9.8一元二次不等式及其解法

合集下载

第九讲一元二次不等式及其解法

第九讲一元二次不等式及其解法

第九讲 一元二次不等式及其解法基础梳理1.一元二次不等式的解法 (1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2.一元二次不等式与相应的二次函数及一元二次方程的关系 判别式 Δ=b 2-4ac Δ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2) 有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集{x |x >x 2或x <x 1} ⎩⎨⎧⎭⎬⎫x |x ≠-b 2aR ax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}∅∅一个技巧一元二次不等式ax 2+bx +c <0(a ≠0)的解集的确定受a 的符号、b 2-4ac 的符号的影响,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集.若一元二次不等式经过不等式的同解变形后,化为ax 2+bx +c >0(或<0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不等实根x 1,x 2,(x 1<x 2)(此时Δ=b 2-4ac >0),则可根据“大于取两边,小于夹中间”求解集.两个防范(1)二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况;(2)解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏. 双基自测1.不等式x 2-3x +2<0的解集为 .2.不等式2x 2-x -1>0的解集是 .3.不等式9x 2+6x +1≤0的解集是 .4.若不等式ax 2+bx -2<0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <14,则ab = .5.不等式ax 2+2ax +1≥0对一切x ∈R 恒成立,则实数a 的取值范围为________.考向一 一元二次不等式的解法【例1】►已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.解一元二次不等式的一般步骤是:(1)化为标准形式;(2)确定判别式Δ的符号;(3)若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无根;(4)结合二次函数的图象得出不等式的解集.特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.【训练1】 函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.考向二 含参数的一元二次不等式的解法【例2】►求不等式12x 2-ax >a 2(a ∈R )的解集.解含参数的一元二次不等式的一般步骤:(1)二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【训练2】 解关于x 的不等式(1-ax )2<1.考向三 不等式恒成立问题【例3】►已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c>0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a=0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.【训练3】 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.考向四 求解含参数不等式的恒成立问题 【例4】►设函数f (x )=(x -a )2ln x ,a ∈R . (1)若x =e 为y =f (x )的极值点,求实数a ;(2)求实数a 的取值范围,使得对任意的x ∈(0,3e],恒有f (x )≤4e 2成立. 注:e 为自然对数的底数.本题考查函数极值的概念,导数的运算法则,导数的应用,不等式的基础知识,考查学生推理论证能力.分析问题,解决问题的能力.难度较大,做好此类题目,一要有信心,二要结合题意进行恰当地转化,化难为易,化陌生为熟悉.【试一试】 设函数f (x )=ax 3-3x +1,若对于任意x ∈[-1,1],都有f (x )≥0成立,求实数a 的值.基础检测1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.2.若存在实数x ,使得x 2-4bx +3b <0成立,则b 的取值范围是________.3.若关于x 的不等式(2ax -1)·ln x ≥0 对任意x ∈(0,+∞)恒成立,则实数a 的值为________.4.不等式|x (x -2)|>x (x -2)的解集是________.5.若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________.6.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.第2讲一元二次不等式及其解法【2013年高考会这样考】1.会从实际情景中抽象出一元二次不等式模型.2.考查一元二次不等式的解法及其“三个二次”间的关系问题.3.以函数、导数为载体,考查不等式的参数范围问题.【复习指导】1.结合“三个二次”之间的联系,掌握一元二次不等式的解法.2.熟练掌握分式不等式、无理不等式、含绝对值不等式、高次不等式、指数不等式和对数不等式的解法.基础梳理1.一元二次不等式的解法(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0).(2)求出相应的一元二次方程的根.(3)利用二次函数的图象与x轴的交点确定一元二次不等式的解集.2.一元二次不等式与相应的二次函数及一元二次方程的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x>x2或x<x1}⎩⎨⎧⎭⎬⎫x|x≠-b2aRax2+bx+c<0 (a>0)的解集{x|x1<x<x2}∅∅一个技巧一元二次不等式ax2+bx+c<0(a≠0)的解集的确定受a的符号、b2-4ac的符号的影响,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y=ax2+bx+c(a≠0)的图象,数形结合求得不等式的解集.若一元二次不等式经过不等式的同解变形后,化为ax2+bx+c>0(或<0)(其中a>0)的形式,其对应的方程ax2+bx+c=0有两个不等实根x1,x2,(x1<x2)(此时Δ=b2-4ac>0),则可根据“大于取两边,小于夹中间”求解集.两个防范(1)二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况;(2)解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.双基自测1.(人教A版教材习题改编)不等式x2-3x+2<0的解集为().解析∵(x-1)(x-2)<0,∴1<x<2.故原不等式的解集为(1,2).2.(2011·广东)不等式2x 2-x -1>0的解集是( ). 解析 ∵2x 2-x -1=(x -1)(2x +1)>0,∴x >1或x <-12.故原不等式的解集为⎝⎛⎭⎫-∞,-12∪(1,+∞). 3.不等式9x 2+6x +1≤0的解集是( ). 解析 ∵9x 2+6x +1=(3x +1)2≥0,∴9x 2+6x +1≤0的解集为⎩⎨⎧⎭⎬⎫x |x =-13.4.(2012·许昌模拟)若不等式ax 2+bx -2<0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <14,则ab =( ).解析 ∵x =-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =(-2)×14=-12,-b a =-74,∴a =4,b =7.∴ab =28.5.不等式ax 2+2ax +1≥0对一切x ∈R 恒成立,则实数a 的取值范围为________. 解析 当a =0时,不等式为1≥0恒成立;当a ≠0时,须⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4a 2-4a ≤0.∴0<a ≤1,综上0≤a ≤1.考向一 一元二次不等式的解法 【例1】►已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组.解 由题意知⎩⎪⎨⎪⎧ x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得:x >1.故原不等式的解集为{x |x >1}.解一元二次不等式的一般步骤是:(1)化为标准形式;(2)确定判别式Δ的符号;(3)若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无根;(4)结合二次函数的图象得出不等式的解集.特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.【训练1】 函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎪⎨⎪⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎪⎨⎪⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3.故函数f (x )的定义域为[1,3).答案 [1,3)考向二 含参数的一元二次不等式的解法【例2】►求不等式12x 2-ax >a 2(a ∈R )的解集.[审题视点] 先求方程12x 2-ax =a 2的根,讨论根的大小,确定不等式的解集. 解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.解含参数的一元二次不等式的一般步骤:(1)二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【训练2】 解关于x 的不等式(1-ax )2<1.解 由(1-ax )2<1,得a 2x 2-2ax <0,即ax (ax -2)<0, 当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝⎛⎭⎫x -2a <0, 即0<x <2a .当a <0时,2a<x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2a<x <0. 考向三 不等式恒成立问题【例3】►已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围. [审题视点] 化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0.解 原不等式等价于(a +2)x 2+4x +a -1>0对一切实数恒成立,显然a =-2时,解集不是R ,因此a ≠-2,从而有⎩⎪⎨⎪⎧ a +2>0,Δ=42-4(a +2)(a -1)<0,整理,得⎩⎪⎨⎪⎧ a >-2,(a -2)(a +3)>0,所以⎩⎪⎨⎪⎧a >-2,a <-3或a >2, 所以a >2.故a 的取值范围是(2,+∞).不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c>0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a=0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.【训练3】 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立, 只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围为[-3,1].法二 令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立, 即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g (-1)≥0.解得-3≤a ≤1.所求a 的取值范围是[-3,1].规范解答12——怎样求解含参数不等式的恒成立问题【问题研究】 含参数的不等式恒成立问题越来越受高考命题者的青睐,且由于新课标对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势.对含有参数的不等式恒成立问题,破解的方法主要有:分离参数法和函数性质法.【解决方案】 解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题.【示例】►(本题满分14分)(2011·浙江)设函数f (x )=(x -a )2ln x ,a ∈R . (1)若x =e 为y =f (x )的极值点,求实数a ;(2)求实数a 的取值范围,使得对任意的x ∈(0,3e],恒有f (x )≤4e 2成立. 注:e 为自然对数的底数.本题对于(1)问的解答要注意对于结果的检验,因为f ′(x 0)=0,x 0不一定是极值点;对于(2)问的解答可以采用分离参数求最值的方法进行突破,这样问题就转化为单边求最值,相对分类讨论求解要简单的多.[解答示范] (1)求导得f ′(x )=2(x -a )ln x +(x -a )2x =(x -a )(2ln x +1-ax).(2分)因为x =e 是f (x )的极值点,所以f ′(e)=(e -a )⎝⎛⎭⎫3-ae =0,解得a =e 或a =3e.经检验,符合题意,所以a =e 或a =3e.(4分)(2)①当0<x ≤1时,对于任意的实数a ,恒有f (x )≤0<4e 2成立.(5分)②当1<x ≤3e 时,由题意,首先有f (3e)=(3e -a )2ln(3e)≤4e 2,解得3e -2e ln (3e )≤a ≤3e +2eln (3e )(6分)由(1)知f ′(x )=x -a ⎝⎛⎭⎫2ln x +1-ax .(8分) 令h (x )=2ln x +1-ax,则h (1)=1-a <0,h (a )=2ln a >0,且h (3e)=2ln(3e)+1-a3e ≥2 ln(3e)+1-3e +2eln (3e )3e =2⎝⎛⎭⎫ln 3e -13ln 3e >0.(9分)又h (x )在(0,+∞)内单调递增,所以函数h (x )在(0,+∞)内有唯一零点,记此零点为x 0,则1<x 0<3e,1<x 0<a .从而,当x ∈(0,x 0)时,f ′(x )>0;当x ∈(x 0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.即f (x )在(0,x 0)内单调递增,在(x 0,a )内单调递减,在(a ,+∞)内单调递增. 所以要使f (x )≤4e 2对x ∈(1,3e]恒成立,只要 ⎩⎪⎨⎪⎧f (x 0)=(x 0-a )2ln x 0≤4e 2,(1)f (3e )=(3e -a )2ln (3e )≤4e 2,(2)成立.(11分) 由h (x 0)=2ln x 0+1-ax 0=0,知a =2x 0ln x 0+x 0.(3)将(3)代入(1)得4x 20ln 3x 0≤4e 2.又x 0>1,注意到函数x 2ln 3x 在(1,+∞)内单调递增,故1<x 0≤e. 再由(3)以及函数2x ln x +x 在(1,+∞)内单调递增,可得1<a ≤3e.由(2)解得,3e -2e ln (3e )≤a ≤3e +2eln (3e ).所以3e -2eln (3e )≤a ≤3e.(13分)综上,a 的取值范围为3e -2eln (3e )≤a ≤3e.(14分).本题考查函数极值的概念,导数的运算法则,导数的应用,不等式的基础知识,考查学生推理论证能力.分析问题,解决问题的能力.难度较大,做好此类题目,一要有信心,二要结合题意进行恰当地转化,化难为易,化陌生为熟悉.【试一试】 设函数f (x )=ax 3-3x +1,若对于任意x ∈[-1,1],都有f (x )≥0成立,求实数a 的值.[尝试解答] (1)若x =0,则不论a 取何值,f (x )=1>0恒成立.(2)若x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x3,则g ′(x )=3(1-2x )x 4,∴g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减.∴g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4. (3)若x <0,即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x3.设h (x )=3x 2-1x 3,则h ′(x )=3(1-2x )x 4,∴h (x )在[-1,0)上单调递增. ∴h (x )min =h (-1)=4,从而a ≤4. 综上所述,实数a 的值为4.基础检测1.(2014·苏州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:由条件得⎩⎪⎨⎪⎧1-x 2>2x ,1-x 2>0,解得-1<x <-1+ 2.答案:()-1,-1+22.(2014·南通期末)若存在实数x ,使得x 2-4bx +3b <0成立,则b 的取值范围是________.解析:本题是存在性命题,只要满足Δ=16b 2-12b >0即可,解得b <0或b >34.3.(2013·南京、淮安二模)若关于x 的不等式(2ax -1)·ln x ≥0 对任意x ∈(0,+∞)恒成立,则实数a 的值为________.解析:若x =1,则原不等式恒成立,此时a ∈R ;若x >1,则ln x >0,于是2ax -1≥0,即a ≥⎝⎛⎭⎫12x max ,所以a ≥12;若0<x <1,则ln x <0,于是2ax -1≤0,即a ≤⎝⎛⎭⎫12x min ,所以a ≤12.综上所述,a =12.4.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2.5.若关于x 的不等式4x -2x +1-a ≥0在[1,2]上恒成立,则实数a 的取值范围为________. .解析:∵不等式4x -2x +1-a ≥0在[1,2]上恒成立, ∴4x -2x +1≥a 在[1,2]上恒成立.令y =4x -2x +1=(2x )2-2×2x +1-1=(2x -1)2-1. ∵1≤x ≤2,∴2≤2x ≤4.由二次函数的性质可知:当2x =2, 即x =1时,y 取得最小值0,∴实数a 的取值范围为(-∞,0]. 6.设函数f (x )=mx 2-mx -1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解:(1)要使mx 2-mx -1<0恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0.所以-4<m ≤0.(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6, x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67, 所以只需m <67即可. 所以,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 第Ⅱ组:重点选做题1.(2014·连云港模拟)已知关于x 的不等式x 2-ax +2a <0的解集为A ,若集合A 中恰有两个整数,则实数a 的取值范围是________.4.(2014·泰州质检)设实数a ≥1,使得不等式x |x -a |+32≥a 对任意的实数x ∈[1,2]恒成立,则满足条件的实数a 的取值范围是________.1.解析:由题意可得:Δ=a 2-8a >0, 得a <0或a >8.当a <0时,对称轴x 0=a 2<0,且f (0)=2a <0. 故A 中两个整数只能为-1,0.故f (-1)=1+3a <0,f (-2)=4+4a ≥0,得-1≤a <-13. 当a >8时,x 0=a 2>4,设A =(m ,n ).由于集合A 中恰有两个整数n -m ≤3.即a 2-8a ≤3,即a 2-8a ≤9.得8<a ≤9故对称轴4<a 2<5, 又f (2)=4>0,f (3)=9-a ≥0故A 中的两个整数为4和5.故f (4)<0,f (5)<0,f (6)≥0.即⎩⎪⎨⎪⎧ 25-3a <016-2a <036-4a ≥0,解得253<a ≤9. 综上a 的取值范围为⎣⎡⎭⎫-1,-13∪⎝⎛⎦⎤253,9. 答案:⎣⎡⎭⎫-1,-13∪⎝⎛⎦⎤253,9 4.解析:(1)当1≤a ≤32时,显然符合题意. (2)当a ≥2时,原不等式可化为x (a -x )≥a -32. 取x =1,成立.当x ∈(1,2]时,a ≥x 2-32x -1=x +1-12(x -1). 而函数f (x )=x +1-12(x -1)在(1,2]上单调递增,故a ≥f (2)=52. (3)当32<a <2时,原不等式可化为 ①⎩⎪⎨⎪⎧ 1≤x ≤a ,x (a -x )≥a -32或 ②⎩⎪⎨⎪⎧ a ≤x ≤2,x (x -a )≥a -32.参照(2)的过程解不等式组①得a ≥a +1-12(a -1), 解得1<a ≤32,矛盾,舍去; 由不等式组②得a ≤x 2+32x +1=x -1+52(x +1). 同上可得-1≤a ≤32,矛盾,舍去. 综上所述,1≤a ≤32或a ≥52. 答案:⎣⎡⎦⎤1,32∪⎣⎡⎭⎫52,+∞。

