整式乘法计算40道(含答案)
七年级数学上册整式计算题专项练习(含答案)

整式的乘除计算训练(1)1. )2()(b a b a -++-2. (x+2)(y+3)-(x+1)(y-2)3. 22)2)(2(y y x y x ++-4. x(x -2)-(x+5)(x -5)5. ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 224 6. )94)(32)(23(22x y x y y x +--- 7. ()()3`122122++-+a a 8. ()()()2112+--+x x x9. (x -3y)(x+3y)-(x -3y)2 10. 23(1)(1)(21)x x x +--- 11. 22)23()23(y x y x --+ 12. 22)()(y x y x -+13. 0.125100×8100 14. 30022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 15. (1211200622332141)()()()-⨯+---- 16—19题用乘法公式计算16.999×1001 17.1992-18.298 19.2010200820092⨯-20.化简求值:)4)(12()12(2+-+-a a a ,其中2-=a 。
21. 化简求值2(2)2()()2(3)x y x y x y y x y +--++-,其中12,2x y =-=。
22. 5(x -1)(x +3)-2(x -5)(x -2) 23. (a -b )(a 2+ab +b 2)24. (3y +2)(y -4)-3(y -2)(y -3) 25. a (b -c )+b (c -a )+c (a -b )26. (-2mn 2)2-4mn 3(mn +1) 27. 3xy (-2x )3·(-41y 2)228. (-x -2)(x +2) 29. 5×108·(3×102)30. (x -3y )(x +3y )-(x -3y )2 31. (a +b -c )(a -b -c )答案1. 2. 3. 4.5. 6. 7. 8.9. 10. 11. 12.13. 14. 15.16. 原式=(1000-1)(1000+1) 17. 原式=(99+1)(99-1)=1000000-1 =10098=999999 =980018. 原式=(900-2)2 19. 原式=20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604 =120.原式=,当时,原式=21.原式=,当,时,原式=22. 23. 24. 25. 026. 27. 28. 29.30. 31.2014年北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)5.(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.2014年北师大七年级数学上册《整式及其加减》计算题专项练习一参考答案与试题解析一.解答题(共12小题)1.计算题①12﹣(﹣8)+(﹣7)﹣15;②﹣12+2×(﹣5)﹣(﹣3)3÷;③(2x﹣3y)+(5x+4y);④(5a2+2a﹣1)﹣4(3﹣8a+2a2).考点:整式的加减;有理数的混合运算.专题:计算题.分析:(1)直接进行有理数的加减即可得出答案.(2)先进行幂的运算,然后根据先乘除后加减的法则进行计算.(3)先去括号,然后合并同类项即可得出结果.(4)先去括号,然后合并同类项即可得出结果.解答:解:①原式=12+8﹣7﹣15=﹣2;②原式=﹣1﹣10+27÷=﹣11+81=70;③原式=2x﹣3y+5x+4y=7x+y;④原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13.点评:本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.2.(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;(2)化简:3(3a﹣2b)﹣2(a﹣3b).考点:整式的加减;有理数的混合运算.分析:(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;(2)运用整式的加减运算顺序计算:先去括号,再合并同类项.解答:解:(1)原式=4+4×2﹣(﹣9)=4+8+9=17;(2)原式=9a﹣6b﹣2a+6b=(9﹣2)a+(﹣6+6)b=7a.点评:在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3.计算:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];(3)(3mn﹣5m2)﹣(3m2﹣5mn);(4)2a+2(a+1)﹣3(a﹣1).考点:整式的加减.分析:(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可.解答:解:(1)7x+4(x2﹣2)﹣2(2x2﹣x+3)=7x+4x2﹣8﹣4x2+2x﹣6=9x﹣14;(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)]=4ab﹣3b2﹣[a2+b2﹣a2+b2]=4ab﹣3b2﹣2b2=4ab﹣5b2;(3)(3mn﹣5m2)﹣(3m2﹣5mn)=3mn﹣5m2﹣3m2+5mn=8mn﹣8m2;(4)2a+2(a+1)﹣3(a﹣1)=2a+2a+2﹣3a+3=a+5.点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.4.化简(1)2(2a2+9b)+3(﹣5a2﹣4b)(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)考点:整式的加减.专题:计算题.分析:(1)原式利用去括号法则去括号后,合并同类项即可得到结果;(2)原式利用去括号法则去括号后,合并同类项即可得到结果.解答:解:(1)原式=4a2+18b﹣15a2﹣12b=﹣11a2+6b;(2)原式=3x3+6x2﹣3﹣3x3﹣4x2+2=2x2﹣1.点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.考点:整式的加减—化简求值.