鱼台县第四高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鱼台县第四高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )
A .{2,1,1}--
B .{1,1,2}-
C .{1,1}-
D .{2,1}--
【命题意图】本题考查集合的交集运算,意在考查计算能力.
2. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )
A .
B . C. D
3. 已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列
C .公比为a 的等比数列
D .公比为的等比数列
4. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣
+1=0,则角B 的度数是( )
A .60°
B .120°
C .150°
D .60°或120°
5. 已知函数f (x )=Asin (ωx+φ)(a >0,
ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )
A .f (x )=sin (3x+)
B .f (x )=sin (2x+)
C .f (x )=sin (x+)
D .f (x )=sin (2x+)
6. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( )
A .5
B .18
C .24
D .36
7. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A .
B .
C .
D .
8. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这
6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.
9. 已知
22(0)()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
10.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( ) A
.(x ≠0) B
.(x ≠0) C
.(x ≠0)
D
.(x ≠0)
11.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3 B4 C5 D6
12
f x [14]f (x )的导函数y=f ′(x )的图象如图所示.

A .2
B .3
C .4
D .5
二、填空题
13.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .
14.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 .
15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .
16.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.
其中真命题为 (填写所有真命题的序号).
17.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 . 18.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
三、解答题
19.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点. (1)求证:BD 1∥平面A 1DE ; (2)求证:A 1D ⊥平面ABD 1.
20.设函数f(x)=e mx+x2﹣mx.
(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;
(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.
21.设数列的前项和为,且满足,数列满足,且
(1)求数列和的通项公式
(2)设,数列的前项和为,求证:
(3)设数列满足(),若数列是递增数列,求实数的取值范围。

22.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;
,整理得下表:
,求这50天的日利润单位:元的平均数;
②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.
23.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.
24.已知函数f(x)=和直线l:y=m(x﹣1).
(1)当曲线y=f(x)在点(1,f(1))处的切线与直线l垂直时,求原点O到直线l的距离;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;
(3)求证:ln<(n∈N+)
鱼台县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】C
【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .
2. 【答案】B 【解析】
考点:正弦定理的应用. 3. 【答案】A
【解析】解:∵

∴a n =S (n )﹣s (n ﹣1)=
=
∴a n ﹣a n ﹣1=
=a
∴数列{a n }是以a 为公差的等差数列 故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
4. 【答案】A
【解析】解:根据正弦定理有: =,
代入已知等式得:﹣+1=0,

﹣1=

整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°,
∴sin(B+C)=sinA,
可得2sinAcosB=sinA,
∵sinA≠0,
∴2cosB=1,即cosB=,
则B=60°.
故选:A.
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
5.【答案】D
【解析】解:由图象知函数的最大值为1,即A=1,
函数的周期T=4(﹣)=4×=,
解得ω=2,即f(x)=2sin(2x+φ),
由五点对应法知2×+φ=,
解得φ=,
故f(x)=sin(2x+),
故选:D
6.【答案】D
【解析】解:二项式(x+)4展开式的通项公式为T r+1=•x4﹣2r,
令4﹣2r=0,解得r=2,∴展开式的常数项为6=a5,
∴a3a7=a52=36,
故选:D.
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
7.【答案】
D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=,
故选:D .
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,
属于基础题.
8. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A. 9. 【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。

