化学必修二第一、二章知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 物质结构 元素周期表
第一节 元素周期表
一、周期表
原子序数 = 核电荷数 = 质子数 = 核外电子数 1、依据
横行:电子层数相同元素按原子序数递增从左到右排列 纵行:最外层电子数相同的元素按电子层数递增从上向下排列 2、结构
周期序数=核外电子层数 主族序数=最外层电子数
短周期(第1、2、3周期)
周期:7个(共七个横行)
周期表 长周期(第4、5、6、7周期) 主族7个:ⅠA-ⅦA
族:16个(共18个纵行)副族7个:IB-ⅦB
第Ⅷ族1个(3 1个)稀有气体元素 二.元素的性质和原子结构
(一)碱金属元素:
1、原子结构 相似性:最外层电子数相同,都为1个
递变性:从上到下,随着核电核数的增大,电子层数增多,原子半径增大
2、物理性质的相似性和递变性:
(1)相似性:银白色固体、硬度小、密度小(轻金属)、熔点低、易导热、导电、有展性。
(2)递变性(从锂到铯):①密度逐渐增大(K 反常) ②熔点、沸点逐渐降低 结论:碱金属原子结构的相似性和递变性,导致物理性质同样存在相似性和递变性。
3、化学性质
(1)相似性:
4Li + O 2 Li 2O 2Na + O 2 Na 2O 2 2 Na + 2H 2O = 2NaOH + H 2↑ 2K + 2H 2O = 2KOH + H 2↑
2R + 2 H 2O = 2 ROH + H 2 ↑
产物中,碱金属元素的化合价都为+1价。
结论:碱金属元素原子的最外层上都只有1个电子,因此,它们的化学性质相似。
(2)递变性:①与氧气反应越来越容易②与水反应越来越剧烈
结论:①金属性逐渐增强②原子结构的递变性导致化学性质的递变性。
注:金属性强弱的判断依据: ①与水或酸反应越容易,金属性越强;
②最高价氧化物对应的水化物(氢氧化物)碱性越强,金属性越强。
点燃
点燃
③置换反应,金属性强的金属置换金属性弱的金属
④离子的氧化性越弱对应金属的金属性越强
总结:递变性:从上到下(从Li到Cs),随着核电核数的增加,碱金属原子的电子层数逐渐增多,原子核对最外层电子的引力逐渐减弱,原子失去电子的能力增强,即金属性逐渐增强。
所以从Li到Cs的金属性逐渐增强。
(二)卤族元素:
1、原子结构相似性:最外层电子数相同,都为7个
递变性:从上到下,随着核电核数的增大,电子层数增多,原子半径增大
2.物理性质的递变性:(从F2到I2)
(1)卤素单质的颜色逐渐加深;(2)密度逐渐增大;(3)单质的熔、沸点升高
3、化学性质
(1)卤素单质与氢气的反应:X2 +H2=2 HX
卤素单质与H2的剧烈程度:依次减弱;生成的氢化物的稳定性:依次减弱
(2)卤素单质间的置换反应
2NaBr +Cl2=2NaCl + Br2氧化性:Cl2________Br2;还原性:Cl-_____Br-
2NaI +Cl2=2NaCl + I2氧化性:Cl2_______I2;还原性:Cl-_____I-
2NaI +Br2=2NaBr + I2氧化性:Br2_______I2;还原性:Br-______I-
结论:
单质的氧化性:依次减弱,对于阴离子的还原性:依次增强
结论:①非金属性逐渐增弱②原子结构的递变性导致化学性质的递变性。
注:非金属性的强弱的判断依据:
①从最高价氧化物的水化物的酸性强弱。
②与H2反应的难易程度以及氢化物的稳定性来判断。
③置换反应,非金属性强的置换非金属性弱的非金属
④离子的还原性越弱,非金属性越强
总结:递变性:从上到下(从F到I2),随着核电核数的增加,卤族元素原子的电子层数逐渐增多,原子核对最外层电子的引力逐渐减弱,原子得到电子的能力减弱,即非金属性逐渐减弱。