分析:本题应对方程去括号,合并同类项,将整式化为最简式,然后把x的值代入即可.解答:解:原式=3x﹣3﹣x+5=2x+2,当x=2时,原式=2×2+2=6.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.考点:整式的加减—化简求值.分析:先把x+y当作一个整体来合并同类项,再代入求出即可.解答:解:∵x=5,y=3,∴3(x+y)+4(x+y)﹣6(x+y)=x+y=5+3=8.点评:本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.7.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.考点:整式的加减.分析:直接把A、B代入式子,进一步去括号,合并得出答案即可.解答:解:2A﹣B=2(x2﹣3y2)﹣(x2﹣y2)=2x2﹣6y2﹣x2+y2=x2﹣5y2.点评:此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.8.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.考点:整式的加减;解一元一次方程.专题:计算题.分析:把M与N代入计算即可求出x的值.解答:解:∵M=x2+3x﹣5,N=3x2+5,∴代入得:6x2+18x﹣30=6x2+10﹣4,解得:x=2.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.考点:整式的加减;整式的加减—化简求值.专题:计算题.分析:(1)把A与B代入A+B中计算即可得到结果;(2)把A与B代入2A﹣B中计算即可得到结果;(3)原式去括号合并得到最简结果,把A与B的值代入计算即可求出值.解答:解:(1)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴A+B=5a2﹣2ab﹣4a2+4ab=a2+2ab;(2)∵A=5a2﹣2ab,B=﹣4a2+4ab,∴2A﹣B=10a2﹣4ab+4a2﹣4ab=14a2﹣8ab;(3)原式=3A+3B﹣4A+2B=﹣A+5B,把A=﹣2,B=1代入得:原式=2+5=7.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.考点:整式的加减;代数式求值.专题:计算题.分析:(1)把a,b,c代入a﹣(b﹣c)中计算即可得到结果;(2)把x的值代入(1)的结果计算即可得到结果.解答:解:(1)把a=14x﹣6,b=﹣7x+3,c=21x﹣1代入得:a﹣(b﹣c)=a﹣b+c=14x﹣6+7x﹣3+21x﹣1=42x﹣10;(2)把x=代入得:原式=42×﹣10=10.5﹣10=0.5.点评:此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.11.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=4a﹣6b﹣a+4b﹣6a+4b=﹣3a+2b,∵|a﹣2|+(b+1)2=0,∴a=2,b=﹣1,则原式=﹣6﹣2=﹣8.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.解答:解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.。
整式乘法练习题及答案

整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。
通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。
本文将提供一些整式乘法的练习题,以及它们的详细解答。
1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。
2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。
北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。
整式乘法练习题及答案

整式乘法练习题及答案整式乘法是数学中的一项基础技能,它在代数运算中起着重要的作用。
通过练习整式乘法题目,我们可以加深对整式乘法的理解,并提高解题的能力。
下面,我将为大家提供一些整式乘法的练习题及答案,希望能对大家的学习有所帮助。
1. 计算下列整式的乘积:(2x + 3)(x - 4)解答:(2x + 3)(x - 4) = 2x * x + 2x * (-4) + 3 * x + 3 * (-4) = 2x^2 - 8x + 3x - 12 =2x^2 - 5x - 122. 计算下列整式的乘积:(3a - 2b)(4a + 5b)解答:(3a - 2b)(4a + 5b) = 3a * 4a + 3a * 5b - 2b * 4a - 2b * 5b = 12a^2 + 15ab - 8ab - 10b^2 = 12a^2 + 7ab - 10b^23. 计算下列整式的乘积:(5x^2 + 2xy)(3x - y)解答:(5x^2 + 2xy)(3x - y) = 5x^2 * 3x + 5x^2 * (-y) + 2xy * 3x + 2xy * (-y) = 15x^3 -5x^2y + 6x^2y - 2xy^2 = 15x^3 + x^2y - 2xy^24. 计算下列整式的乘积:(2x^2 - 3xy + 4y^2)(x - 2y)解答:(2x^2 - 3xy + 4y^2)(x - 2y) = 2x^2 * x - 2x^2 * 2y - 3xy * x + 3xy * 2y + 4y^2 *x - 4y^2 * 2y = 2x^3 - 4x^2y - 3x^2y + 6xy^2 + 4xy - 8y^3 = 2x^3 - 7x^2y +6xy^2 + 4xy - 8y^3通过以上的练习题,我们可以看到整式乘法的计算过程。
在计算时,我们需要将每一项都与另一个整式的每一项进行相乘,并根据指数和系数的规则进行合并和整理。
(完整版)整式乘法计算专题训练(含答案)

整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a87、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键. 18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y]=(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。
