九上二次函数应用题中考真题举例
中考二次函数应用题(附答案解析)
中考二次函数应用题(附答案解析)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?6.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?7.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S与x的函数关系式;(2)若菜园的面积为96平方米,求x的值;(3)若在墙的对面再开一个宽为a(0<a<3)米的门,且面积S的最大值为124平方米,直接写出a的值.8.榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元,“线下”销售的每箱利润y(元)与销售量x(箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y与x之间的函数关系;(2)当“线下”的销售利润为4350元时,求x的值;(3)实际“线下”销售时,每箱还要支出其它费用a元(a>0),若“线上”与“线下”售完这100箱榴莲所获得的总利润为w元,当20≤x≤45时,w随x增大而增大,求a的取值范围.9.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?10.从下列两题中选择1题完成,两题都完成的仅批改第1题.(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大? 第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x (0<x <0.5).(2)根据题意完成表格填空①_________,②_________.(3)求平均步长减少的百分率x ;【温馨提示:数学运算可以先约分后化简】(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元 (3)106 107 108 【解析】 【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值. (1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克; (2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数, ∵20-< ,∴11x =时,w 有最大值是242元, ∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数, ∴由二次函数的对称性可知,x 的取值为9,10,11,12,13 当9x =或13时,2244234x x -+=; 当10x =或12时,2244240x x -+=, 当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350, ∴当106a =或107或108时符合题意. 答:所有符合题意的a 值为:106,107,108. 【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质. 2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数(2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数(3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =.z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小, 10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】 【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答. (1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70;综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元. 【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键. 5.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元 【解析】 【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可. (1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=,∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =, 当7x =时,5777W =, ∵57785777>,∴6x =时,W 最大,最大利润为5778元. 【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 6.(1)10500y x =-+ (2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元. 【解析】 【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解.(1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩,解得:2730x ≤≤,由(2)可知21070010000w x x =-+-, ∵100-<,即开口向下,对称轴为直线352bx a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=; 答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.7.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.8.(1)y=﹣0.5x+160(20≤x≤60)(2)x的值为30(3)a的取值范围为0<a<15.5【解析】【分析】(1)根据函数图象中的数据,可以计算出y与x之间的函数关系;(2)根据题意和(1)中的结果,可以得到x(﹣0.5x+160)=4350,然后求解即可;(3)根据题意,可以得到利润w与m的函数关系式,再根据二次函数的性质,可以求得a的取值范围.(1)解:(1)设y与x的函数关系式为y=kx+b,∵点(20,150),(60,130)在该函数图象上,∴20150 60130k bk b+=⎧⎨+=⎩,解得0.5160kb=-⎧⎨=⎩,即y与x的函数关系式为y=﹣0.5x+160(20≤x≤60);(2)由题意可得,xy=4350,又∵y=﹣0.5x+160,∴x(﹣0.5x+160)=4350,解得x1=30,x2=290(舍去),即x的值30;(3)设“线下”销售榴莲x箱,则“线上”销售榴莲(100﹣x)箱,总利润为w元,由题意可得,w=x(﹣0.5x+160﹣a)+100(100﹣x)=﹣12x2+(60﹣a)x+10000,该函数的对称轴为直线x=﹣6012()2a-⨯-=60﹣a,∵当20≤x≤45时,w随x增大而增大,∴60﹣a>44.5,解得a<15.5,∴0<a<15.5.【点睛】本题考查二次函数的应用、一次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的方程和函数关系式,利用数形结合的思想解答.9.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的长方形,依题意得:(28-2x)(52-2x)=640,整理得:x2-40x+204=0,解得:x1=6,x2=34.又∵28-2x>0,∴x<14,∴x =6.答:通道的宽是6米;(2)解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.10.(1)房价为350元时,宾馆利润最大;(2)①0.6(1-x );②10000(1+3x );(3)x =0.1;(4)王老师这500米的平均步幅为0.5米【解析】【分析】(1)设房价为(180+10x )元,宾馆总利润为y 元,根据利润=(房价-支出)×房间数量,列出关系式求解即可;(2)根据题意结合表格中的数据求解即可;(3)根据距离=步长×步数列出方程求解即可;(4)先由(3)求出两次张大爷的步数,即可得到500m 的步数,从而即可求出步长.(1)解:设房价为(180+10x )元,宾馆总利润为y 元,依题意得:()22(1801020)(50)103408000101710890y x x x x x =+--=-++=--+∵-10<0,抛物线开口向下,∴当x =17时,y 有最大值,180+10x=350元,答:房价为350元时,宾馆利润最大.(2)解:由题意得第二次锻炼的平均步长为()0.61x -,第二次锻炼的平均步数为()1000013x +,故答案为:()0.61x -;()1000013x +;(3)解:由题意得:10000(1+3x)×0.6(1-x)=7020.解得:1170.5 30x=>(舍去),20.1x=∴x=0.1;(4)解:根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.【点睛】本题主要考查了二次函数的应用,列代数式,一元二次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.。
中考经典二次函数应用题(含答案)
x
2 、解:( 1) y (2400 2000 x) 8 4
,即 y
50
2 x2 24x 3200 . 25
( 2)由题意,得
2 x2 24 x 3200 4800 .整理,得 x2 300 x 20000 0 . 25
得 x1 100,x2 200 .要使百姓得到实惠,取 x 200 .所以,每台冰箱应降价 200 元.