一元二次不等式的解法(新版教材)

一元二次不等式的解法(新版教材)

一元二次不等式的解法基础知识1.一元二次不等式的概念一般地,形如ax 2+bx +c >0的不等式称为一元二次不等式,其中a ,b ,c 是常数,而且a ≠0.一元二次不等式中的不等号也可以是“<”“≥”“≤”等. 2.一元二次不等式的解法 (1)因式分解法如果x 1<x 2,则不等式__(x -x 1)(x -x 2)<0__的解集是(x 1,x 2);不等式__(x -x 1)(x -x 2)>0__的解集是(-∞,x 1)∪(x 2,+∞). (2)配方法:一元二次不等式ax 2+bx +c >0(a ≠0)通过配方总是可以变为__(x -h )2>k 或(x -h )2<k __的形式,再由k 值情况,可得原不等式的解集,如下表:1.不等式6-x -2x 2<0的解集是( D ) A .{x |-32<x <2}B .{x |-2<x <32}C .{x |x <-32或x >2}D .{x |x >32或x <-2}解析:不等式变形为2x 2+x -6>0,即(2x -3)(x +2)>0,∴不等式的解集为{x |x <-2或x >32}.故选D .2.不等式3x +11-4x ≥0的解集是( B )A .{x |-13≤x ≤14}B .{x |-13≤x <14}C .{x |x >14或x ≤-13}D .{x |x ≥14或x ≤-13}解析:原不等式可化为⎩⎪⎨⎪⎧(3x +1)(4x -1)≤0,1-4x ≠0,解得-13≤x <14,故其解集为{x |-13≤x <14}.故选B .3.①x 2+x +1<0,②-x 2-4x +5≤0,③x +y 2+1>0,④mx 2-5x +1>0,⑤-x 3+5x ≥0,⑥(a 2+1)x 2+bx +c >0(m ,n ∈R ).其中关于x 的不等式是一元二次不等式的是__①②⑥__.(请把正确的序号都填上)解析:①②是;③不是;④不一定是,因为当m =0时,它是一元一次不等式;⑤不是,因为未知数的最高次数是3;⑥是,尽管x 2的系数含有字母,但a 2+1≠0,所以⑥与④不同,故答案为①②⑥.4.不等式组0≤x 2-2x -3<5的解集为__(-2,-1]∪[3,4)__. 解析:由x 2-2x -3≥0得x ≤-1或x ≥3; 由x 2-2x -3<5得-2<x <4.∴-2<x ≤-1或3≤x <4. ∴原不等式的解集为(-2,-1]∪[3,4).5.已知x =1是不等式k 2x 2-6kx +8<0的解,则k 的取值范围是__(2,4)__.解析:x =1是不等式k 2x 2-6kx +8<0的解,把x =1代入不等式,得k 2-6k +8<0,解得2<k <4.关键能力·攻重难类型 解不含参数的一元二次不等式 ┃┃典例剖析__■ 典例1 解下列不等式: (1)x 2+x +1>0; (2)(3x -1)(x +1)>4.思路探究:(1)用配方法解不等式即可;(2)利用因式分解法求解. 解析:(1)由题意,可得x 2+x +1=(x +12)2+34>0,所以不等式的解集为R .(2)由不等式(3x -1)(x +1)>4,可化为3x 2+2x -5>0,即(x -1)(x +53)>0,所以不等式的解集为{x |x <-53或x >1}.归纳提升:一元二次不等式的解题策略1.因式分解法:不等式的左端能够进行因式分解的可用此法,它只能适应于解决一类特殊的不等式.2.配方法:一元二次不等式ax 2+bx +c >0(a ≠0)通过配方总可以化为(x -h )2>k 或(x -h )2<k 的形式,然后根据k 值的正负即可求得不等式的解集.┃┃对点训练__■ 1.解下列不等式:(1)2x 2+5x -3<0;(2)4x 2-12x +9>0. 解析:(1)原不等式可化为(2x -1)(x +3)<0, ∴原不等式的解集为(-3,12).(2)原不等式可化为x 2-3x +94>0,因为x 2-3x +94=(x -32)2,所以原不等式可化为(x -32)2>0,所以只要x ≠32,不等式即成立,所以原不等式的解集为(-∞,32)∪(32,+∞).类型 分式不等式的解法 ┃┃典例剖析__■ 典例2 解下列不等式: (1)2x -13x +1≥0;(2)2-xx +3>1. 思路探究:(1)解分式不等式的关键是把分式不等式等价转化为整式不等式求解,特别注意不能直接去分母.(2)当分式不等式的右边不为0时,要先移项、通分、合并同类项,再进行等价转化.解析:(1)∵2x -13x +1≥0,∴⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0,∴⎩⎨⎧x ≤-13或x ≥12,x ≠-13,即x <-13或x ≥12.∴原不等式的解集为{x |x <-13或x ≥12}.(2)原不等式可化为(2-x )-(x +3)x +3>0,即2x +1x +3<0,∴(2x +1)(x +3)<0,∴-3<x <-12.∴原不等式的解集为{x |-3<x <-12}.归纳提升:解分式不等式的关注点(1)根据是实数运算的符号法则,分式不等式经过同解变形可化为四种类型,解题思路如下: ①f (x )g (x )>0⇔f (x )g (x )>0; ②f (x )g (x )<0⇔f (x )g (x )<0; ③f (x )g (x )≥0⇔f (x )g (x )≥0且g (x )≠0⇔f (x )g (x )>0或f (x )=0; ④f (x )g (x )≤0⇔f (x )g (x )≤0且g (x )≠0⇔f (x )g (x )<0或f (x )=0. (2)对于不等号右边不为零的较复杂的分式不等式,先两边同时乘以分母的平方去分母,再移项,因式分解,转化为用上述方法求解. ┃┃对点训练__■2.(1)已知集合A ={x |x -2x ≤0},B ={0,1,2,3},则A ∩B =( A )A .{1,2}B .{0,1,2}C .{1}D .{1,2,3}(2)若关于x 的不等式ax -b >0的解集为(1,+∞),则关于x 的不等式ax +bx -3>0的解集为__(-∞,-1)∪(3,+∞)__.解析:(1)由已知得A ={x |0<x ≤2}, 又B ={0,1,2,3},∴A ∩B ={1,2}.(2)由ax -b >0的解集为(1,+∞)可得ba =1,且a >0,∴ax +b x -3>0可化为(x +b a)x -3>0. 解得x <-1或x >3.类型 —元二次不等式与一元二次方程之间的关系 ┃┃典例剖析__■典例3 不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( A ) A .{x |x <-1或x >12}B .{x |-1<x <12}C .{x |-2<x <1}D .{x |x <-2或x >1}思路探究:解答本题需从一元二次不等式的解集与不等式对应的一元二次方程根的情况的关系着手.解析:方法一:由题设条件知-1,2是方程ax 2+bx +2=0的两个实根. 由一元二次方程根与系数的关系,知⎩⎨⎧-1+2=-b a,-1×2=2a,解得⎩⎪⎨⎪⎧a =-1,b =1.则2x 2+x -1>0的解集是{x |x <-1或x >12}.方法二:由题设条件知-1,2是方程ax 2+bx +2=0的两个实根. 分别把x =-1,x =2代入方程ax 2+bx +2=0中,得⎩⎪⎨⎪⎧a -b +2=0,4a +2b +2=0,解得⎩⎪⎨⎪⎧a =-1,b =1.则2x 2+x -1>0的解集是{x |x <-1或x >12}.归纳提升:已知一元二次不等式ax 2+bx +c >0或ax 2+bx +c <0(a ≠0)的解集,则可知a 的符号和ax 2+bx +c =0的两实根,由根与系数的关系可知a ,b ,c 之间的关系.例如,若不等式ax 2+bx +c >0的解集为{x |d <x <e }(d <e ),则说明a <0,x 1=d ,x 2=e 分别为方程ax 2+bx +c =0的两根,即d +e =-b a ,d ·e =ca ;若解集为{x |x <d 或x >e }(d <e ),则说明a >0,x 1=d ,x 2=e 分别为方程ax 2+bx +c =0的两根,即d +e =-b a ,d ·e =ca .┃┃对点训练__■3.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( A ) A .52B .72C .154D .152解析:方法一:x 2-2ax -8a 2<0可化为(x +2a )(x -4a )<0.∵a >0且解集为(x 1,x 2),则x 1=-2a ,x 2=4a ,∴x 2-x 1=6a =15,故a =52.方法二:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,故(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,结合a >0得a =52.易混易错警示 忽略二次项系数为负 ┃┃典例剖析__■典例4 求一元二次不等式-x 2+5x -4>0的解集.错因探究:解一元二次不等式时易忽略二次项系数的符号,特别是当二次项系数为负数,利用因式分解法解不等式时,容易写错解集.解析:原不等式等价于x 2-5x +4<0,即等价于(x -1)(x -4)<0,所以原不等式的解集为{x |1<x <4}.误区警示:若一元二次不等式的二次项系数为负数,通常先把二次项系数化为正数,再求解.将二次项系数化为正数时,可以将不等式两边同乘以-1,也可以移项,具体解题时,一定要注意不等号的方向.二次项系数含参数时,要严格分系数为正、系数为0、系数为负三种情况进行讨论,缺一不可,若认为当系数为0时,为一元一次不等式,故不讨论,这是不可以的.因为只要题中没有明确说明为一元二次不等式,就必须讨论这种情况. 学科核心素养 用分类讨论思想解含参不等式 ┃┃典例剖析__■对于含参数的一元二次不等式,若二次项系数为常数,则可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论,分类要不重不漏. 典例5 解关于x 的不等式x 2-(a +a 2)x +a 3>0(a ∈R ).思路探究:本题考查含参数的一元二次不等式的求解,可通过分解因式、分类讨论求解. 