整式乘法公式练习题附答案

1、(﹣2m﹣1)2;2、(a+b+3)(a+b-3)3、计算4、(x-2y+3)(x+2y+3)5、计算:6、运用整式乘法公式计算:.7、(a+b-c)(a-b+c)8、因式分解:;9、的值是()A. B. C. D.10、只要a、b为实数,的值总是()A.正数B.负数C.非负数D.非正数11、计算的结果是:()A.B.C.D.12、已知,,则与的值分别是()A.4,1B.2,C.5,1D.10,13、不论为什么实数,代数式的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数14、若9x2+mxy+16y2是一个完全平方式,则m的值为()A.24B.﹣12C.±12D.±2415、若,,则的值为A、15B、90C、100D、11016、如图,两个正方形的边长分别为和,如果,,那么阴影部分的面积是()A. B.C. D.17、下列多项式乘法中,能用平方差计算的是()A. B.C. D.18、下列各式中与2nm﹣m2﹣n2相等的是()A.(m﹣n)2B.﹣(m﹣n)2C.﹣(m+n)2D.(m+n)2 19、若a+b=0,ab=11,则a2-ab+b2的值为()A.11B.-11C.-33D.3320、若x2+mx+1是完全平方式,则m=()。
A2B-2C±2D±421、已知,求:①②xy的值.22、已知a+b=2,ab=-1,求(1)5a2+5b2,(2)(a-b)2的值.23、已知,求的值.24、已知,,,求代数式的值。
25、已知,求代数式的值。
26、已知:=2,请分别求出下列式子的值(1);(2)27、已知x2+x-1=0,求x3+2x2+3的值.28、探索题:先填空,再解答,解答需要写出恰当的过程.……①运用以上方法求:的值;②运用以上方法求:的个位数字是多少?29、计算:19902-19892+19882-19872+…+22-1.30、已知,,则___________.31、已知实数x满足x+=3,则x2+的值为_________.32、若,,则=,=。
整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。
整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。
14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。
18.若3x 5y 3 0, 求8x?32y的值。
19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。
5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。
(完整版)《整式的乘法》测试题含答案

1.6 整式的乘法(总分100分 时间40分钟)一、填空题:(每题3分,共27分)1.(-3xy)·(-x 2z)·6xy 2z=_________.2. 2(a+b)2·5(a+b)3·3(a+b)5=____________.3.(2x 2-3xy+4y 2)·(-xy)=_________.4.3a(a 2-2a+1)-2a 2(a-3)=________.5.已知有理数a 、b 、c 满足│a-1│+│a+b │+│a+b+c-2│=0,则代数式(-•3ab).(-a 2c).6ab2的值为________.6.(a+2)(a-2)(a 2+4)=________.7.已知(3x+1)(x-1)-(x+3)(5x-6)=x 2-10x+m,则m=_____.8.已知ax 2+bx+1与2x 2-3x+1的积不含x 3的项,也不含x 的项,那么a=•_______,b=_____.9.123221123221()()n n n n n n n a a a b a b ab b b a a b a b ab b ----------+++++-+++++L L =____________.二、选择题:(每题4分,共32分)10.若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )A.M=8,a=8B.M=2,a=9C.M=8,a=10D.M=5,a=1011.三个连续奇数,若中间一个为n,则它们的积为( )A.6n 2-6nB.4n 3-nC.n 3-4nD.n 3-n12.下列计算中正确的个数为( )①(2a-b)(4a 2+4ab+b 2)=8a 3-b 3 ②(-a-b)2=a 2-2ab+b 2③(a+b)(b-a)=a 2-b 2 ④(2a+12b)2=4a 2+2ab+14b 2 A.1 B.2 C.3 D.413.设多项式A 是个三项式,B 是个四项式,则A ×B 的结果的多项式的项数一定是( )A.多于7项B.不多于7项C.多于12项D.不多于12项14.当n 为偶数时,()()m n a b b a -⋅-与()m n b a +-的关系是( )A.相等B.互为相反数C.当m 为偶数时互为相反数,当m 为奇数时相等D.当m 为偶数时相等,当m 为奇数时为互为相反数15.若234560a b c d e <,则下列等式正确的是( )A.abcde>0B.abcde<0C.bd>0D.bd<016.已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A.奇数B.偶数C.正整数D.整数17.M=(a+b)(a-2b),N=-b(a+3b)(其中a ≠0),则M,N 的大小关系为( )A.M>NB.M=NC.M<ND.无法确定三、解答题:(共41分)18.(1)解方程4(x-2)(x+5)-(2x-3)(2x+1)=5.(3分)(2)化简求值:x(x 2-4)-(x+3)(x 2-3x+2)-2x(x-2),其中x=1.5.(3分)19.已知3n m x x x x ⋅⋅=,且m 是n 的2倍,求m 、n(5分)20.已知x+3y=0,求32326x x y x y +--的值.(6分)21.在多项式533ax bx cx ++-中,当x=3时,多项式的值为5,求当x=-3时,多项式的值.(6分)22.求证:多项式(a-2)(a 2+2a+4)-[3a(a+1)2-2a(a-1)2-(3a+1)(3a-1)]+•a(1+a)的值与a 的取值无关.23.