6 、 解:( 1) y
20 2( x 1) 2 x 18(1 x 6)( x为整数 )......(2 分 )
30
(6 x 11)(x为整数 )......(4 分 )
(2 )设利润为 w
y
z
20
2( x
1)
1 (x
8)2
12
1 x2 14(1
x
6)( x为整数 )....(.. 6分)
w
8
8
y z 30
( 3)对于 y
2 x2 24x 3200 ,当 x 25
24
2
2
25
150 时,
y最大值
(2400 2000 150) 8 4 150 50
250 20 5000 .
所以,每台冰箱的售价降价 3、
150 元时,商场的利润最大,最大利润是
5000 元.
4 、解:( 1)设 p 与 x 的函数关系为 p kx b( k 0) ,根据题意,得
令 m% t ,原方程可化为 7.5t 2 14t 5.3 0 .
14 t
( 14)2 4 7.5 5.3 2 7.5
14 37
.
15
t1 ≈ 0.528, t2 ≈ 1.339 (舍去)
答: m 的值约为 52.8 .
二次函数综合应用题(有答案)中考题必练经典(学有余力的看)
函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。
备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
九年级数学二次函数的应用题含答案`
①经销商甲选择方案1与方案2一年内分别获得利润各多少元?
②经销商甲选择哪种方案可以使自己一年内获得最大利润?若选用方案3,请问他转让给经销商乙的A品牌服装的数量是多少(精确到百套)?此时他在一年内共得利润多少元?
7.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量 (件)与每件的销售价x(元)满足一次函数:
7、(1)
(2)
当定价为42元时,最大销售利润为432元.
8、(1)
当 时,
(2)当 则 ①
又 ②
由①、②解得 ,
其中20+ 不合题意,舍去,
∴x=20- ,y=8
当矩形成黄金矩形时,宽为20-4 ,长为8 .
9、(1)OA高度为 米.
(2)当 时, ,即水流距水平面的最大高为 米.
(3)
其中 不合题意,
=-30(x-24)2+1920.
所以当x=24时,P有最大值,最大值为1920.
答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.
3、解:(1)设二次函数的解析式为
,
顶点坐标为(6,5)
A(0,2)在抛物线上
(2)当 时, = 0
x= ,x=6- (不合题意,舍去)
x= ≈13.75(米)
(2)当x=-2.5时,y=2.25。
∴球出手时,他距地面高度是2.25-1.8-0.25=0.20(米)。
2、解:(1)依题意设y=kx+b,则有
所以y=-30x+960(16≤x≤32).
(2)每月获得利润P=(-30x+960)(x-16)
=30(-x+32)(x-16)
=30(-x2+48x-512)
中考二次函数应用题附答案解析
中考二次函数应用题附答案解析二次函数应用题1.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 2.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价45元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,当销售单价为50元时,每天的销售量为90桶;当销售单价为60元时,每天的销售量为70桶.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)3.某商场销售一种进价为每件20元的商品.销售过程中发现,每月销售量y (件)与售价每件x (元)之间的关系满足10500y x =-+.(1)如果该商场想要每月获得2000元的利润,那么售价每件应定为多少元?(2)根据有关部门规定,这种商品的售价每件不得高于32元,如果该商场想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?4.星光公司投资150万元引进一台新设备,若不计维修保养费用,投入生产后每月可创收33万元,投入生产后从第一个月到第x 月的维修保养费用累计为y (万元),且2y ax bx =+,若将创收扣除投资和维修保养费用,成为该新设备的纯收益w (万元),w 也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y 与x 的解析式;(2)求纯收益w 关于x 的解析式;(3)问新设备投入生产第几个月后,纯收益达到最大?几个月后,能收回投资? 5.某商店购进一批进价为40元/件的日用商品,第一个月,按进价提高50%的价格出售,售出600件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y (件)与销售单价x (元)的关系如图所示.(1)请直接写出y与x之间的函数表达式:;自变量x的取值范围为;(2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?6.2021年10月16日神舟13号载人飞船再次发射成功,昭示着中国人奔赴星辰大海的步伐从未停止.航空航天产业有望成为万亿规模的市场.某铝业公司生产销售航空铝型材,已知该型材的成本为8000元/吨,销售单价在1万元/吨到2万元/吨(含1万元/吨,2万元/吨)浮动.根据市场销售情况可知:当销售单价为1万元/吨时,日均销量为10吨;销售单价每上升1000元,则日均销量降低0.5吨.(1)求该型材销量y(吨)与销售单价x(万元/吨)之间的函数关系式;(2)当该型材销售单价定为多少万元时,该铝业公司获得的日销售利润W(万元)最大?最大利润为多少万元?7.