解析:原不等式可化为(x -a )(x -a 2)>0.当a <0时,a <a 2,原不等式的解集为{x |x <a 或x >a 2}; 当a =0时,a 2=a ,原不等式的解集为{x |x ≠0,x ∈R }; 当0<a <1时,a 2<a ,原不等式的解集为{x |x <a 2或x >a }; 当a =1时,a 2=a ,原不等式的解集为{x |x ≠1,x ∈R }; 当a >1时,a <a 2,原不等式的解集为{x |x <a 或x >a 2}.综上所述,当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =1时,原不等式的解集为{x |x ≠1,x ∈R };当a =0时,原不等式的解集为{x |x ≠0,x ∈R }.课堂检测·固双基1.不等式3x 2-2x +1>0的解集为( D ) A .{x |-1<x <13}B .{x |13<x <1}C .∅D .R解析:由3x 2-2x +1>0得x 2-23x +13>0,所以(x -13)2>-29显然成立,所以原不等式的解集为R .2.不等式x -1x +2<0的解集为( C )A .{x |x >1}B .{x |x <-2}C .{x |-2<x <1}D .{x |x >1或x <-2}解析:原不等式等价于(x -1)(x +2)<0,解得-2<x <1. 3.不等式4-x 2≥0的解集是__[-2,2]__.解析:根据题意,4-x 2≥0⇔x 2≤4⇔|x |≤2⇔-2≤x ≤2,即不等式4-x 2≥0的解集是[-2,2]. 4.不等式1-x 2+x≥0的解集为__(-2,1]__.解析:由1-x 2+x ≥0,得⎩⎪⎨⎪⎧(1-x )(2+x )≥0,2+x ≠0,即⎩⎪⎨⎪⎧(x -1)(2+x )≤0,2+x ≠0,解得-2<x ≤1,所以不等式的解集是(-2,1]. 5.解下列不等式. (1)x 2-4x +3≤0; (2)x +22x -3≥0. 解析:(1)x 2-4x +3≤0,即(x -3)(x -1)≤0, 解得1≤x ≤3.所以不等式的解集为{x |1≤x ≤3}.(2)x +22x -3≥0等价于⎩⎪⎨⎪⎧(x +2)(2x -3)≥0,2x -3≠0,解得x ≤-2或x >32,故不等式的解集为{x |x ≤-2或x >32}.A 级 基础巩固一、单选题(每小题5分,共25分) 1.不等式x (2-x )>0的解集是( D ) A .{x |x >0} B .{x |x <2} C .{x |x >2或x <0}D .{x |0<x <2}解析:原不等式化为x (x -2)<0,故0<x <2. 2.不等式x 2-2x -5>2x 的解集是( B ) A .{x |x ≥5或x ≤-1} B .{x |x >5或x <-1} C .{x |-1<x <5}D .{x |-1≤x ≤5} 解析:由x 2-2x -5>2x ,得x 2-4x -5>0, 即(x -5)(x +1)>0,解得x >5或x <-1, 故x 2-4x -5>0的解集为{x |x <-1或x >5}.3.二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( C ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2} 解析:由已知得a (x +2)(x -3)>0, ∵a <0,∴(x +2)(x -3)<0,∴-2<x <3. ∴所求不等式的解集为{x |-2<x <3}.4.设a <-1,则关于x 的不等式a (x -a )(x -1a )<0的解集为( A )A .{x |x <a 或x >1a }B .{x |x >a }C .{x |x >a 或x <1a}D .{x |x <1a }解析:∵a <-1,∴a (x -a )·(x -1a )<0⇔(x -a )·(x -1a )>0.又a <-1,∴1a >a ,∴x >1a 或x <a .5.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( B ) A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析:由a ⊙b =ab +2a +b ,得x ⊙(x -2)=x (x -2)+2x +x -2=x 2+x -2<0,即(x +2)(x -1)<0,所以-2<x <1.二、填空题(每小题5分,共15分)6.设集合M ={x |x 2-x <0},N ={x |x 2<4},则M 与N 的关系为__M N __. 解析:因为M ={x |x 2-x <0}={x |0<x <1},N ={x |x 2<4}={x |-2<x <2},所以M N . 7.不等式1-x 2+x ≥1的解集为__(-2,-12]__.解析:1-x 2+x≥1⇔1-x 2+x-1≥0⇔1-x -2-x 2+x≥0⇔-2x -12+x≥0⇔2x +1x +2≤0⇔⎩⎪⎨⎪⎧(2x +1)(x +2)≤0,x +2≠0⇔-2<x ≤-12. 8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为__[2,8)__.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8). 三、解答题(共20分)9.(10分)已知集合A ={x |x 2-3x +2≤0},B ={x |1x -3<a },若A ⊆B ,求实数a 的取值范围.解析:A ={x |1≤x ≤2}. 由1x -3<a ,得-ax +3a +1x -3<0. ①当a =0时,B ={x |x <3},满足A ⊆B .②当a >0时,由-ax +3a +1x -3<0,得x -(3+1a)x -3>0,故B ={x |x <3或x >3+1a},满足A ⊆B .③当a <0时,由-ax +3a +1x -3<0,得x -(3+1a)x -3<0,故B ={x |3+1a <x <3}.由A ⊆B ,得3+1a <1,即-12<a <0.综上可得,a >-12,即a 的取值范围是(-12,+∞).10.(10分)关于x 的不等式E :ax 2+ax -2≤0,其中a ∈R . (1)当a =1时,求不等式E 的解集;(2)若不等式E 在R 上恒成立,求实数a 的取值范围. 解析:(1)当a =1时,不等式E :ax 2+ax -2≤0可化为 x 2+x -2≤0,即(x +2)(x -1)≤0,∴-2≤x ≤1,则不等式x 2+x -2≤0的解集是{x |-2≤x ≤1}, ∴当a =1时,不等式E 的解集为[-2,1]. (2)当a =0时,不等式E 化为0·x 2+0·x -2≤0, 对x ∈R 恒成立,即a =0时满足题意.当a ≠0时,不等式可化为:a (x +12)2-2-a4≤0恒成立∴⎩⎪⎨⎪⎧a <0-2-a4≤0⇒⎩⎨⎧a <08+a ≥0,解得:-8≤a <0. 综上可知,a 的取值范围为[-8,0].B 级 素养提升一、单选题(每小题5分,共10分) 1.不等式x 2-2x -2x 2+x +1<2的解集为( A )A .{x |x ≠-2}B .RC .∅D .{x |x <-2或x >2}解析:因为x 2+x +1=(x +12)2+34>0,所以原不等式可化为x 2-2x -2<2(x 2+x +1), 化简得x 2+4x +4>0,即(x +2)2>0, 所以原不等式的解集为{x |x ≠-2}.2.已知不等式x 2-2x -3<0的解集为M ,不等式x 2+x -6<0的解集为N ,不等式x 2+ax +b <0的解集为M ∩N ,则a +b 等于( A ) A .-3 B .1 C .-1D .3 解析:由题意得M ={x |-1<x <3},B ={x |-3<x <2},∴M ∩N ={x |-1<x <2},由根与系数的关系可得a =-1,b =-2,则a +b =-3. 二、多选题(每小题5分,共10分)3.下列四个不等式中解集为R 的是( CD ) A .-x 2+x +1≥0 B .x 2-25x +5>0 C .-2x 2+3x -4<0D .x 2+6x +10>0解析:对于C 项,不等式可化为x 2-32x +2>0,所以(x -34)2>-2316,所以-2x 2+3x -4<0的解集为R ;对于D 项,不等式可化为(x +3)2>-1,所以x 2+6x +10>0的解集为R .4.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ABC )A .6B .7C .8D .9解析:设y =x 2-6x +a ,其图像为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a 可以为6,7,8.故选ABC . 三、填空题(每小题5分,共10分)5.已知关于x 的不等式x +1x +a<2的解集为P .若1∉P ,则实数a 的取值范围为__[-1,0]__. 解析:1∉P 有两种情形,一种是1+11+a≥2,解得-1<a ≤0;另一种是x =1使分母为0,即1+a =0,解得a =-1,所以-1≤a ≤0.6.若关于x 的不等式ax >b 的解集为(-∞,15),则关于x 的不等式ax 2+bx -45a >0的解集为__(-1,45)__. 解析:由ax >b 的解集为(-∞,15),可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为(-1,45). 四、解答题(共10分)7.一服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂的月产量多大时,每月获得的利润不少于1 300元?(2)当月产量为多少时,每月可获得最大利润?最大利润是多少?解析:(1)设该厂每月获得的利润为y ,则y =(160-2x )x -(500+30x )=-2x 2+130x -500,由题意知y ≥1 300,∴20≤x ≤45.∴当月产量在20~45(包含20和45)件之间时,每月获得的利润不少于1 300元.(2)由(1)知y =-2(x -652)2+1 612.5. ∵x 为正整数,∴x =32或33时,y 取得最大值为1 612.∴当月产量为32或33件时,每月可获得最大利润,最大利润是1 612元.。