求证:N=2212532336n n n n n ++⋅⋅--⋅ 能被13整除.(6分)24.求N=171225⨯是几位正整数.(6分)答案:1.18x 4y 3z 22.30(a+b)103.-2x 3y+3x 2y 2-4xy 34.a 3+3a5.-36 •6.•a 4-167.-3x 3-x+178.2,3 9.n n a b -10.C 11.C 12.C 13.D 14.D 15.D 16.B 17.A 18.(1)x=218(2)0 19. ∵1132m n m n ++=⎧⎨=⎩ ∴84m n =⎧⎨=⎩20.∵x+3y=0 ∴x 3+3x 2y-2x-6y=x 2(x+3y)-2(x+3y)=x 2·0-2·0=021.由题意得35a+33b+3c-3=5∴35a+33b+3c=8∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-1122.原式=-9,原式的值与a 的取值无关23.∵21222532332n n n n n +++⨯⨯-⋅⋅=212125321232n n n n ++⨯⨯-⋅⋅ =211332n n +⋅⋅∴能被13整除24.∵N=171251212213252253210 3.210⨯=⨯⨯=⨯=⨯∴N 是位数为14的正整数.。
整式的乘法测试题(附答案)

整式的乘法测试题2016.11.18.班级 姓名 学号 得分一、填空题(每格2分,共28分)1、()()=--52a a ;()()=-⋅2772-m m ; 4774)()(a a -+-= ;()()=--x y y x 2332-_______()[]⋅+323-y x ()[]432-y x += ;()=⨯⎪⎭⎫ ⎝⎛200320025.1-32 . 2、已知:a m =2,b n =32,则n m 1032+=________3、若2134825125255=n n ,则=n ________4、已知,32=n m ()=-n n m m 22234)3(_______5、已知互为相反数,和b a 且满足()()2233+-+b a =18,则=⋅32b a6、已知:,52a n =b n =4,则=n 610_______7、()()122++=++ax x n x m x ,则a 的取值有_______二、选择题(每题3分,共24分)1、 下列计算中正确的是( )A 、()6623333-y x y x = B 、20210a a a =⋅ C 、()()162352m m m=-⋅- D 、1263428121y x y x -=⎪⎭⎫ ⎝⎛- 2、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-83、(-a +1)(a +1)(a 2+1)等于( )A 、a 4-1B 、a 4+1C 、a 4+2a 2+1D 、1-a 44、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( )A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<5、若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、16、()()1666---+n n 的值为( )A 、0B 、1或- 1C 、()16-+nD 、不能确定7、若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是( )A 、直角三角形B 、等边三角形C 、锐角三角形D 、等腰三角形二、解答题(共48分)1、 计算(每题6分,共12分) (1)()322635-a ab a - (2) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a 3、(6分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-= 4、(6分)已知099052=-+x x ,求1019985623+-+x x x 的值.5.解方程(8分)(1) (x -3)(x -2)+18 = (x+9)(x+1)6.解不等式(8分) (3x+4)(3x -4) <9(x -2)(x+3) 7、(8分)已知一个长方形的长增加3cm ,宽减少1cm ,面积保持不变,若长减少2cm ,宽增加4cm ,面积也保持不变,求原长方形的面积。
14.1 整式的乘法 综合计算题(含答案)

整式的乘法 计算80道(含答案)14.1.1 同底数幂的乘法14.1.2幂的乘方14.1.3积的乘方14.1.4 整式的乘法(1)单项式乘单项式 (2)多项式乘以多项式(3)同底数幂的除法【公式回顾】1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.单项式乘以单项式:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.6.单项式乘以多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).7.多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.8.单项式相除:把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.9.多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++计算练习:(1)y 4•y 3•y 2•y ; (2)(﹣x 2y 3)4; (3)82019×(﹣0.125)2019;(4)(a 3)2•(2ab 2)3. (5)(﹣x 3y 2)3 (6)5a 2•(﹣3a 3)2(7)(﹣2a n b3n)2+(a2b6)n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4 (9)2100×4100×0.12599.(10)a3•a4•a+(a2)4+(﹣2a4)2.(11)(2x2)3+x4•x2+(﹣2x2)3 (12)x•x3+x2•x2.(13)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.(14)(b2n)3(b3)4n÷(b5)n+1(15)(a2)3﹣a3•a3+(2a3)2;(16)(﹣4a m+1)3÷[2(2a m)2•a].