根据立方根的定义,算开方运算,再根据有理数的绝对值的意义去绝对值符号,最后再算相反数得出答案。

16、(1分)如图所示,是某校初中三个年级男女生人数的条形统计图,则学生最多的年级是________
【答案】7年级
【考点】条形统计图
【解析】【解答】解:学生数是由女生和男生的和,故学生最多的年级是7年级.
故答案为:7年级.
【分析】此条形图是复合条形图,每部分又包含两个小矩形,同一类的用相同的颜色表示,只要正确理解图形表示的含义,很容易解决问题。

17、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
18、(1分)护士若要统计一病人一昼夜体温情况,应选用________统计图.
【答案】折线
【考点】扇形统计图,条形统计图,折线统计图,统计图的选择
【解析】【解答】解:根据题意,要求直观表现一病人一昼夜体温情况,即体温的变化情况,结合统计图各自的特点,应选择折线统计图.
【分析】折线统计图反映数据的变化情况,条形统计图反映各组数据的具体数目,扇形图反映部分与整体百分比,可根据实际需要恰当选择。

三、解答题
19、(5分)某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
【答案】解:设甲厂每天处理垃圾x小时,
由题意得,,
550x+(700-55x)×11≤7370,
50x+700-55x≤670,
解得:x≥6
【考点】一元一次不等式的应用
【解析】【分析】设甲厂每天处理垃圾x小时,处理垃圾需要费用550x元,则乙厂每天处理垃圾的时间为小时,乙厂处理垃圾共需要费用×495元,根据该城市处理垃圾的费用每天不超过7370元,列出不等式,求解即可。

20、(20分)计算:
(1)
(2)
(3)
(4)(用乘法公式)
【答案】(1)解:原式=2+1-8=-5
(2)解:原式=a5(-8a3)+a69a2
=-8a8+9a8
(3)解:
(4)解:原式=2018 2−(2018-1)×(2018+1)
=20182-20182+1
=1
【考点】实数的运算,整式的混合运算,含乘方的有理数混合运算
【解析】【分析】(1)先算乘方运算,再算加减法即可。

(2)先算乘方运算,再算乘法,然后再合并同类项即可求解。

(3)利用多项式除以单项式的法则,求解即可。

(4)将2017×2019转化为(2018-1)×(2018+1),利用平方差公式计算即可。

21、(5分)有一潜望镜模型,如图,AB,CD是两面平行放置的镜子,现有入射光线l1经AB,CD反射后成为
反射光线l2,已知∠1=∠2,∠3=∠4,你能说明l1与l2平行吗?
【答案】解:如图,因为AB∥CD,
所以∠2=∠3(两直线平行,内错角相等).
又因为∠1=∠2,∠3=∠4,
所以∠1=∠2=∠3=∠4.
又因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),
所以∠5=∠6,
所以l1∥l2(内错角相等,两直线平行)
【考点】平行线的判定与性质
【解析】【分析】根据平行线的性质,可证得∠2=∠3,再根据已知证明∠1=∠2=∠3=∠4,然后证明∠5=∠6,根据平行线的判定即可得证。

22、(5分)解方程组
【答案】解:①+②得4x+3y=4
得x+5y=1
的17y=0
所以将y=0代入⑤得x=1
将x=1,y=0代入①得z=2
所以原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】采用加减消元法.先由①与②.①与③消去z,得出x,y的二元方程组,解出x,y,再代入得出z.当然也可以先消去x.或者先消去y.一般地,求解一次方程组,都可以通过代人消元法或加减消元法.甚至两种方法一起使用,来解决问题.因此,这两种方法是常用的基本方法.在熟练运用这两种方法的基础上,可以从题目本身的特点出发,巧妙地消元,简化解题过程.
23、(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
24、(10分)如图,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN=120°.
(1)若∠ADQ=110°,求∠BED的度数;
(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示)
【答案】(1)解:如图1中,延长DE交MN于H.
∵∠ADQ=110°,ED平分∠ADP,
∴∠PDH= ∠PDA=35°,
∵PQ∥MN,
∴∠EHB=∠PDH=35°,
∵∠CBN=120°,EB平分∠ABC,
∴∠EBH= ∠ABC=30°,
∴∠BED=∠EHB+∠EBH=65°
(2)解:有3种情形,如图2中,当点E在直线MN与直线PQ之间时.延长DE交MN于H.
∵PQ∥MN,
∴∠QDH=∠DHA= n,
∴∠BED=∠EHB+∠EBH=180°﹣(n)°+30°=210°﹣(n)°,
当点E在直线MN的下方时,如图3中,设DE交MN于H.
∵∠HBA=∠ABP=30°,∠ADH=∠CDH=(n)°,
又∵∠DHB=∠HBE+∠HEB,
∴∠BED=(n)°﹣30°,
当点E在PQ上方时,如图4中,设PQ交BE于H.同法可得∠BED=30°﹣(n)°.
综上所述,∠BED=210°﹣(n)°或(n)°﹣30°或30°﹣(n)°
【考点】角的平分线,平行线的性质
【解析】【分析】(1)延长DE交MN于H.利用平行线的性质和角平分线的定义可得∠BED=∠EHB+∠EBH,即可解决问题;
(2)分3种情形讨论:点E在直线MN与直线PQ之间,点E在直线MN的下方,点E在PQ上方,再根据平行线的性质可解决问题.
25、(10分)阅读材料,并回答问题
如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M 移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.
(单位:cm)
由此可得,木棒长为__________cm.
借助上述方法解决问题:
一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?
(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.
(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。

请问灰太狼有几种抓羊方案?
【答案】(1)解:如图:
点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.
由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N所对应的数为116.可求MN=52.
所以点A所对应的数为12,点B所对应的数为64.
即美羊羊今年12岁,村长爷爷今年64岁.
(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:
解得:,则x=4,或x=5,
即抓四只小羊一只老羊或抓五只小羊
【考点】数轴及有理数在数轴上的表示,一元一次不等式组的应用
【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;
(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.
(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.
26、(5分)如图,B,C,E,F在同一条直线上,BF=CE,∠B=∠C,AE∥DF,那么AB=CD吗?请说明理由.
【答案】答:相等
理由如下:
∵BF=CE
∴BF+EF=CE+EF
∴BE=CF
∵AE∥DF
∴∠AEB=∠DFC

在△ABE和△DCF
∴△ABE≌△DCF(ASA)
∴AB=CD
【考点】平行线的性质,全等三角形的判定与性质
【解析】【分析】根据已知条件及平行线的性质证明BE=CF,∠AEB=∠DFC,再根据全等三角形的判定定理证明△ABE≌△DCF,然后利用全等三角形的性质,可证得结论。

第21 页,共21 页。

相关文档
最新文档