所以从F到I2的非金属性逐渐减弱。
总之:同主族从上到下,随着核电核数的增加,电子层数逐渐增多,原子核对最外层电子的引力逐渐减弱,原子得电子的能力减弱,失电子的能力增强,即非金属性逐渐减弱,金属性逐渐增强。
三.核素
(一)原子的构成:
(1)原子的质量主要集中在原子核上。
(2)质子和中子的相对质量都近似为1,电子的质量可忽略。
(3)原子序数=核电核数=质子数=核外电子数
(4)质量数(A )=质子数(Z )+中子数(N )
(5)在化学上,我们用符号A
Z X 来表示一个质量数为A ,质子数为Z 的具体的X 原子。
(二)核素
核素:把具有一定数目的质子和一定数目的中子的一种原子称为核素。
一种原子即为一种核素。
同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素。
或:同一种元素的不同核素间互称为同位素。
(1)两 同:质子数相同、同一元素 (2)两不同:中子数不同、质量数不同 (3)属于同一种元素的不同种原子
第二节 元素周期律
一.原子核外电子的排布
1.在多个电子的原子里,核外电子是分层运动的,又叫电子分层排布。
2、核外电子的排布规律
(1)核外电子总是尽先排布在能量低的电子层,然后由里向外,依次排布。
(能量最低原理)。
(2)各电子层最多容纳的电子数是2n 2(n 表示电子层)
(3)最外层电子数不超过8个(K 层是最外层时,最多不超过2个);次外层电子数目不超过18个;倒数第三层不超过32个。
二.元素周期律:
1、核外电子层排布的周期性变化
每周期最外层电子数:从1--------8(K 层由1-2) 2、原子半径呈周期性的变化:每周期原子半径:逐渐增大 3、主要化合价:
每周期最高正化合价:+1
+7 每周期负化合价:-4 -1 4、元素的金属性和非金属性呈周期性的变化。
同周期元素金属性和非金属性的递变性: (1)2Na + 2H 2O =2NaOH + H 2 ↑ (容易) Mg + 2 H 2O 2Mg(OH)2 + H 2 ↑(较难) 金属性:Na > Mg
原子A
Z X 原子核 质子 Z 个 中子 N 个=(A -Z )个
核外电子 Z 个
△
2)Mg + 2HCl =MgCl2+ H2↑(容易)
2Al + 6 HCl =2AlCl3 +3H2↑(较难)
金属性:Mg > Al 根据1、2得出:金属性Na > Mg > Al
(3)碱性 NaOH > Mg(OH)2> Al(OH)3
金属性:金属性Na > Mg > Al
Na Mg Al
金属性逐渐减弱
(4)结论:Si P S Cl
单质与H2的反应越来越容易生成的氢化物越来越稳定
最高价氧化物对应水化物的酸性逐渐增强
故:非金属性逐渐增强。
Na Mg Al Si P S Cl
金属性逐渐减弱,非金属性逐渐增强
同周期从左到右,金属性逐渐减弱,非金属性逐渐增强
(5)随着原子序数的递增,元素的核外电子排布、主要化合价、金属性和非金属性都呈现周期性的变化规律,这一规律叫做元素周期律。
总结:元素周期律:元素的性质随着原子序数的递增而呈周期性的变化的规律。
实质:元素原子的核外电子排布周期性变化的必然结果。
四、同周期、同主族金属性、非金属性的变化规律是:
1. 周期表中金属性、非金属性之间没有严格的界线。
在分界线附近的元素具有金属性又具有非金属性。
2. 金属性最强的在周期表的左下角是,Cs;非金属性最强的在周期表的右上角,是F。
3.元素化合价与元素在周期表中位置的关系。
①元素的最高正价等于主族序数。
特:F无正价,非金属除H外不能形成简单离子。
②主族元素的最高正价数与最低负价的绝对值之和等于8.