(17)8a(a2+a+);(18)5x2y•(﹣2xy2)3.(19)7x4•x5•(﹣x)7+5(x4)4.(20)(﹣1)0+(﹣1)2020;(21)(10a2﹣5a)÷(5a).(22)(14a3﹣7a2)÷(7a);(23)(a+b)(a2﹣ab+b2)(24)3x2y•(﹣2x3y2)2;(25)(﹣2a2)•(3ab2﹣5ab3).(26)a5•a3÷a2;(27)(﹣2m)3﹣(m3)2;(28)(﹣2a2b)•(abc);(29)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2)(30)(x+3)(x﹣7)﹣x(x﹣1).(31)2xy2•(﹣3xy4)(32)(y3﹣3y2+y)÷y(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2(34)a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)(35)(﹣2xy2)6+(﹣3x2y4)3;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4).(37)﹣b2×(﹣b)2×(﹣b3)(38)(x﹣y)3×(y﹣2)2×(y﹣2)5(39)﹣a4•a3•a+(a2)4﹣(﹣2a4)2(40)(a2b2)3÷(﹣ab3)2 (41)5x2•x4﹣(﹣2x3)2+x8÷x2(42)(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)(44)3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.(45)(3a2b)2•(a2)4•(﹣b2)5.(46)[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2](47)x2y3(﹣2xy3)2(48)(3m2+15m3n﹣m4)÷(﹣3m2)(49)(2x3y4﹣3x3y2z)÷x2y2(50)(x﹣y)(x2+xy+y2).(51)[(x2)3]2﹣3(x2•x3•x)2;(52)3a•(a2+2a)﹣2a2(a﹣3)(53)(x2y3)2+(﹣xy)3•xy3(54)(55)x•(﹣x)•(﹣x)4(56)y•x5+(﹣2x2)2+(﹣2x2)3(57)y4+(y2)4÷y4﹣(﹣y2)2(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3](59)(2×102)4(60)x•x2•x3+(x2)3﹣2(x3)2;(61)(﹣a2)3﹣3a2•a•a3(62)(x﹣y)9÷(y﹣x)6÷(x﹣y)(63)﹣2x6﹣(x)2•8x5+(2x4)3÷(﹣x)5(64)(﹣2x3y)2•(﹣2x)(65)(﹣4)2012×(0.25)2013(66)若3m=6,9n=2,求3m﹣4n+1的值.(67)(x﹣3y)(﹣6x);(68)(6x4﹣8x2y)÷(﹣2x2).(69)(﹣1+3x)(﹣3x﹣1);(70)(x+1)2﹣(1﹣3x)(1+3x).(71)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.(72)15mn2÷5mn×m3n;(73)(3x+1)(2x﹣5).(74)(75)(x3y)•(﹣3xy2)3•(x)2.(76)(x﹣2y)(x+2y﹣1)+4y2(77)(a2b)[(ab2)2+(2ab)3+3a2].(78)(a3b4)2÷(ab2)3;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy.(80)(﹣2a2)3+2a2•a4;(81)(﹣2×105)2÷(8×105)整式的乘法计算80道参考答案与试题解析(1)原式=y10;(2)原式=x8y12;(3)原式=(﹣0.125×8)2019=﹣1;(4)原式=a6×8a3b6=8a9b6.(5)(﹣x3y2)3=﹣x9y6;(6)原式=5a2•9a6=45a8;(7)原式=4a2n b6n+a2n b6n=5a2n b6n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(9)原式=299×2×499×4×0.12599=(2×4×0.125)99×2×4=199×2×4=1×2×4=8.(10)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8.(11)原式=8x6+x6﹣8x6=x6;(12)原式=x4+x4=2x4;(13)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.(14)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(15)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(16)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+2(17)8a(a2+a+)=8a•a2+8a•a+8a•=8a3+6a2+5a;(18)原式=5x2y•(﹣8x3y6)=﹣40x5y7;(19)原式=7x4•x5•(﹣x7)+5x16=﹣7x16+5x16=﹣2x16.(20)(﹣1)0+(﹣1)2020=1+1=2;(21)(10a2﹣5a)÷(5a)=2a﹣1.(22)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(23)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.(24)3x2y•(﹣2x3y2)2=3x2y•4x6y4=12x8y5;(25)(﹣2a2)•(3ab2﹣5ab3)=(﹣2a2)•(3ab2)﹣(﹣2a2)•(5ab3)=﹣6a3b2+10a3b3.(26)a5•a3÷a2=a5+3﹣2=a6;(27)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(28)(﹣2a2b)•(abc)=﹣a3b2c.(29)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(30)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.