凤冈县实验中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凤冈县实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知,,那么夹角的余弦值( )
A .
B .
C .﹣2
D .﹣
2. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10 3. 函数y=2|x|的图象是( )
A .
B .
C .
D .
4. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且
=0,
tan ∠PF 1F 2=,则此椭圆的离心率为( )
A .
B .
C .
D .
5. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( ) A .13
B .15
C .12
D .11
6. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2
')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 7. 如图是一个多面体的三视图,则其全面积为( )
A.B.C.D.
8.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z
A.1 B.2 C.3 D.4
9.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则()
A.该几何体体积为B.该几何体体积可能为
C.该几何体表面积应为+D.该几何体唯一
10.已知命题p:存在x0>0,使2<1,则¬p是()
A.对任意x>0,都有2x≥1 B.对任意x≤0,都有2x<1
C.存在x0>0,使2≥1 D.存在x0≤0,使2<1
11.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()
A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=5
12.函数f(x)=tan(2x+),则()
A.函数最小正周期为π,且在(﹣,)是增函数
B.函数最小正周期为,且在(﹣,)是减函数
C.函数最小正周期为π,且在(,)是减函数
D.函数最小正周期为,且在(,)是增函数
二、填空题
13.设函数,若用表示不超过实数m的最大整数,则函数
的值域为.
14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,
甲说:我去过的城市比乙多,但没去过B城市;
乙说:我没去过C城市;
丙说:我们三人去过同一城市;
由此可判断乙去过的城市为.
15.设所有方程可以写成(x﹣1)sinα﹣(y﹣2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是;
①直线l的倾斜角为α;
②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;
③存在定圆C,使得对任意l∈L都有直线l与圆C相交;
④任意l1∈L,必存在唯一l2∈L,使得l1∥l2;
⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2.
16.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)
①tanA•tanB•tanC=tanA+tanB+tanC
②tanA+tanB+tanC的最小值为3
③tanA,tanB,tanC中存在两个数互为倒数
④若tanA:tanB:tanC=1:2:3,则A=45°
⑤当tanB﹣1=时,则sin2C≥sinA•sinB.
17.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE
所成角的余弦值为,且四边形ABB1A1为正方形,则球O的直径为.
18.已知f(x)=,则f(﹣)+f()等于.
三、解答题
19.在正方体1111D ABC A B C D 中,,E G H 分别为111,,BC C D AA 的中点. (1)求证:EG 平面11BDD B ;
(2)求异面直线1B H 与EG 所成的角]
20.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;
(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式.
21.已知函数f (x )=sinx ﹣2sin 2
(1)求f (x )的最小正周期;
(2)求f (x )在区间[0,]上的最小值.
22.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
23.在△ABC中,D为BC边上的动点,且AD=3,B=.
(1)若cos∠ADC=,求AB的值;
(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?
24.已知函数f(x)=2cosx(sinx+cosx)﹣1
(Ⅰ)求f(x)在区间[0,]上的最大值;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.
凤冈县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:∵,,
∴=,||=,=﹣1×1+3×(﹣1)=﹣4,
∴cos<>===﹣,
故选:A.
【点评】本题考查了向量的夹角公式,属于基础题.
2.【答案】B
【解析】
考点:球与几何体
3.【答案】B
【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)
∴y=2|x|是偶函数,
又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.
且当x=0时,y=1;x=1时,y=2,故A,D错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
4.【答案】A
【解析】解:∵
∴,即△PF1F2是P为直角顶点的直角三角形.
∵Rt△PF1F2中,,
∴=,设PF2=t,则PF1=2t
∴=2c,
又∵根据椭圆的定义,得2a=PF1+PF2=3t
∴此椭圆的离心率为e====
故选A
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
5.【答案】A
【解析】解:设点P到双曲线的右焦点的距离是x,
∵双曲线上一点P到左焦点的距离为5,
∴|x﹣5|=2×4
∵x>0,∴x=13
故选A.
6.【答案】C.
【解析】由,得:,
即,令,则当时,,
即在是减函数,,
,,
在是减函数,所以由得,,
即,故选
7.【答案】C
【解析】解:由三视图可知几何体是一个正三棱柱,
底面是一个边长是的等边三角形,
侧棱长是,
∴三棱柱的面积是3××2=6+,
故选C.
【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.
8.【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=,
第5行的第1、3个数分别为,.
所以z=.
所以x+y+z=++=1.
故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.
9.【答案】C
【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到
且该三棱锥有条过同一顶点且互相垂直的棱长均为1
该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成
故其表面积S=3•(1×1)+3•(×1×1)+•()2
=.
故选:C.
【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.
10.【答案】A
【解析】解:∵命题p:存在x0>0,使2<1为特称命题,
∴¬p为全称命题,即对任意x>0,都有2x≥1.
故选:A
11.【答案】B
【解析】解:线段AB的中点为,k AB==﹣,
∴垂直平分线的斜率k==2,
∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,
故选B.
【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.12.【答案】D
【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,
在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,
故选:D.
二、填空题
13.【答案】{0,1}.
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0, +=1,
故y=1;
③<
<1时,
﹣<﹣<0,1<
+<,
故y=﹣1+1=0;
故函数
的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
14.【答案】 A .
【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,
但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,
再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .
故答案为:A .
【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.
15.【答案】 ②③④
【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误; 对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),
可以认为是圆(x ﹣1)2+(y ﹣2)2
=1的切线系,故②正确;
对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,
如圆C :(x ﹣1)2+(y ﹣2)2
=100,故③正确;
对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确; 对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误. 故答案为:②③④.
【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.
16.【答案】①④⑤
【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π
∴tan(A+B)=tan(π﹣C)=﹣tanC,
又∵tan(A+B)=,
∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,
即tanA+tanB+tanC=tanAtanBtanC,故①正确;
当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;
若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;
由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;
当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,
此时sin2C=,
sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣
cos2A=sin(2A﹣30°)≤,
则sin2C≥sinA•sinB.故⑤正确;
故答案为:①④⑤
【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.
17.【答案】4或.
【解析】解:设AB=2x,则AE=x,BC=,
∴AC=,
由余弦定理可得x2=9+3x2+9﹣2×3××,
∴x=1或,
∴AB=2,BC=2,球O的直径为=4,
或AB=2,BC=,球O的直径为=.
故答案为:4或.
18.【答案】4.
【解析】解:由分段函数可知f()=2×=.
f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,
∴f()+f(﹣)=+.
故答案为:4.
三、解答题
19.【答案】(1)证明见解析;(2)90.
【解析】
(2)延长DB 于M ,使1
2
BM BD =
,连结11,,B M HM HB M ∠为所求角.
设正方体边长为,则111651011cos 02
B M B H AM HM HB M =
===∴∠=, 1B H ∴与EG 所成的角为90.
考点:直线与平行的判定;异面直线所成的角的计算.
【方法点晴】本题主要考查了直线与平面平行的判定与证明、空间中异面直线所成的角的计算,其中解答中涉及到平行四边形的性质、正方体的结构特征、解三角形的相关知识的应用,着重考查了学生的空间想象能力以及学生分析问题和解答问题的能力,本题的解答中根据异面直线所成的角找到角1HB M ∠为异面直线所成的角是解答的一个难点,属于中档试题. 20.【答案】
【解析】解:(1)由导数的几何意义f ′(a+1)=12
∴3(a+1)2
﹣3a (a+1)=12 ∴3a=9∴a=3
(2)∵f′(x)=3x2﹣3ax,f(0)=b