一元二次不等式及其解法

一元二次不等式及其解法

一元二次不等式及其解法
一元二次不等式是指形如ax^2 + bx + c > 0(或 < 0)的不
等式,其中a、b、c是实数且a ≠ 0。

解一元二次不等式的方法如下:
1. 将不等式转化为二次函数的形式,也就是a(x - h)^2 + k > 0(或 < 0),其中(h, k)是二次函数的顶点坐标。

2. 找到二次函数的顶点坐标(h, k)。

3. 根据二次函数的开口方向(a的正负)来确定不等式的解集。

a) 当a > 0时,二次函数开口向上,解集为函数上半部分的区间。

b) 当a < 0时,二次函数开口向下,解集为函数下半部分的区间。

4. 根据二次函数与x轴的交点来确定不等式的解集。

a) 当k > 0时,二次函数与x轴的交点分别为x1 = h +
√(k/a)和x2 = h - √(k/a),解集为这两个交点之间的区间(即
x1 < x < x2)。

b) 当k < 0时,二次函数与x轴没有交点,解集为空集。

c) 当k = 0时,二次函数与x轴只有一个交点x = h,解集为{x = h}。

通过以上步骤,可以找到一元二次不等式的解集。

根据具体的
系数和常数,解集可能是一个区间、两个区间的并集、或者为空集。

知识讲解_一元二次不等式及其解法_基础

知识讲解_一元二次不等式及其解法_基础

.
因而不等式 x2 5x 0 的解集是{x | 0 x 5} .
(2)方法一:
因为 0 , 方程 x2 4x 4 0 的解为 x1 x2 2 .
函数 y x2 4x 4 的简图为:
所以,原不等式的解集是{x | x 2} 方法二: x2 4x 4 (x 2)2 0 (当 x 2 时, (x 2)2 0 ) 所以原不等式的解集是{x | x 2}
照 0 , 0 , 0 可分三种情况,相应地,二次函数 y ax2 bx c (a 0) 的图像与 x 轴的位
置 关 系 也 分 为 三 种 情 况 . 因 此 我 们 分 三 种 情 况 来 讨 论 一 元 二 次 不 等 式 ax2 bx c 0 (a 0) 或
抛物线 y ax2 bx c 与 x 轴的交点的横坐标;
(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为 二次项系数为正的形式,然后讨论解决;
(3)解集分 0, 0, 0 三种情况,得到一元二次不等式 ax2 bx c 0 与 ax2 bx c 0
当 0<a<1 时,解集为{x | x a2或x a} ;
当 a=1 时,解集为{x | x 1};
【变式 3】(2015 春 房山区校级期中)解关于 x 的不等式 56x2+ax-a2<0。
【答案】
∵56x2+ax-a2<0,∴(7x+a)(8x-a)<0,即[x ( a)]( x a) 0 。 78
∴原不等式的解集是 .
【总结升华】
1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;

(完整版)高中数学一元二次不等式及其解法-知识点剖析

(完整版)高中数学一元二次不等式及其解法-知识点剖析

一元二次不等式及其解法-知识点剖析一、一元二次不等式及一元二次不等式的解集1.一元二次不等式经过变形,可以化成以下两种标准形式: (1)ax 2+bx+c>0(a>0); (2)ax 2+bx+c<0(a>0).上述两种形式的一元二次不等式的解集,可通过方程ax 2+bx+c=0的根确定.设Δ=b 2-4ac ,则: ①Δ>0时,方程ax 2+bx+c=0有两个不相等的解x 1、x 2,则不等式(1)的解集为{x|x>x 2或x<x 1},不等式(2)的解集为{x|x 1<x<x 2};②Δ=0时,方程ax 2+bx+c=0有两个相等的解,即x 1=x 2,则不等式(1)的解集为{x|x≠x 1},不等式(2)的解集为;③Δ<0时,方程ax 2+bx+c=0无实数解,则不等式(1)的解集为R ,不等式(2)的解集为. 2.解一元二次不等式的一般步骤:当a>0时,解形如ax 2+bx+c>0(≥0)或ax 2+bx+c<0(≤0)的一元二次不等式,一般可分为三步: (1)确定对应方程ax 2+bx+c=0的解; (2)画出对应函数图象的简图; (3)由图象得出不等式的解集.二、一元二次函数图象、一元二次方程的根、一元二次不等式的解集之间的关系 由下表可以看出ax 2+bx+c>0对一切x ∈R 都成立的条件为⎩⎨⎧<∆>,,00a ax 2+bx+c<0对一切x ∈R 都成立的条件为⎩⎨⎧<∆<.00a ,判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c (a>0)的图象一元二次方程ax 2+bx+c=0(a>0)的根 有两相异实根x 1,2=aacb b 242-±-有两相等实根x 1=x 2=-a b 2 没有实根一元二次不等式的解集 ax 2+bx+c >0(a>0) {x|x>x 2或x<x 1}{x ∈R |x≠-ab2} Rax 2+bx+c <0(a>0){x|x 1<x<x 2}φφ三、简单的分式不等式的解法 分式不等式同解不等式四、简单的一元高次不等式的解法一元高次不等式f (x )>0用穿根法(或称根轴法、区间法)求解,其步骤是: (1)将f (x )最高次项的系数化为正数;(2)将f (x )分解为若干个一次因式的积或二次不可分因式之积;(3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过);(4)根据曲线显现出的f (x )值的符号变化规律,写出不等式的解集. 例:解不等式(x+2)(x+1)2(x-1)3(x-2)≤0.解:原不等式变为(x+2)(x-1)(x-2)≤0或x=-1,各因式的根为-2,1,2,利用穿根法,原不等式的解集为{x|x≤-2或1≤x≤2或x=-1}. 知识探究问题1:解一元二次不等式应该注意哪些问题?探究:①要将二次项系数化为正,例如:解不等式-x 2-2x-1<0,需首先转化为x 2+2x+1>0求解. ②若一元二次不等式中二次项系数含字母,一般需要对二次项系数进行讨论,当两根的大小不确定时,还应对两根的大小进行讨论.例如:解关于x 的不等式ax 2-(a+1)x+1<0.首先对a 进行讨论,若a=0,原不等式⇔-x+1⇔{x|x>1};若a<0,原不等式⇔(x-a 1)(x-1)>0⇔{x|x<a 1或x>1}; 若a>0,原不等式⇔(x-a1)(x-1)<0.①其解的情况应由a1与1的大小关系进行确定,故当a=1时,式①⇔{x|x ∈};当a>1时,式①⇔{x|a1<x<1};当0<a<1时,式①⇔{x|1<x<a1}.注:对上述类型的二次不等式要搞清楚讨论的依据. 问题2:解简单的分式不等式应该注意哪些问题?探究:对于简单的分式不等式不能直接去分母,要把不等号的一边化为0,然后用商的符号法则化为不等式(组)求解.例如:解不等式1x 15x ++<3,应先将不等式转化为1x 15x ++-3<0,即1x 1)2(x +-<0,可化为⎩⎨⎧>+<-0101x ,x 或⎩⎨⎧<+>-0101x ,x ,(即化为不等式①),也可直接等价于2(x-1)(x+1)<0(转化为不等式)来求.还应注意对含等号的分式不等式,首先保证分母不为0. 例如:解不等式1x 15x ++≤1⇔1x 1)2(x +-≤0⇔⎩⎨⎧>+≤-0101x ,x 或⎩⎨⎧<+≥-0101x ,x 或直接等价于()()⎩⎨⎧≠+≤+-.010112x ,x x 练习请你和你的同学根据下面所给的材料,探究、讨论窗户应设计成怎样的尺寸.要在墙上开一个上半部为半圆形,下部为矩形的窗户(如图3-2-4所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?图3-2-4。