(31)原式=﹣6x2y6;(32)原式=y2﹣y+1;(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.(34)原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0.(35)(﹣2xy2)6+(﹣3x2y4)3=64x6y12﹣27x6y12=37x6y12;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4)=x5+3x5﹣4x5=0.(37)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(38)(x﹣y)3×(y﹣2)2×(y﹣2)5=(x﹣y)3(y﹣2)7.(39)原式=﹣a8+a8﹣4a8,=﹣4a8;(40)原式=a6b6÷a2b6=a4.(41)原式=5x6﹣4x6+x6=2x6(42)==﹣4x5y3+9x4y2﹣2x2y;(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)=2x2﹣x﹣1﹣2x2+6x+20=5x+19.(44)原式=3x3y3•(﹣x2y2)+(﹣x6y3)•9xy2=﹣2x5y5﹣x7y5.(45)原式=9a4b2•a8•(﹣b10)=﹣9a4b2•a8•b10=﹣9a12b12.(46)原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.(47)x2y3(﹣2xy3)2=x2y3•(4x2y6)=4x4y9;(48)(3m2+15m3n﹣m4)÷(﹣3m2)=﹣1﹣5mn+m2.(49)(2x3y4﹣3x3y2z)÷x2y2=2xy2﹣3xz;(50)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.(51)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(52)原式=3a3+6a2﹣2a3+6a2=a3+12a2.(53)(x2y3)2+(﹣xy)3•xy3=x4y6﹣x4y6=0;(54)=(﹣0.25)15×415+××=(﹣0.25×4)15+×=﹣1+(﹣1)×=﹣1﹣=.(55)原式=﹣x2•x4=﹣x6;(56)原式=x5y+4x4﹣8x6.(57)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4;(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]=(y﹣x)2•(y﹣x)7•(y﹣x)3=(y﹣x)12.(59)(2×102)4=1.6×109;(60)原式=x6+x6﹣2x6=0;(61)(﹣a2)3﹣3a2•a•a3=﹣a6﹣3a6=﹣4a6.(62)原式=(x﹣y)9÷(x﹣y)6÷(x﹣y)=(x﹣y)2=x2﹣2xy+y2;(63)原式=﹣2x6﹣•8x5+(8x12)÷(﹣x5)=﹣2x6﹣2x7﹣8x7=﹣2x6﹣10x7.(64)(﹣2x3y)2•(﹣2x)=(4x6y2)•(﹣2x)=﹣8x7y2(65)(﹣4)2012×(0.25)2013=(﹣4)2012×(0.25)2012×(0.25)=(﹣4×0.25)2012×0.25=(﹣1)2012×0.25=1×0.25=0.25(66)9n=(32)n=32n=2∴3 m﹣4n+1=3m÷34n×3=3m÷(32n)2×3=6÷4×3=(67)原式=﹣6x2+18xy;(68)原式=﹣3x2+4y.(69)原式=(﹣1)2﹣(3x)2=1﹣9x2;(70)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.(71)(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.(72)15mn2÷5mn×m3n=3n×m3n=3m3n2;(73)(3x+1)(2x﹣5)=6x2﹣15x+2x﹣5=6x2﹣13x﹣5.(74)(﹣x2y﹣xy2)•(﹣xy)2=(﹣x2y﹣xy2)•x2y2=﹣x4y3﹣x3y4.(75)原式=x3y•(﹣27x3y6)•x2=﹣x8y7.(76)原式=(x﹣2y)(x+2y)﹣x+2y+4y2=x2﹣4y2﹣x+2y+4y2=x2﹣x+2y;(77)原式=a2b(a2b4+8a3b3+3a2)=a4b5+8a5b4+3a4b.(78)(a3b4)2÷(ab2)3=a6b8÷a3b6=a3b2;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy=﹣x2y﹣xy+1.(80)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6a6;(81)(﹣2×105)2÷(8×105)=4×1010÷(8×105)=40×109÷(8×105)=5×104.。
七年级数学上册整式计算题专项练习(含答案)

整式的乘除计算训练(1)1.(a b) (2a b) 2. (x+2)(y+3)-(x+1)(y-2)3. (2x y)(2x y) 2y24.x(x ---5)2) (x+5)(x5. 4x y x y6.(3x 2 y)( 2 y 3x)(4y 29x2 )227.2a1 2 2 21`38.x 12a x 1 x 29. (x-3y)(x+3y) -(x-3y)210. 3( x 1)(x1) (2 x1)211.(3x 2 y) 2 (3x 2 y)212.(x y)2(xy)213. 0.125 100×810014.224 5 (x )1 (2)35 4215. (1 )2 (2006( 2 11 3 12 4 1) 3 ) ( 2 )16—19 题用乘法公式计算16.999 ×100117.18. 98219.99212009 22008 201020. 化简求值:( 2a1) 2(2a 1)( a 4) ,其中a 2 。
21. 化简求值(x 2 y)22( x y)( x y) 2 y( x 3 y) ,其中 x2, y1。