由f′(x)=3x(x﹣a)=0得x1=0,x2=a
∵x∈[﹣1,1],1<a<2
∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[﹣1,1]上的最大值为f(0)
∵f(0)=b,
∴b=1
∵,
∴f(﹣1)<f(1)
∴f(﹣1)是函数f(x)的最小值,


∴f(x)=x3﹣2x2+1
【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.21.【答案】
【解析】解:(1)∵f(x)=sinx﹣2sin2
=sinx﹣2×
=sinx+cosx﹣
=2sin(x+)﹣
∴f(x)的最小正周期T==2π;
(2)∵x∈[0,],
∴x+∈[,π],
∴sin(x+)∈[0,1],即有:f(x)=2sin(x+)﹣∈[﹣,2﹣],
∴可解得f(x)在区间[0,]上的最小值为:﹣.
【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.
22.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,

设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC的法向量,因为平面PBC⊥平面PDC,
所以=0,即﹣6+=0,解得t=,
所以PA=.
【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
23.【答案】
【解析】(本小题满分12分)
解:(1)∵,
∴,
∴…2分(注:先算∴sin∠ADC给1分)
∵,…3分
∴,…5分
(2)∵∠BAD=θ,
∴, (6)
由正弦定理有,…7分
∴,…8分
∴,…10分
=,…11分
当,即时f(θ)取到最大值9.…12分
【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
24.【答案】
【解析】(本题满分为12分)
解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1
=sin2x+2×﹣1
=sin2x+cos2x
=sin(2x+),
∵x∈[0,],
∴2x+∈[,],
∴当2x+=,即x=时,f(x)min=…6分
(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,
∴sin(+)=,
∴+=,
∴B=,
由正弦定理可得:b==∈[1,2)…12分
【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.。

相关文档
最新文档