不等式一元二次不等式及其解法一元二次不等式及其解法ppt

不等式一元二次不等式及其解法一元二次不等式及其解法ppt
最大/最小值问题
一元二次不等式可以用于解决概率统计问题,如计算一个随机变量的期望值和方差。
概率统计问题
03
组合数学
组合数学中经常出现与一元二次不等式相关的问题,如利用不等式进行计数、排序等。
在数学竞赛中的应用
01
代数竞赛
一元二次不等式是代数竞赛中常见的考点之一,常常与方程、函数等知识结合考查。
02
2023
《不等式一元二次不等式及其解法一元二次不等式及其解法ppt》
CATALOGUE
目录
不等式的基本概念一元二次不等式的概念一元二次不等式的解法典型例题解析解题技巧与注意事项一元二次不等式的应用
不等式的基本概念
01
不等式的定义
用不等号连接两Байду номын сангаас代数式,表示它们之间的关系。
不等式的性质
不等式具有传递性、加法单调性、乘法单调性等性质。
详细描述
带有绝对值的不等式
总结词
与一元二次方程相关的不等式通常形式为 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0,其中 a、b、c 是常数,且 a 不等于 0。解这类不等式的方法是先求解一元二次方程,再根据方程的根求解不等式。
详细描述
对于与一元二次方程相关的不等式,首先需要求解一元二次方程。根据一元二次方程的求根公式 x = [-b ± sqrt(b^2 - 4ac)] / (2a),求出两个根 x1 和 x2。然后,根据不等式的形式和根的大小关系,判断不等式的解集。例如,不等式 x^2 - 2x - 3 > 0 的解集为 (-inf, -1) U (3, inf)。
定义与性质
只含有一个未知数的不等式。

高一数学必修1一元二次不等式及其解法

高一数学必修1一元二次不等式及其解法

专题讲解:一元二次不等式及其解法知识点一:一元二次不等式的定义我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.知识点2:一元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意:一元二次不等式的解集要写成集合或区间的形式.知识点3:一元二次不等式、一元二次方程以及二次函数的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系. 一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是: (1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点.(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围. 表(1)一元二次方程、二次函数以及一元二次不等式的关系:由上表可知:一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点4:一元二次不等式的解法 解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意:一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.知识点5:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a . 例1. 解下列不等式:(1)03722>++x x ; (2)542--x x ≤0. 解:(1)∵02532472>=⨯⨯-=∆∴方程03722=++x x 的两个根为3,2121-=-=x x∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<->321x x x 或;(2)∵()()03651442>=-⨯⨯--=∆∴方程0542=--x x 的两个根为1,521-==x x ∴原不等式的解集为{}51≤≤-x x . 一元二次不等式的解法,可借助于因式分解. 另解:(1)()()0123>++x x∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<->321x x x 或;(2)()()51-+x x ≤0∴原不等式的解集为{}51≤≤-x x .例2. 解下列不等式:(1)91242-+-x x ≥0; (2)053212>-+-x x . 解:(1)原不等式可化为91242+-x x ≤0 ∴()232-x ≤0∴原不等式的解集为⎭⎬⎫⎩⎨⎧=23x x ;(2)原不等式可化为01062<+-x x∵()04101462<-=⨯⨯--=∆∴方程01062=+-x x 无实数根 ∴原不等式的解集为∅.例3. 解不等式:02322<-+-x x .解:原不等式可化为02322>+-x x ∵()0722432<-=⨯⨯--=∆∴方程02322=+-x x 无实数根 ∴原不等式的解集为R .习题1: 解下列不等式:(1)0652>--x x ; (2)672>+-x x ;(3)()()032<+-x x ; (4)()()x x x x ->+-412242.习题2. 不等式()02>-x x 的解集为【 】(A ){}0>x x (B ){}2<x x (C ){}02<>x x x 或 (D ){}20<<x x习题3. 已知集合{}{}06,028322>--=≤--=x x x N x x x M ,则=N M ____________. 含参数的一元二次不等式的解法解含参数的一元二次不等式,一般情况下均需要进行分类讨论.根据讨论对象的不同,分为以下三种情形:一、二次项系数含有参数,对二次项系数的讨论 例4. 解不等式:()0122>+++x a ax .解:当0=a 时,原不等式为012>+x ,其解集为⎭⎬⎫⎩⎨⎧->21x x ;当0≠a 时,()044222>+=-+=∆a a a解方程()0122=+++x a ax 得:aa a x a a a x 242,2422221+---=++--= ①当0>a 时,原不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 24224222或;②当0<a 时,原不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 24224222.例5. 解不等式:()00652≠>+-a a ax ax . 解:∵0≠a∴()0245222>=--=∆a a a解方程0652=+-a ax ax 得:3,221==x x 分为以下两种情况:①当0>a 时,原不等式的解集为{}23<>x x x 或; ②当0<a 时,原不等式的解集为{}32<<x x .二、对判别式∆的符号的讨论 例6. 解不等式042>++ax x . 解:162-=∆a当0>∆,即4>a 或4-<a 时方程042=++ax x 的两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,所以原不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---<-+->21621622a a x a a x x 或;当0=∆,即4±=a 时原不等式可化为()022>+x 或()022>-x ,所以原不等式的解集为{}2-≠x x 或{}2≠x x ;当0<∆,即44<<-a 时方程042=++ax x 无实数根,所以原不等式的解集为R . 例7. 解不等式()14122+-+x x m ≥0()R m ∈. 解:∵2m ≥0 ∴012>+m()()222412144m m -=+--=∆当0>∆,即33<<-m 时,原不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--≤+-+≥1321322222m m x m m x x 或; 当0=∆,即3±=m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧=21x x ; 当0<∆,即3>m 或3-<m 时,原不等式的解集为R . 三、对一元二次方程两根大小的讨论例8. 解不等式0112<+⎪⎭⎫ ⎝⎛+-x a a x ()0≠a .解:原不等式可化为:()01<⎪⎭⎫ ⎝⎛--a x a x当aa 1=,即1±=a 时,原不等式的解集为∅; 当aa 1>,()()()()011,011,012>-+>-+>-a a a a a a a a ,即101><<-a a 或时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1;当a a 1<,即101<<-<a a 或时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1. 例9. 解不等式()006522≠>+-a a ax x . 解:原不等式可化为:()()032>--a x a x 方程()()032=--a x a x 的解为a x a x 3,221== ∵0≠a ,∴21x x ≠.当a a 32>,即0<a 时,原不等式的解集为{}a x a x x 32<>或; 当a a 32<,即0>a 时,原不等式的解集为{}a x a x x 23<>或. 例10. 解关于x 的不等式:()0112<---x a ax . 解:当0=a 时,原不等式为01<-x ,其解集为{}1<x x ;当0≠a 时,原不等式可化为:()()011<-+x ax ,方程()()011=-+x ax 的根为1,121=-=x ax当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧⎩⎨⎧<<-11x a x ;当0<a 时,①若11=-a,即1-=a ,则原不等式的解集为{}1≠x x ; ②若11>-a ,即01<<-a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<->11x a x x 或;③若11<-a ,即1-<a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>a x x x 11或.注意:一元二次不等式解集的结构与二次项系数的符号有着直接的关系. 知识点:一元二次不等式的解集的端点值就是对应的一元二次方程的解.例11. 已知关于x 的不等式02<++b ax x 的解集为{}21<<x x ,解关于x 的不等式012>++ax bx 的解集.解:∵02<++b ax x 的解集为{}21<<x x∴2,121==x x 是方程02=++b ax x 的两个根由根与系数的关系定理可知:⎩⎨⎧⨯=+=-2121b a ,解之得:⎩⎨⎧=-=23b a代入不等式012>++ax bx 得:01322>+-x x ∴()()0112>--x x ,解之得:211<>x x 或 ∴012>++ax bx 的解集为⎭⎬⎫⎩⎨⎧<>211x x x 或. 习题4. 已知方程022=++bx ax 的两根为21-和2. (1)求b a 、的值;(2)解不等式012>-+bx ax .例12. 若关于x 的不等式02<++c bx ax 的解集是⎭⎬⎫⎩⎨⎧->-<212x x x 或,求02>+-c bx ax 的解集.解:∵02<++c bx ax 的解集是⎭⎬⎫⎩⎨⎧->-<212x x x 或∴0<a ,且2-和21-是方程02=++c bx ax 的两个根 由根与系数的关系定理可知:⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-⨯-=--=-212212ac a b ,∴⎪⎪⎩⎪⎪⎨⎧==125a c a b∵0<a∴02>+-c bx ax 可化为:02<+-acx a b x ∴01252<+-x x ,解之得:221<<x∴02>+-c bx ax 的解集为⎭⎬⎫⎩⎨⎧<<221x x .习题5. 已知关于x 的不等式02<++q px x 的解集为⎭⎬⎫⎩⎨⎧<<-3121x x ,求关于x 的不等式012>++px qx 的解集.习题6. 若不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-221x x ,则=a _________,=b _________.习题7. 解下列不等式:(1)()x x -7≥12; (2)()122->x x .知识点: 一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a . 例13. 关于x 的不等式()1122+<+++x m mx x m 对∈x R 恒成立,求实数m 的取值范围. 解:原不等式可化为:012<-++m mx mx 当0=m 时,01<-,符合题意; 当m 0≠时,则有:()⎩⎨⎧<--=∆<01402m m m m ,解之得:0<m 综上所述,实数m 的取值范围为{}0≤m m .注意:若二次项系数中含有参数,不要忽略对二次项系数的讨论. 重要结论:(1)对于一元二次不等式02>++c bx ax ,它的解集为R 的条件为:⎩⎨⎧<∆>00a ;(2)对于一元二次不等式c bx ax ++2≥0,它的解集为R 的条件为: ⎩⎨⎧≤∆>00a ;(3)对于一元二次不等式02>++c bx ax ,它的解集为∅的条件为:⎩⎨⎧≤∆<00a .习题8. 若关于x 的不等式0222>++x ax 在R 上恒成立,求实数a 的取值范围.习题9. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A )[]4,4- (B )()4,4-(C )]([)∞+-∞-,44, (D )()()+∞-∞-,44,习题10. 已知函数()422)(2+-+=x a x x f ,如果对一切∈x R 恒成立,求实数a 的取值范围.第11页 例14. 若函数344)(2++-=x mx x x f 的定义域为R ,则实数m 的取值范围是 【 】 (A )()+∞∞-, (B )⎪⎭⎫ ⎝⎛34,0 (C )⎪⎭⎫ ⎝⎛+∞,34 (D ⎢⎣⎡⎪⎭⎫34,0 分析:本题仍是与不等式有关的恒成立问题. 函数344)(2++-=x mx x x f 的定义域为R ,即分母0342≠++x mx 恒成立.此时,当0≠m 时,方程0342=++x mx 无实数根或二次函数342++=x mx y 的图象与x 轴无交点.不要忽略对m 的讨论.解:当0=m 时,函数344)(+-=x x x f ,其定义域为⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,4343, ,不符合题意; 当0≠m 时,则有01216<-=∆m ,解之得:34>m ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛+∞,34. 习题11. 已知函数1)(2++=mx mx x f 的定义域是一切实数,则m 的取值范围是 【 】(A )](4,0 (B )][1,0 (C )[)∞+,4 (D )[]4,0习题12. 已知函数182++=bx ax y 的定义域为[]6,3-,则=a _________,=b _________. 习题13. 已知函数13122+++=kx x k kx y 的定义域为R ,则实数k 的值为_________. 习题14. 函数()()6131)(22+-+-=x a x a x f .(1)若)(x f 的定义域为[]1,2-,求实数a 的值;(2)若)(x f 的定义域为R ,求实数a 的取值范围.。