2 22. 5(x-1)(x+3)-2(x-5)(x-2)23. (a-b)(a2+ab+b2)24. (3y+2)(y-4)-3(y-2)(y-3) 26. (-2mn2)2-4mn3(mn+1) 28. (-x-2)(x+2)30. (x-3y)(x+3y)-(x- 3y)225.a(b-c)+b(c-a)+c(a-b)27.3xy(-2x)3·(-1y2)2429. 5 10×8·(3 ×102)31. (a+b-c)(a-b-c)答案1. 2. 3. 4.5. 6.7. 8.9. 10.11. 12.13. 14. 15.16. 原式 =(1000-1) (1000+1)17. 原式 =(99+1) (99-1)=1000000-1 =100 98=999999=980018. 原式 =(900-2)219. 原式 =20092-(2009+1)(2009-1)=10000-400+4 =20092-20092+1=9604=120.原式 = ,当时,原式 =21.原式 = ,当 , 时,原式 =22. 23. 24. 25. 026. 27.28. 29.30. 31.2014 年北师大七年级数学上册《整式及其加减》计算题专项练习一一.解答题(共 12 小题)1.计算题① 12﹣(﹣ 8)+(﹣ 7)﹣ 15; 23②﹣1+2 ×(﹣ 5)﹣(﹣ 3) ÷ ;③ (2x ﹣ 3y ) +( 5x+4y );2 2).④ ( 5a +2a ﹣ 1)﹣ 4( 3﹣ 8a+2a2.( 1)计算: 4+(﹣ 2) 2×2﹣(﹣ 36)÷4;(2)化简: 3( 3a ﹣2b )﹣ 2(a ﹣ 3b ).3.计算:22 ); 2 2 2 2 2)] ;( 1) 7x+4 (x ﹣ 2)﹣ 2( 2x ﹣ x+3 ( 2) 4ab ﹣3b ﹣ [( a +b )﹣( a ﹣ b( 3)( 3mn ﹣ 5m 2)﹣( 3m 2﹣ 5mn );( 4) 2a+2(a+1)﹣ 3( a ﹣ 1).4.化简2 23 2 3 2( 1) 2( 2a +9b ) +3 (﹣ 5a ﹣ 4b ) ( 2) 3(x +2x ﹣ 1)﹣( 3x +4x ﹣ 2)5.( 2009?柳州)先化简,再求值: 3(x ﹣ 1)﹣( x ﹣ 5),其中 x=2.6.已知 x=5, y=3,求代数式 3( x+y ) +4( x+y )﹣ 6( x+y )的值.7.已知 A=x 2﹣ 3y 2, B=x 2﹣ y 2,求解 2A ﹣ B .2 28.若已知 M=x +3x ﹣ 5,N=3x +5,并且 6M=2N ﹣ 4,求 x .9.已知 A=5a 2﹣ 2ab, B=﹣ 4a2+4ab,求:( 1) A+B ;(2) 2A ﹣ B ;( 3)先化简,再求值:3( A+B )﹣ 2(2A ﹣ B),其中 A= ﹣ 2, B=1.10.设 a=14x﹣ 6, b=﹣ 7x+3 ,c=21x ﹣ 1.( 1)求 a﹣( b﹣ c)的值;( 2)当 x=时,求a﹣(b﹣c)的值.211.化简求值:已知a、 b 满足: |a﹣2|+( b+1 ) =0,求代数式2( 2a﹣ 3b)﹣( a﹣ 4b)+2 (﹣ 3a+2b)的值.12.已知( x+1 )2+|y﹣ 1|=0,求 2(xy ﹣ 5xy2)﹣( 3xy2﹣ xy )的值.2014 年北师大七年级数学上册《整式及其加减》计算题专项练习一参考答案与试题解析一.解答题(共 12 小题)1.计算题① 12﹣(﹣ 8)+(﹣ 7)﹣ 15; 2 3②﹣1+2 ×(﹣ 5)﹣(﹣ 3) ÷ ;③ (2x ﹣ 3y ) +( 5x+4y );22 ).④ ( 5a +2a ﹣ 1)﹣ 4( 3﹣ 8a+2a考点 : 整式的加减;有理数的混合运算.专题 : 计算题.分析: ( 1)直接进行有理数的加减即可得出答案.( 2)先进行幂的运算,然后根据先乘除后加减的法则进行计算. ( 3)先去括号,然后合并同类项即可得出结果.( 4)先去括号,然后合并同类项即可得出结果.解答: 解: ① 原式 =12+8 ﹣ 7﹣ 15= ﹣ 2;② 原式 =﹣ 1﹣ 10+27 ÷ =﹣ 11+81=70;③ 原式 =2x ﹣3y+5x+4y=7x+y ;222④ 原式 =5a +2a ﹣ 1﹣ 12+32a ﹣ 8a =﹣ 3a +34a ﹣ 13.点评: 本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.2.( 1)计算: 4+(﹣ 2) 2×2﹣(﹣ 36)÷4;( 2)化简: 3( 3a ﹣2b )﹣ 2( a ﹣ 3b ).考点 : 整式的加减;有理数的混合运算.分析: ( 1)按照有理数混合运算的顺序,先乘方后乘除最后算加减;( 2)运用整式的加减运算顺序计算:先去括号,再合并同类项. 解答: 解:( 1)原式 =4+4 ×2﹣(﹣ 9)=4+8+9 =17 ;( 2)原式 =9a ﹣ 6b ﹣2a+6b=( 9﹣ 2)a+(﹣ 6+6) b=7a .点评: 在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣ +得﹣,++得 +, +﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.3.计算:( 1) 7x+4 (x 2﹣ 2)﹣ 2( 2x 2﹣ x+3);( 2) 4ab ﹣3b 22 22 2)] ; ﹣ [( a +b )﹣( a ﹣ b 22( 3)( 3mn ﹣ 5m )﹣( 3m ﹣ 5mn );考点 : 整式的加减.分析: ( 1)先去括号,再合并同类项即可;( 2)先去括号,再合并同类项即可;( 3)先去括号,再合并同类项即可;( 4)先去括号,再合并同类项即可.解答: 解:( 1) 7x+4( x 2﹣2)﹣ 2( 2x 2﹣ x+3 )=7x+4x 2﹣ 8﹣ 4x 2+2x ﹣6 =9x ﹣ 14;( 2) 4ab ﹣3b 2 2 2 2 2 )]﹣ [( a +b )﹣( a ﹣ b =4ab ﹣ 3b 2 2 2 2 2﹣ [a +b ﹣ a +b ]=4ab ﹣ 3b 2﹣ 2b 2 =4ab ﹣ 5b 2;( 3)( 3mn ﹣ 5m 2 )﹣( 3m 2﹣ 5mn )22=3mn ﹣ 5m ﹣3m +5mn=8mn ﹣ 8m 2;( 4) 2a+2(a+1)﹣ 3( a ﹣ 1)=2a+2a+2 ﹣ 3a+3 =a+5 .点评: 本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.4.化简2 2( 1) 2( 2a +9b ) +3 (﹣ 5a ﹣ 4b )32 3 2﹣2)( 2) 3( x +2x ﹣ 1)﹣( 3x +4x考点 : 整式的加减.专题 : 计算题.