4.元素周期表和元素周期律应用
①在周期表中的左上角附近探索研制农药的材料。
②半导体材料:在金属与非金属的分界线附近的元素中寻找。
③在过渡元素中寻找优良的催化剂和耐高温、耐腐蚀的合金材料。
5. 元素周期表中元素性质的递变规律
第三节化学键
一.离子键
1.离子键:阴阳离子之间强烈的相互作用叫做离子键。
相互作用:静电作用(包含吸引和排斥)
注:(1)成键微粒:阴阳离子间
(2)成键本质:阴、阳离子间的静性作用
(3)成键原因:电子得失
(4)形成规律:活泼金属和活泼非金属化合时形成离子键
离子化合物:像NaCl这种由离子构成的化合物叫做离子化合物。
(1)活泼金属与活泼非金属形成的化合物。
如NaCl、Na2O、K2S等
(2)强碱:如NaOH、KOH、Ba(OH)2、Ca(OH)2等
(3)大多数盐:如Na2CO3、BaSO4
(4)铵盐:如NH4Cl
小结:一般含金属元素的物质(化合物)+铵盐。
(一般规律)
注意:(1)酸不是离子化合物。
(2)离子键只存在离子化合物中,离子化合物中一定含有离子键。
2、电子式
电子式:在元素符号周围用小黑点(或×)来表示原子的最外层电子(价电子)的式子叫电子式。
用电子式表示离子化合物形成过程:
(1)离子须标明电荷数;(2)相同的原子可以合并写,相同的离子要单个写;(3)阴离子要用
方括号括起;(4)不能把“→”写成“=”;(5)用箭头标明电子转移方向(也可不标)。
二.共价键
1.共价键:原子间通过共用电子对所形成的相互作用叫做共价键。
用电子式表示HCl的形成过程:
注:(1)成键微粒:原子
(2)成键实质:静电作用
(3)成键原因:共用电子对
(4)形成规律:非金属元素形成的单质或化合物形成共价键
2.共价化合物:以共用电子对形成分子的化合物叫做共价化合物。
化合物离子化合物
共价化合物化合物中不是离子化合物就是共价化合物
3.共价键的存在:
非金属单质:H2、X2、N2等(稀有气体除外)
共价化合物:H2O、CO2、SiO2、H2S等
复杂离子化合物:强碱、铵盐、含氧酸盐
4.共价键的分类:
非极性键:在同种元素
..的原子间形成的共价键为非极性键。
共用电子对不发生偏移。
极性键:在不同种元素
..的原子间形成的共价键为极性键。
共用电子对偏向吸引能力强的一方。
三.电子式:
定义:在元素符号周围用小黑点(或×)来表示原子的最外层电子(价电子)的式子叫电子式。
原子的电子式:
2.阴阳离子的电子式:
(1)阳离子简单阳离子:离子符号即为电子式,如Na+、、Mg2+等
复杂阳离子:如NH4+ 电子式:
(2)阴离子简单阴离子:、
复杂阴离子:
3.物质的电子式:
离子的电子式:阳离子的电子式一般用它的离子符号表示;在阴离子或原子团外加方括弧,并在方括弧的右上角标出离子所带电荷的电性和电量。
分子或共价化合物电子式,正确标出共用电子对数目。
离子化合价电子式,阳离子的外层电子不再标出,只在元素符号右上角标出正电荷,而阴离子则要标出外
层电子,并加上方括号,在右上角标出负电荷。
阴离子电荷总数与阳离子