一元二次不等式及其解法

一元二次不等式及其解法
对于多元线性不等式的解法,一般需要通过矩阵变换或者使用线性代数方法来求解。
多元线性不等式的概念
多元线性不等式的解法
多元线性不等式
分式不等式的概念
分式不等式是指形如$\frac{ax + b}{cx + d} > e$或$\frac{ax + b}{cx + d} < e$的不等式,其中a,b,c,d是常数,且$ad - bc \neq 0$。
分式不等式的解法
对于分式不等式的解法,一般需要通过因式分解或者使用穿根法来求解,同时需要注意处理分母为零的情况。
分式不等式
06
一元二次不等式练习题及解答
练习题
4. $- x^2 + 3x - 4 <= 0$
3. $3x^2 - 2x - 5 >= 0$
2. $x^2 - 4x + 4 > 0$
求解下列一元二次不等式
一般形式
当一元二次不等式的判别式b²-4ac≤0时,不等式的解为全体实数,此时不等式为非闭口形式
当一元二次不等式的判别式b²-4ac>0时,不等式的解为两个实数根之间,此时不等式为闭口形式
特殊形式
02
一元二次不等式的解法
1
代数法
2
3
将不等式化简为 ax^2+bx+c>0 或 ax^2+bx+c<0 的形式。
分段函数
在数学中的应用
一元二次不等式可以用来解决一些运动问题,例如求解物体运动的最小速度和最大速度。
运动问题
一元二次不等式可以用来解决一些波动问题,例如求解波的传播速度和振动频率等。
波动问题
在物理中的应用

高中数学必修5常考题型:一元二次不等式及其解法

高中数学必修5常考题型:一元二次不等式及其解法

一元二次不等式及其解法(一)【知识梳理】1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx +c >0(≥0)或ax2+bx +c <0(≤0)(其中a ≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系如表 判别式Δ=b2-4ac Δ>0Δ=0Δ<0一元二次方程ax2+bx +c =0(a>0)的根有两相异实根x1,x2,(x1<x2)有两相等实根x1=x2=-b2a没有实数根二次函数y =ax2+bx +c (a>0)的图象ax2+bx +c>0(a>0)的解集 错误!或x>x2}⎩⎨⎧⎭⎬⎫x|x ≠-b 2aRax2+bx +c<0(a>0)的解集 {}x|x1<x<x2∅ ∅题型一、一元二次不等式的解法【例1】解下列不等式: (1)2x2+7x +3>0; (2)x2-4x -5≤0; (3)-4x2+18x -814≥0;(4)-12x2+3x -5>0;(5)-2x2+3x -2<0.[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x +3=0有两个不等实根x1=-3,x2=-12.又二次函数y =2x2+7x +3的图象开口向上,所以原不等式的解集为{x|x >-12,或x<-3}.(2)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x|-1≤x ≤5}.(3)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x|x =94.(4)原不等式可化为x2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x2-6x +10=0无实根,又二次函数y =x2-6x +10的图象开口向上,所以原不等式的解集为∅.(5)原不等式可化为2x2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x +2=0无实根,又二次函数y =2x2-3x +2的图象开口向上,所以原不等式的解集为R.【类题通法】解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集. 【对点训练】 1.解下列不等式:(1)x2-5x -6>0;(2)-x2+7x>6.(3)(2-x)(x +3)<0;(4)4(2x2-2x +1)>x(4-x). 解:(1)方程x2-5x -6=0的两根为x1=-1, x2=6.结合二次函数y =x2-5x -6的图象知,原不等式的解集为{x|x<-1或x>6}. (2)原不等式可化为x2-7x +6<0. 解方程x2-7x +6=0得,x1=1,x2=6.结合二次函数y =x2-7x +6的图象知,原不等式的解集为 {x|1<x<6}.(3)原不等式可化为(x -2)(x +3)>0. 方程(x -2)(x +3)=0两根为2和-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x|x<-3或x>2}. (4)由原不等式得8x2-8x +4>4x -x2. ∴原不等式等价于9x2-12x +4>0.解方程9x2-12x +4=0,得x1=x2=23.结合二次函数y =9x2-12x +4的图象知,原不等式的解集为{x|x ≠23}.题型二、解含参数的一元二次不等式【例2】解关于x 的不等式x2+(1-a)x -a <0.[解]方程x2+(1-a)x -a =0的解为x1=-1,x2=a ,函数y =x2+(1-a)x -a 的图象开口向上,则当a <-1时,原不等式解集为{x|a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x|-1<x <a}. 【类题通法】解含参数的一元二次不等式时:(1)若二次项系数含有参数,则需对二次项系数大于0与小于0进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论. 【对点训练】2.解关于x 的不等式:ax2-(a -1)x -1<0(a ∈R). 解:原不等式可化为: (ax +1)(x -1)<0, 当a =0时,x <1,当a >0时⎝ ⎛⎭⎪⎫x +1a (x -1)<0 ∴-1a <x <1.当a =-1时,x ≠1,当-1<a <0时,⎝ ⎛⎭⎪⎫x +1a (x -1)>0, ∴x >-1a 或x <1.当a <-1时,-1a <1,∴x >1或x <-1a ,综上原不等式的解集是:当a =0时,{x|x <1};当a >0时,⎩⎨⎧⎭⎬⎫x|-1a <x <1;当a =-1时,{x|x ≠1}; 当-1<a <0时,⎩⎨⎧⎭⎬⎫x|x <1或x >-1a .当a <-1时,⎩⎨⎧⎭⎬⎫x|x <-1a 或x >1, 题型三、一元二次不等式与相应函数、方程的关系【例3】已知关于x 的不等式x2+ax +b <0的解集为{x|1<x <2},求关于x 的不等式bx2+ax +1>0的解集.[解]∵x2+ax +b <0的解集为{x|1<x <2}, ∴1,2是x2+ax +b =0的两根.由韦达定理有⎩⎪⎨⎪⎧-a =1+2,b =1×2,得⎩⎪⎨⎪⎧a =-3,b =2,代入所求不等式,得2x2-3x +1>0.由2x2-3x +1>0⇔(2x -1)(x -1)>0⇔x <12或x >1.∴bx2+ax +1>0的解集为⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞). 【类题通法】1.一元二次不等式ax2+bx +c >0(a ≠0)的解集的端点值是一元二次方程ax2+bx +c =0的根,也是函数y =ax2+bx +c 与x 轴交点的横坐标.2.二次函数y =ax2+bx +c 的图象在x 轴上方的部分,是由不等式ax2+bx +c >0的x 的值构成的;图象在x 轴下方的部分,是由不等式ax2+bx +c <0的x 的值构成的,三者之间相互依存、相互转化.【对点训练】3.已知方程ax2+bx +2=0的两根为-12和2.(1)求a 、b 的值;(2)解不等式ax2+bx -1>0.解:(1)∵方程ax2+bx +2=0的两根为-12和2,由根与系数的关系,得⎩⎪⎨⎪⎧-12+2=-b a,-12×2=2a .解得a =-2,b =3.(2)由(1)知,ax2+bx -1>0可变为-2x2+3x -1>0, 即2x2-3x +1<0,解得12<x <1.∴不等式ax2+bx -1>0的解集为{x|12<x <1}.【练习反馈】1.不等式x(2-x)>0的解集为( ) A .{x|x >0} B .{x|x <2} C .{x|x >2或x <0}D .{x|0<x <2}解析:选D 原不等式化为x(x -2)<0,故0<x <2. 2.已知集合M ={x|x2-3x -28≤0},N ={x|x2-x -6>0}, 则M ∩N 为( )A .{x|-4≤x <-2或3<x ≤7}B .{x|-4<x ≤-2或3≤x <7}C .{x|x ≤-2或x >3}D .{x|x <-2或x ≥3}解析:选A ∵M ={x|x2-3x -28≤0} ={x|-4≤x ≤7},N ={x|x2-x -6>0}={x|x <-2或x >3}, ∴M ∩N ={x|-4≤x <-2或3<x ≤7}.3.二次函数y =x2-4x +3在y <0时x 的取值范围是________. 解析:由y <0得x2-4x +3<0, ∴1<x <3 答案:(1,3)4.若不等式ax2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x|-12<x <2,则实数a =________,实数b =________.解析:由题意可知-12,2是方程ax2+bx +2=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧-12+2=-b a,-12×2=2a ,解得a =-2,b =3. 答案:-23 5.解下列不等式: (1)x(7-x)≥12; (2)x2>2(x -1).解:(1)原不等式可化为x2-7x +12≤0,因为方程x2-7x +12=0的两根为x1=3,x2=4, 所以原不等式的解集为{x|3≤x ≤4}. (2)原不等式可以化为x2-2x +2>0,因为判别式Δ=4-8=-4<0,方程x2-2x +2=0无实根,而抛物线y =x2-2x +2的图象开口向上,所以原不等式的解集为R.。