分析: ( 1)原式利用去括号法则去括号后,合并同类项即可得到结果;( 2)原式利用去括号法则去括号后,合并同类项即可得到结果.解答: 解:( 1)原式 =4a 2 2+18b ﹣ 15a ﹣ 12b=﹣ 211a +6b ;( 2)原式 =3x 3232+6x ﹣3﹣ 3x ﹣ 4x +2=2x 2﹣ 1.点评: 此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.5.( 2009?柳州)先化简,再求值: 3(x ﹣ 1)﹣( x ﹣ 5),其中 x=2.考点 : 整式的加减 —化简求值.分析: 本题应对方程去括号,合并同类项,将整式化为最简式,然后把 x 的值代入即可.解答: 解:原式 =3x ﹣ 3﹣ x+5=2x+2 ,当 x=2 时,原式 =2×2+2=6.点评: 本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.已知 x=5, y=3,求代数式 3( x+y ) +4( x+y )﹣ 6( x+y )的值.考点 : 整式的加减 —化简求值.分析: 先把 x+y 当作一个整体来合并同类项,再代入求出即可. 解答: 解:∵ x=5, y=3 ,∴ 3( x+y ) +4( x+y )﹣ 6( x+y ) =x+y =5+3 =8 .点评: 本题考查了整式的加减的应用,主要考查学生的计算能力,用了整体思想.7.已知 A=x 2﹣ 3y 2, B=x 2﹣ y 2,求解 2A ﹣ B .考点 : 整式的加减.分析: 直接把 A 、 B 代入式子,进一步去括号,合并得出答案即可.解答: 解: 2A ﹣ B=2 ( x 2﹣ 3y 2)﹣( x 2 ﹣y 2)22 2 2=2x﹣ 6y ﹣ x +y=x 2﹣ 5y 2.点评: 此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键.228.若已知 M=x +3x ﹣ 5,N=3x +5,并且 6M=2N ﹣ 4,求 x .考点 : 整式的加减;解一元一次方程. 专题 : 计算题.分析: 把 M 与 N 代入计算即可求出x 的值. 22解答: 解:∵ M=x +3x ﹣ 5, N=3x+5,∴代入得: 6x 2+18x ﹣ 30=6x 2 +10﹣ 4, 解得: x=2.点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.已知 A=5a 2﹣ 2ab , B=﹣ 4a 2+4ab ,求:( 1) A+B ;( 2)2A ﹣B ;( 3)先化简,再求值: 3( A+B )﹣ 2( 2A ﹣ B ),其中 A= ﹣2, B=1 .考点 : 整式的加减;整式的加减 —化简求值.专题 : 计算题.分析: ( 1)把 A 与 B 代入 A+B 中计算即可得到结果;( 2)把 A 与 B 代入 2A ﹣B 中计算即可得到结果;( 3)原式去括号合并得到最简结果,把A 与B 的值代入计算即可求出值.解答: 22解:( 1)∵ A=5a ﹣ 2ab ,B= ﹣ 4a +4ab ,2 2 2∴ A+B=5a ﹣ 2ab ﹣ 4a +4ab=a +2ab ;2 2( 2)∵ A=5a ﹣ 2ab , B= ﹣ 4a +4ab , ∴ 2A ﹣B=10a 2﹣ 4ab+4a 2﹣4ab=14a 2﹣ 8ab ;( 3)原式 =3A+3B ﹣ 4A+2B= ﹣ A+5B ,把 A= ﹣ 2, B=1 代入得:原式 =2+5=7 .点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.设 a=14x ﹣ 6, b=﹣ 7x+3 ,c=21x ﹣ 1.( 1)求 a ﹣( b ﹣ c )的值;( 2)当 x= 时,求 a ﹣( b ﹣ c )的值.考点 : 整式的加减;代数式求值.专题 : 计算题.分析: ( 1)把 a , b , c 代入 a ﹣( b ﹣ c )中计算即可得到结果;( 2)把 x 的值代入( 1)的结果计算即可得到结果.解答: 解:( 1)把 a=14x ﹣ 6,b=﹣ 7x+3 ,c=21x ﹣ 1 代入得: a ﹣( b ﹣c )=a ﹣ b+c=14x ﹣6+7x ﹣ 3+21x ﹣ 1=42x ﹣ 10;( 2)把 x= 代入得:原式 =42× ﹣ 10=10.5﹣ 10=0.5.点评: 此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.11.化简求值:已知 a 、 b 满足: |a ﹣2|+( b+1 )2=0,求代数式 2( 2a ﹣ 3b )﹣( a ﹣ 4b )+2 (﹣ 3a+2b )的值.考点 : 整式的加减 —化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题 : 计算题.分析: 原式去括号合并得到最简结果,利用非负数的性质求出 a 与 b 的值,代入计算即可求出值.解答: 解:原式 =4a ﹣ 6b ﹣ a+4b ﹣ 6a+4b=﹣ 3a+2b ,2∵ |a ﹣ 2|+( b+1) =0 ,∴ a=2, b= ﹣1,则原式 =﹣6﹣ 2= ﹣ 8.点评: 此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.已知( x+1 ) 2 +|y ﹣ 1|=0,求 2(xy ﹣ 5xy 2)﹣( 3xy 2﹣ xy )的值.考点 : 整式的加减 —化简求值;非负数的性质:绝对值;非负数的性质:偶次方.分析: 因为平方与绝对值都是非负数,且(2, y ﹣ 1=0 ,解得 x , y 的值.再运用整式 x+1 ) +|y ﹣ 1|=0,所以 x+1=0 的加减运算,去括号、合并同类项,然后代入求值即可.解答: 解: 2( xy ﹣ 5xy 2)﹣( 3xy 2﹣ xy )=( 2xy ﹣ 10xy 2)﹣( 3xy 2﹣ xy )=2xy ﹣ 10xy 2﹣ 3xy 2+xy 2﹣ 10xy 2)=( 2xy+xy ) +(﹣ 3xy=3xy ﹣ 13xy 2,2∵( x+1 )+|y ﹣ 1|=0∴( x+1 )=0, y ﹣1=0 ∴ x= ﹣ 1,y=1. ∴当 x= ﹣1, y=1 时,223xy ﹣ 13xy =3×(﹣ 1) ×1﹣ 13×(﹣ 1)×1 =﹣ 3+13 =10 .答: 2( xy ﹣ 5xy 2)﹣( 3xy 2﹣ xy )的值为 10.点评: 整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。