4.用电子式表示形成过程:
用电子式表示单质分子或共价化合物的形成过程
用电子式表示离子化合物的形成过程
四、分子间作用力和氢键
1、分子间作用力
⑴定义:把分子聚集在一起的作用力,又称范德华力。
⑵特点:①分子间作用力比化学键弱得多;
②影响物质的熔点、沸点、溶解性等物理性质;
③只存在于由共价键形成的多数共价化合物和绝大多数气态非金属单质分子,及稀有气体分子之间。
但像二氧化硅、金刚石等由共价键形成的物质的微粒之间不存在分子间作用力。
⑶变化规律:一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点也越高。
例如,熔沸点:I2>Br2>Cl2>F2。
2、氢键
⑴定义:分子间存在着一种比分子间作用力稍强的相互作用。
⑵形成条件:除H原子外,形成氢键的原子通常是N、O、F。
⑶存在作用:氢键存在广泛,如H2O、NH3、HF等。
分子间氢键会使物质的熔点和沸点升高。
五、化学反应的实质:
一个化学反应的过程,本质上就是旧化学键的断裂和新化学键的形成过程。
离子键、共价键与离子化合物、共价化合物的关系
提高篇:一、化学键与物质类别关系规律
1、只含非极性键的物质:同种非金属元素构成的单质,如:I
2、N2、P4、金刚石、晶体硅等。
2、只含有极性键的物质:一般是不同非金属元素构成的共价化合物、如:HCl、NH
3、SiO2、CS2等。
3、既有极性键又有非极性键的物质:如:H2O2、C2H2、CH3CH3、C6H6等。
4、只含有离子键的物质:活泼非金属与活泼金属元素形成的化合物,如:Na2S、NaH、K2O、CsCl等。
5、既有离子键又有非极性键的物质。
如:Na2O2、Na2S2、CaC2等。
6、既有离子键又有极性键的物质,如NaOH等。
7、由离子键、共价键、配位键构成的物质,如:NH4Cl等。
8、由强极性键构成但又不是强电解质的物质。
如HF等。
9、无化学键的物质:稀有气体。
10、离子化合物中并不存在单个的分子,例如:NaCl,并不存在NaCl分子。
第二章化学反应与能量
第一节化学能与热能
1、在任何的化学反应中总伴有能量的变化。
原因:当物质发生化学反应时,断开反应物中的化学键要吸收能量,而形成生成物中的化学键要放出能量。
化学键的断裂和形成是化学反应中能量变化的主要原因。
一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小。
E反应物总能量>E生成物总能量,为放热反应。
E反应物总能量<E生成物总能量,为吸热反应。
2、常见的放热反应和吸热反应
①所有的燃烧与缓慢氧化。
②酸碱中和反应。
③金属与酸反应制取氢气。
④大多数化合反应(特殊:C +CO 2
△
2CO 是吸热反应)。
① 多数分解反应,如KClO 3、、CaCO 3的分解等。
②C +CO 2
△
2CO
③铵盐和碱的反应,Ba(OH)2·8H 2O +NH 4Cl =BaCl 2+2NH 3↑+10H 2O
[思考]放热反应都不需要加热,吸热反应都要加热,这种说法对吗?