10.【答案】B
【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),
∴BC=8,AB+AC=20﹣8=12,
∵12>8
∴点A 到两个定点的距离之和等于定值, ∴点A 的轨迹是椭圆, ∵a=6,c=4
∴b 2
=20,
∴椭圆的方程是
故选B .
【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.
11.【答案】B 【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B
12.【答案】C
【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f (x )的图象如图所示:
因为f(0)=f(3)=2,1<a<2,
所以函数y=f(x)﹣a的零点的个数为4个.
故选:C.
【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.
二、填空题
13.【答案】2016.
【解析】解:∵f(x)=f(2﹣x),
∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).
∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),
即函数f(x)是周期为2的周期函数,
∵方程f(x)=0在[0,1]内只有一个根x=,
∴由对称性得,f()=f()=0,
∴函数f(x)在一个周期[0,2]上有2个零点,
即函数f(x)在每两个整数之间都有一个零点,
∴f(x)=0在区间[0,2016]内根的个数为2016,
故答案为:2016.
14.【答案】.
【解析】解:∵曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)
∴曲线y=x 2
和直线x=0,x=1,y= 所围成的图形的面积为S=()dx+dx=(x
﹣x 3
)+(x 3﹣x )=.
故答案为:.
15.【答案】 (2,2) .
【解析】解:∵log a 1=0, ∴当x ﹣1=1,即x=2时,y=2, 则函数y=log a (x ﹣1)+2的图象恒过定点 (2,2).
故答案为:(2,2).
【点评】本题考查对数函数的性质和特殊点,主要利用log a 1=0,属于基础题.
16.【答案】 ①
【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增, ∴①f (x )在(﹣3,1)上是增函数,正确, x=3是f (x )的极小值点,②④不正确;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确,
故答案为:①.
17.【答案】 (﹣1,﹣1) .
【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).
18.【答案】1a = 【解析】
试题分析:因为不等式()2
110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.
三、解答题
19.【答案】
【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,
∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,
∴O是AD1的中点,∴OE∥BD1,
∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,
∴BD1∥平面A1DE.
(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,
∴ADD1A1是正方形,∴A1D⊥AD1,
∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,
∴A1D⊥AB,
又AB∩AD1=A,∴A1D⊥平面ABD1.
20.【答案】
【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.
若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.
所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是

设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.
当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.
当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;
当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.
当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.
综上,m的取值范围是
21.【答案】
【解析】
解:∵S n=2-a n,即a n+S n=2,∴a n+1+S n+1=2.
两式相减:a n+1-a n+S n+1-S n=0.
即a n+1-a n+a n+1=0,故有2a n+1=a n,∵a n≠0,

∵b n+1=b n+a n(n=1,2,3,…),
得b2-b1=1,,,,.
将这n-1个等式相加,得
又∵b1=1,.
(2)证明:.

①-②得
=8-(n =1,2,3,…).
∴T n <8.
(3)由(1)知
由数列是递增数列,∴对
恒成立,

恒成立,

恒成立, 当为奇数时,即恒成立,∴, 当为偶数时,即恒成立,∴

综上实数的取值范围为
22.【答案】
【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-.
所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n N
y n n n N +≥∈⎧=⎨-<∈⎩
Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.

3809
4401150015530105605
477.2
50
⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为11151018
5025
P ++==
23.【答案】
【解析】(本小题满分12分) 解:(1)∵bsinA=,
由正弦定理可得:sinBsinA=sinAcosB ,即得tanB=

∴B=

(2)△ABC 的面积.
由已知及余弦定理,得

又a 2+c 2
≥2ac ,
故ac ≤4,当且仅当a=c 时,等号成立.
因此△ABC面积的最大值为…
24.【答案】
【解析】(Ⅰ)解:由f(x)=,得,
∴,于是m=﹣2,直线l的方程为2x+y﹣2=0.
原点O到直线l的距离为;
(Ⅱ)解:对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,即,也就是,设,即∀x∈[1,+∞),g(x)≤0成立.

①若m≤0,∃x使g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;
②若m>0,方程﹣mx2+x﹣m=0的判别式△=1﹣4m2,
当△≤0,即m时,g′(x)≤0,
∴g(x)在(1,+∞)上单调递减,
∴g(x)≤g(1)=0,即不等式成立.
当0<m<时,方程﹣mx2+x﹣m=0的两根为x1,x2(x1<x2),
,,
当x∈(x1,x2)时,g′(x)>0,g(x)单调递增,g(x)>g(1)=0与题设矛盾.
综上所述,m;
(Ⅲ)证明:由(Ⅱ)知,当x>1,m=时,成立.
不妨令,
∴ln,
(k∈N*).
∴.



累加可得:,(n∈N*).
即ln<(n∈N*).
【点评】本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,训练了利用导数证明函数表达式,对于(Ⅲ)的证明,引入不等式
是关键,要求考生具有较强的逻辑思维能力和灵活变形能力,是
压轴题.。

相关文档
最新文档