含参数一元二次不等式的解法

含参数一元二次不等式的解法

含参数一元二次不等式的解法我们把只含有一个未知数, 并且未知数的最高次数是2的不等式, 称为一元二次不等式.一元二次不等式的一般形式是/ 或/ (其中/ 均为常数, / ).解含参一元二次不等式的相关问题对于基础薄弱的同学来说是一个难点.为了帮助这些同学解决此类问题, 本文将相关解题方法进行简化、总结, 帮助同学们理解和学习.下面我们通过例举进行具体的分析说明.类型一解二次项前不带参数的一元二次不等式1.对应方程/ (其中/ 均为常数, / )可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程/ 可因式分解为/ (/ 为方程的实数根)的形式, 则分类讨论的关键在于通过比较两根/ 的大小, 确定参数讨论的界限, 进而解出/ 的取值范围.例1 解关于的不等式 .分析: 对应方程/ 可因式分解为/ 的形式, 讨论两根/ 的大小, 即可解出/ 的取值范围.解: 原不等式等价于/ , 所对应方程/ 的两根是/当/ 时, 不等式的解集为/ .当/ 时, 不等式的解集为/ .当/ 时, 不等式的解集为/ .2.对应方程/ (其中/ 均为常数, / )不能进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程/ 不能进行因式分解, 则分类讨论的关键在于判别式, 此时根据判别式确定参数讨论的界限, 解出/ 的取值范围.例2 解关于的不等式 .分析: 对应方程/ 不能进行因式分解, 此时根据判别式确定参数讨论的界限, 求出/ 的取值范围.解: 原不等式对应方程/ 的判别式为/(1)当/ , / 时, / 的两根为/ 或/ , 不等式的解集为/ .(2)当/ , / 时, / 的根为/ ,不等式的解集为 .1.当/ , / 时, 不等式的解集为/ .综上所述:当/ 时, 不等式的解集为.当/ 时, 不等式的解集为/ .当/ 时, 不等式的解集为/ .类型二解二次项前带参数的一元二次不等式1.对应方程/ (其中/ 均为常数, / )可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程/ 可因式分解为/ (/ 为方程的实数根)的形式,则分类讨论的关键仍然在于通过比较两根/ 的大小确定参数讨论的界限.另外,需要注意的问题是二次项前带参数与二次项前不带参数不同,参数的范围决定对应二次函数/ 的开口方向,影响对应一元二次不等式的解集.例3 解关于的不等式 .分析: 对应方程/ 可因式分解为/ 的形式, 讨论两根/ 的大小, 即可确定参数讨论的界限, 根据参数的不同取值范围, 求出不等式相应解集。

一元二次不等式的解法口诀

一元二次不等式的解法口诀

一元二次不等式的解法口诀一元二次不等式是高中数学中的重要内容, 掌握好一元二次不等式的解法, 对学习高中及以后的数学课程至关重要。

下面, 本文将为大家介绍一元二次不等式的解法口诀。

口诀一、列出一元二次不等式的标准形式一元二次不等式的标准形式为 ax²+bx+c>0 或者 ax²+bx+c<0, 其中 a、b、c 是实数, 且 a≠0。

口诀二、求出一元二次不等式的根一元二次不等式的解法与二次方程的解法类似, 先求出一元二次不等式的根。

求根的公式为 x=[-b±√(b²-4ac)]/2a。

口诀三、用根来判定解的情况接下来根据根的情况, 决定这个一元二次不等式的解集。

具体有以下三种情况:情况一、当 a>0 时①当方程的两根都小于0时, 即 x1<0,x2<0 时, 方程无解;②当方程的根为一个小于0, 一个大于0时, 即x1<0,x2>0或者x1>0,x2<0 时, 方程的解集为(-∞, x1)∪(x2, +∞);③当方程的两根都大于0时, 即x1>0,x2>0 时, 方程的解集为(x1, x2)。

情况二、当 a<0 时①当方程的两根都小于0时, 即 x1<0,x2<0 时, 方程的解集为(-∞,x1)∪(x2, +∞);②当方程的根为一个小于0, 一个大于0时, 即x1<0,x2>0或者x1>0,x2<0时, 方程的解集为(-∞, x1]∪[x2, +∞);③当方程的两根都大于0时, 即x1>0,x2>0时, 方程的解集为(-∞, x1]∪[x2, +∞)。

情况三、当 a=0 时当 a=0 时, 该不等式为一元一次不等式。

如果 b>0, 则不等式的解集为(-∞, +∞), 如果b<0, 则不等式的解集为∅。

口诀四、简单例题的解法例1: 2x²-5x+2>0解: 首先, 求出这个一元二次不等式的根, 得出x1=1/2, x2=2。

一元二次不等式及其解法例题分类

一元二次不等式及其解法例题分类

一对一个性化辅导教案一元二次不等式及其解法【要点梳理】要点一、一元二次不等式及一元二次不等式的解集只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如:250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠.设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为{}21x x x x x ><或,不等式20axbx c ++<的解集为{}21x x x x <<要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20a x b x c ++>(0)a >或20ax bx c ++<(0)a >的解集.c要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.要点三、解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、②0∆=时,求根abx x 221-==③0∆<时,方程无解 (3)根据不等式,写出解集.要点诠释:1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数.【典型例题】类型一:一元二次不等式的解法例1.解下列一元二次不等式(1)250x x-<;(2)2440x x-+>;(3)2450x x-+->举一反三:【变式1】已知函数222,0,()2,0x x xf xx x x⎧+≥⎪=⎨-+<⎪⎩解不等式f(x)>3.类型二:含字母系数的一元二次不等式的解法例2.解关于x的不等式:ax2-x+1>0【总结升华】对含字母的二元一次不等式,一般有这样几步:①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;②求根:求相应方程的根.当无法判断判别式与0的关系时,要引入讨论,分类求解;③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论. 举一反三:【变式1】解关于x 的不等式:)0(01)1(2≠<++-a x aa x【变式2】求不等式12x 2-ax >a 2(a ∈R )的解集. .例3.解关于x 的不等式:ax 2-(a+1)x+1<0.举一反三:【变式1】解关于x 的不等式:(ax-1)(x-2)≥0;【变式2】解关于x 的不等式:ax 2+2x-1<0;类型三:一元二次不等式的逆向运用例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集.举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.【变式2】已知220ax x c ++>的解为1132x -<<,试求a 、c ,并解不等式220cx x a -+->.【变式3】已知关于x的不等式20++>的bx ax++<的解集为(1,2),求关于x的不等式210x ax b解集.类型四:不等式的恒成立问题例5.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,求实数m的取值范围.举一反三:【变式1】若关于x的不等式2(21)10-++-≥的解集为空集,求m的取值范围.mx m x m【变式2】已知不等式ax2+4x+a>1-2x2对一切实数x恒成立,求实数a的取值范围.。

一元二次不等式及其解法

一元二次不等式及其解法
一元二次不等式及其解法
第一课时
探究新知:
解不等式: x 5x 6
2
解:原不等式可变形为:x 5x 6 0
2
方程x 5x 6 0的两个根为:
2
x1=2,x2=3
∴ 不等式的解集为{x│ x <2或x>3}.
探究新知: 二次函数、一元二次方程、一元二次不等 式是一个有机的整体。通过函数把方程与不等 式联系起来,我们可以通过对方程的研究利用 函数来解一元二次不等式。 方程的解即对应函数图象与x轴交点的横坐 标;不等式的解集即对应函数图象在x轴下方或 上方图象所对应x的范围,且解集的端点值为对 应方程的根。
,
a a 16 x1 2 显然 x1 x 2
2

,
a a 2 16 x2 2
a a 2 16 a a 2 16 固:
1 1、若0 a 1, 则不等式(x a) ( x ) 0的解是( A ) a 1 1 A.a<x< C.x> 或x<a a a 1 1 B. <x<a D.x< 或x>a a a
相应方程 x 2a ( x 3a) 0 的两根为 x1 2a, x2 3a ∴(1)当 2a 3a 即 a 0 时,原不等式解集为 x | x 2a或x 3a
(2)当 2a 3a 即 a 0 时,原不等式解集为 x | x 3a或x 2a
2
二、按判别式 的符号分类,即分 0, 0, 0 三种情况
三、按对应方程 ax bx c 0 的根 x1 , x 2 的大小分类,即分 x1 x2 , x1 x2 , x1 x 2 三种情况.
2
1 2a 2 1 3 a