点拔:不对。
如C +O 2=CO 2的反应是放热反应,但需要加热,只是反应开始后不再需要加热,反应放出的热量可以使反应继续下去。
NH 4Cl 与Ba(OH)2·8H 2O 的反应是吸热反应,但反应并不需要加热。
第二节 化学能与电能
1、
能源的分类:
一次能源:直接从自然界取得的能源称为一次能源,如流水、风力、煤、石
油、天然气等、
二次能源:一次能源经过加工、转化得到的能源称为二次能源,如电力、蒸
汽等。
2、原电池
(1)概念:把化学能直接转化为电能的装置叫做原电池。
(2)原电池的工作原理:发生氧化还原反应(有电子的转移)。
(3)构成原电池的条件:
①活泼性不同的两种金属做电极(或其中一种是非金属); ②电极材料均插入电解质溶液中; ③两级构成闭合回路。
(4)电极名称及发生的反应:
负极:较活泼的金属作负极,负极发生氧化反应,
电极反应式:较活泼金属-ne -=金属阳离子
常见的放热反应:
常见的吸热反应:
【 Zn-2e -=Zn 2+ 】
负极现象:负极溶解,负极质量减少。
正极:较不活泼的金属或石墨作正极,正极发生还原反应,
电极反应式:溶液中阳离子+ne -=单质 【 2H ++2e -=H 2↑ 】 正极的现象:一般有气体放出或正极质量增加。
总反应方程式:把正极和负极反应式相加而得【Zn + 2 H + = Zn 2+ + H 2↑】 (5)原电池正负极的判断方法: ①依据原电池两极的材料:
较活泼的金属作负极(K 、Ca 、Na 太活泼,不能作电极); 较不活泼金属或可导电非金属(石墨)等作正极。
②根据电流方向或电子流向:(外电路)电子:负极→导线→正极。
(电流由正
极流向负极);
③根据原电池中的反应类型:
负极:失电子,发生氧化反应,现象通常是电极本身消耗,质量减小。
正极:得电子,发生还原反应,现象是常伴随金属的析出或H 2放出。
2、化学电源基本类型:
①干电池(一次电池):如:Cu -Zn 原电池、锌锰电池(Zn 做负极,碳棒做正极)、银锌纽扣电池
②充电电池(二次电池):两极都参加反应的原电池,可充电循环使用。
如铅蓄电池(Pb 为负极, PbO 2为正极)、锂电池、镍镉电池等。
③燃料电池:如H 2、CH 4燃料电池,电解质溶液常为碱性试剂(KOH 等)。
第三节 化学反应的速率和限度
1、化学反应的速率
(1)概念:通常用单位时间内反应物浓度的减少量或生成物浓度的增加量(均取正值)来表示。
计算公式:v(B)=()c B t ∆∆=()
n B V t
∆∙∆ ①单位:mol/(L ·s)或mol/(L ·min)
②B为溶液或气体,若B为固体或纯液体不计算速率。
③以上所表示的是平均速率,而不是瞬时速率。
④重要规律:速率比=变化量比=方程式系数比
(2)影响化学反应速率的因素:
内因:由参加反应的物质的结构和性质决定的(主要因素)。
外因:①温度:升高温度,增大速率
②催化剂:一般加快反应速率(正催化剂)
③浓度:增加C反应物的浓度,增大速率(溶液或气体才有浓度可言)
④压强:增大压强,增大速率(适用于有气体参加的反应)
2、化学反应的限度——化学平衡
(1)在一定条件下,当一个可逆反应进行到正向反应速率与逆向反应速率相等时,反应物和生成物的浓度不再改变,达到表面上静止的一种“平衡状态”,就是这个反应所能达到的限度,即化学平衡状态。
在任何可逆反应中,正方应进行的同时,逆反应也在进行(同时发生,不分先后)。
可逆反应不能进行到底,即可逆反应无论进行到何种程度,任何物质(反应物和生成物)的物质的量都不可能为0。
(2)化学平衡状态的特征:逆、等、动、定、变。
①逆:化学平衡研究的对象是可逆反应。
②等:达平衡状态时,正反应速率相等逆反应速率。
③动:动态平衡,达到平衡状态时,正逆反应仍在不断进行,但不等于0。
v正=v逆≠0。
④定:达到平衡状态时,各组分的浓度保持不变,各组成成分的含量保持一定。
⑤变:当条件变化时,原平衡被破坏,在新的条件下会重新建立新的平衡。
(3)判断化学平衡状态的标志:
① V A(正方向)=V A(逆方向)或n A(消耗)=n A(生成)(不同方向同一物质比较)
②各组分浓度保持不变或百分含量不变
③借助颜色不变判断(有一种物质是有颜色的)
④总物质的量或总体积或总压强或平均相对分子质量不变(前提:反应前后气体的总物质的量不相等的反应适用,即如对于反应xA+yB zC,x+y≠z)。