知识讲解_一元二次不等式及其解法_基础

知识讲解_一元二次不等式及其解法_基础

一元二次不等式及其解法【学习目标】1. 了解一元二次不等式与相应函数、方程的联系,能借助函数图象解一元二次不等式及一些简单的高次不等式;2. 对给定的一元二次不等式,能设计求解的程序框图;3. 应用一元二次不等式解简单的分式不等式. 【要点梳理】要点一:一元二次不等式的概念一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 一元二次不等式的解:使某个一元二次不等式成立的x 的值.一元二次不等式的解集:一元二次不等式的所有解组成的集合.一般写为集合或区间形式. 一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 要点诠释:一元二次不等式的解集一般借助相应的方程及图象(抛物线)来研究. 要点二:一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.要点三:解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法); ②0∆=时,求根122bx x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集.2. 一元二次不等式2ax +bx+c >0的求解框图要点诠释:1.解一元二次不等式首先要看二次项系数a 是否为正;若为负,则将其变为正数; 2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数. 要点四:高次不等式1. 一元高次不等式概念解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式. 常用的解法有化为不等式组法、列表法和穿针引线(根轴法)来求解.2. 一元高次不等式的解法 列表法① 等价转化:将不等式化为()()()()1200n x x x x x x --⋯-><形式(各项x 的符号为正); ② 找分界点:令()()()120=n a x x x x x x --⋯-,求出根()1212,,,n n x x x x x x <<<,不妨称之为分界点. 一个分界点把(实数)数轴分成两部分,n 个分界点把数轴分成1n +部分;② 列出表格:按各根把实数分成的1n +部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③ 计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集.在下列空白处填上因式的符号,完成下表:要点诠释:一般地,表格中最后一行各因式积为正的,即为()()()120n x x x x x x --⋯->的解集,反之亦然.穿针引线法① 等价转化:将不等式化为()()()()1200n x x x x x x --⋯-><的形式(各因式x 的系数化“+ ”); ② 求根,比方设12n x x x <<<,并在数轴上将i x 表示出来;③ 由数轴最右端n x 的右上方出发,画出曲线依次经过表示各根的点;④ 若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.要点诠释:(1)如果出现某个因式的高次形式(次数≥2),注意一个原则:奇穿偶不穿;(2)不等式()()00f x ≥≤中,注意等于号 “=”.不等式组法利用符号法则,转化为一元一次不等式与一元二次不等式的形式求解. 此种方法的本质是分类讨论,强化了“或”与“且”,进一步渗透了“交”与“并”的思想方法.要点五:分式不等式1. 分式不等式的概念 形如0()()f x x ϕ>或0()()f x x ϕ<(其中(),()f x x ϕ为整式,且()0x ϕ≠),分子分母还未知数的不等式叫分式不等式,2. 分式不等式的解法对这种分式不等式,先把不等式的右边化为0,再通过符号法则,把它转化成整式不等式来解,从而化繁为简.(1)整理:移项保证不等式右边为零,整理成一般形式;(2)等价转化:转化为整式不等式;(3)穿针引线法:借助数轴,把对应整式的根从右上方起标出;(4)看不等号:大于零看数轴上方的部分,小于零看数轴下方部分的区域; (5)注意关键点. 一般形式:要点诠释:分式不等式一定要注意转化的等价性. 【典型例题】类型一:一元二次不等式的解法 例1. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+-> 【思路点拨】转化为相应的函数,数形结合解决,或利用符号法则解答.【解析】 (1)方法一:因为2(5)410250∆=--⨯⨯=>所以方程250x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为:因而不等式250x x -<的解集是{|05}x x <<. 方法二:250(5)0x x x x -<⇔-<050x x >⎧⇔⎨-<⎩ 或050x x <⎧⎨->⎩解得05x x >⎧⎨<⎩ 或5x x <⎧⎨>⎩,即05x <<或x ∈∅. 因而不等式250x x -<的解集是{|05}x x <<. (2)方法一: 因为0∆=,方程2440x x -+=的解为122x x ==. 函数244y x x =-+的简图为:所以,原不等式的解集是{|2}x x ≠方法二:2244(2)0x x x -+=-≥(当2x =时,2(2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一:原不等式整理得2450x x -+<.因为0∆<,方程2450x x -+=无实数解, 函数245y x x =-+的简图为:所以不等式2450x x -+<的解集是∅. 所以原不等式的解集是∅.方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是∅. 【总结升华】1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;2. 当0∆≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0∆>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三:【高清课堂:一元二次不等式及其解法387159题型一 一元二次不等式的解法】【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩ 解不等式f (x )>3.【答案】由题意知20,23x x x ≥⎧⎨+>⎩或20,23,x x x <⎧⎨-+>⎩ 解得:x >1.故原不等式的解集为{x |x >1}. 【变式2】解不等式2230x x -+-> 【答案】整理,得2230x x -+<.因为0∆<,方程2230x x -+=无实数解, 所以不等式2230x x -+<的解集是∅. 从而,原不等式的解集是∅.类型二:含字母系数的一元二次不等式的解法 例2.解下列关于x 的不等式 (1)x 2-2ax≤-a 2+1; (2)x 2-ax+1>0; (3)x 2-(a+1)x+a<0; 【思路点拨】解不等式时首先应判断两根的大小,若不能判断两根的大小应分类讨论; 【解析】(1) 22210[()1][()1]011x ax a x a x a a x a -+-≤⇒---+≤⇒-≤≤+∴原不等式的解集为{|11}x a x a -≤≤+. (2) Δ=a 2-4当Δ>0,即a>2或a<-2时,原不等式的解集为}2424|{22--<-+>a a x a a x x 或当Δ=0,即a=2或-2时,原不等式的解集为{|}2a x x ≠. 当Δ<0,即-2<a<2时,原不等式的解集为R. (3)(x-1)(x-a)<0当a>1时,原不等式的解集为{x|1<x<a} 当a<1时,原不等式的解集为{x|a<x<1} 当a=1时,原不等式的解集为Φ.【总结升华】对含字母的二元一次不等式,一般有这样几步:①定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;②求根:求相应方程的根.当无法判断判别式与0的关系时,要引入讨论,分类求解; ③定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论. 举一反三:【变式1】解关于x 的不等式:)0(01)1(2≠<++-a x aa x 【答案】原不等式化为0)1)((<--ax a x ①a=1或a=-1时,解集为∅;②当0<a<1 或a<-1时,a a 1<,解集为:1{|}x a x a <<; ③当a>1或 -1<a<0时,a a 1>,解集为:1{|}x x a a<<.【变式2】解关于x 的不等式:223()0x a a x a -++>(a R ∈) 【答案】2232()0()()0x a a x a x a x a -++>⇒--> 当a <0或a >1时,解集为2{|}x x a x a <>或; 当a=0时,解集为{|0}x x ≠;当0<a <1时,解集为2{|}x x a x a <>或; 当a=1时,解集为{|1}x x ≠;例3.解关于x 的不等式:ax 2-(a+1)x+1<0. 【解析】若a=0,原不等式⇔-x+1<0⇔x >1;若a <0,原不等式⇔211(1)0x x a a -++>11()(1)0x x x a a ⇔-->⇔<或x >1;若a >0,原不等式⇔2111(1)0()(1)0x x x x a a a-++<⇔--<,其解的情况应由1a与1的大小关系决定,故(1)当a=1时,原不等式⇔x ∈∅;(2)当a >1时,原不等式⇔11x a<<;(3)当0<a <1时,原不等式⇔11x a<<综上所述:当a <0,解集为1{|1}x x x a<>或; 当a=0时,解集为{x|x >1};当0<a <1时,解集为1{|1}x x a<<; 当a=1时,解集为∅; 当a >1时,解集为1{|1}x x a<<. 【总结升华】熟练掌握一元二次不等式的解法是解不等式的基础,对最高项含有字母系数的不等式,要注意按字母的取值情况进行分类讨论,分类时要“不重不漏”.举一反三:【变式1】解关于x 的不等式:(ax-1)(x-2)≥0; 【答案】当a=0时,x ∈(-∞,2]. 当a≠0时,方程(ax-1)(x-2)=0两根为2,121==x ax ①当a>0时,若210>>a a ,, 即210<<a 时,),1[]2,(+∞-∞∈a x ;若210=,a a >, 即21=a 时,x ∈R ;若210<>a a ,, 即21>a 时,),2[]1,(+∞-∞∈ ax .②当a<0时,则有:21<a , ∴ ]21[,ax ∈. 【变式2】解关于x 的不等式:ax 2+2x-1<0; 【答案】当a=0时,)21,(-∞∈x . 当a≠0时,Δ=4+4a=4(a+1),①a>0时,则Δ>0,)11,11(aaa a x ++-+--∈.②a<0时,若a<0,△<0, 即a<-1时,x ∈R ; 若a<0,△=0, 即a=-1时,x ∈R 且x≠1; 若a<0,△>0, 即 -1<a<0时, ),11()11,(+∞+--++--∞∈aaa a x . 【高清课堂:一元二次不等式及其解法 387159 题型二 含参数的一元二次不等式的解法】 【变式3】求不等式12x 2-ax >a 2(a ∈R )的解集. 【答案】当a >0时,不等式的解集为{|-}43aa x x x <>或; 当a =0时,不等式的解集为{x |x ∈R 且x ≠0}; 当a <0时,不等式的解集为{|-}34a a x x x <>或. 类型三:一元二次不等式的应用例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集. 【思路点拨】由二次不等式的解集为(4,5)可知:4、5是方程20x mx n +-=的二根,故由韦达定理可求出m 、n 的值,从而解得.【解析】由题意可知方程20x mx n +-=的两根为4x =和5x = 由韦达定理有45m +=-,45n ⨯=- ∴9m =-,20n =-∴210nx mx +->化为220910x x --->,即220910x x ++<(41)(51)0x x ++<,解得1145x -<<-,故不等式210nx mx +->的解集为11(,)45--.【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键.举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________. 【答案】由不等式的解集为{x|-3<x<2}知a<0,且方程ax 2+bx+12=0的两根为-3,2.由根与系数关系得⎪⎪⎩⎪⎪⎨⎧-=⋅-=-=+-=-62)3(a12123ab解得a=-2, b=-2.【变式2】已知220ax x c ++>的解为1132x -<<,试求a 、c ,并解不等式220cx x a -+->. 【答案】由韦达定理有:11232a -+=-,1132ca-⋅=,∴12a =-,2c =.∴代入不等式220cx x a -+->得222120x x -++>,即260x x --<,(3)(2)0x x -+<,解得23x -<<,故不等式220cx x a -+->的解集为:(2,3)-.【变式3】已知关于x 的不等式20x ax b ++<的解集为(1,2),求关于x 的不等式210bx ax ++>的解集.【答案】由韦达定理有:1212a b -=+⎧⎨=⨯⎩,解得32a b =-⎧⎨=⎩, 代入不等式210bx ax ++>得22310x x -+>,即(21)(1)0x x -->,解得12x <或1x >. ∴210bx ax ++>的解集为:1(,)(1,)2-∞+∞.【高清课堂:一元二次不等式及其解法387159题型三 不等式恒成立的问题】 例5.已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立, 求实数a 的取值范围. 【思路点拨】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数。

一元二次不等式及其解法

一元二次不等式及其解法

y
x1 1, x2 6
y>0
y>0
O
1
y<0
6
x
问题:

一元二次不等式如何求解呢?
大于取两边
小于取中间
10
y
>
8
f(x) = x2
>
7∙x + 6
6
4
一元二次不等式的
解集即二次函数图
像在x轴上方和下方
对应的x的范围。
15
10
2
6
1
5
5
2
4
6
x
一元二次方程ax 2 bx c 0 (a 0)
R
(y>0)
ax bx c 0 {x | x x x }
1
2
(y<0)
2


例1 求不等式 − > 的解集。
例2 求不等式− + − > 的解集。
你能说说如何解一元二次不等式吗?
小结:
一化:化二次项前的系数为正数.
二判:判断对应方程的根.
三求:求对应方程的根.
一起做手工:



1.拿出一张纸,在上面画出平面直角坐标系,
并带上相应的刻度;
2、沿x轴方向上下对折这张纸;
3、观察x轴上方的y值;x轴下方的y值;他
们的值有何特点?
在刚才的平面直角坐标系中画出下列函数图像
= − +
y
8
f(x) = x2
7∙x + 6
6
4
Байду номын сангаас
2
5
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档