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x米,菜园的面积为S平方米.(1)直接写出S与x的函数关系式;(2)若菜园的面积为96平方米,求x的值;(3)若在墙的对面再开一个宽为a(0<a<3)米的门,且面积S的最大值为124平方米,直接写出a的值.8.榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元,“线下”销售的每箱利润y(元)与销售量x(箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y与x之间的函数关系;(2)当“线下”的销售利润为4350元时,求x的值;(3)实际“线下”销售时,每箱还要支出其它费用a元(a>0),若“线上”与“线下”售完这100箱榴莲所获得的总利润为w元,当20≤x≤45时,w随x增大而增大,求a的取值范围.9.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?10.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天可多销售4件,设每件商品的售价下降x元,每天的销售利润为w元.(1)求w与x的函数关系式;(2)每天要想获得510元的利润,每件应降价多少元?(3)每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?【参考答案】二次函数应用题1.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.2.(1)y =-2x +190(2)销售单价定为70元时,该药店每天获得的利润最大,最大利润1250元.【解析】【分析】(1)设y 与x 之间的函数表达式为y =kx +b ,将点(50,90)、(60,70)代入一次函数表达式,即可求解;(2)根据利润等于每桶的利润乘以销售量得w 关于x 的二次函数,根据二次函数的性质即可求解.(1)设y 与销售单价x 之间的函数关系式为:y kx b =+,据题意可得:50906070k b k b +=⎧⎨+=⎩,解得:2190k b =-⎧⎨=⎩ ∴函数关系式为y =-2x +190;(2)设药店每天获得的利润为W 元,由题意得:W =(x -45)(-2x +190)=-2(x -70)2+1250,∵–2<0,函数有最大值,∴当x =70时,W 有最大值,此时最大值是1250,故销售单价定为70元时,该药店每天获得的利润最大,最大利润1250元.【点睛】本题主要考查了二次函数的应用以及用待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.3.(1)30元或40元(2)3600元【解析】【分析】(1) 根据利润的公式:利润= (售价-进价) ⨯销售量,从而列出关系式,即可求出售价;(2)设利润为w 元,根据利润的公式:利润= (售价-进价) ⨯销售量,从而列出关系式,得到w 关于x 的二次函数关系式,再根据抛物线的性质和图象,即可求出x 的取值范围;再设成本为m 元,由题意可得一次函数关系式,再根据一次函数的性质和图象,即可求解.(1)解:由题意,得(20)(10500)2000x x --+=,解得:1230,40x x ==.答:销售价应定为30元或40元.(2)解:设该商场每月获得的利润为w 元,由题意,得2(20)(10500)1070010000w x x x x =--+=-+-.∴抛物线开口向下.由(1)可知:当3040x ≤≤时,2000w ≥.∵32x ≤,∴当3032x ≤≤时,2000w ≥.设成本为m 元,由题意,得20(10500)20010000m x x =-+=-+.∵2000-<,∴m 随x 的增大而减小.∴当32x =时,3600m =最小.答:每月的成本最少为3600元【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用,还与一次函数产生了联系.4.(1)2y x x =+(2)232150w x x =-+-(3)投入生产第6个月后,纯收益达到最大w 最大值106=;投入生产第6个月后,能收回投资.【解析】【分析】(1)将x ,y 的两组对应值代入即可求a 、b 的值,继而即可求y 的函数关系式;(2)根据纯收益w =投入后每月可创收33万元×月数x ﹣投资150万元﹣从第1个月到第x 个月的维修保养费用累计y ,列出函数关系式;(3)求函数最大值,及w >0时,x 的值,可确定回收投资的月份.(1)由题意,得:当1x =时,2y =;当2x =时,246y =+=,将上述两组数据代入2y ax bx =+,得:2642a b a b =+⎧⎨=+⎩, 解得:11a b =⎧⎨=⎩, ∴y 与x 的解析式为:2y x x =+;(2)由题意得:()233150w x x x =--+ 233150x x x =---232150x x =-+-∴纯收益w 关于x 的解析式为:232150w x x =-+-;(3)∵()223215016106w x x x =-+-=--+,∴当16x =时,w 最大值106=,即投入生产第6个月后,纯收益达到最大,又∵当016x <≤,w 随x 的增大而增大,当05x <≤时,0w <;当6x ≥时,0w >,∴投入生产第6个月后,能收回投资.【点睛】本题考查了用待定系数法求二次函数解析式及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.5.(1)y =-20x +1800,60≤x ≤90(2)第二个月的销售单价定为65元/件时,可获得最大利润,最大利润是12500元【解析】【分析】(1)利用待定系数法求解即可;(2)根据总利润=单件利润乘以销售量,列出函数解析式,根据二次函数的性质求解即可.(1)第一个月该商品的售价为40×(1+50%)=60(元),设y 与x 之间的函数解析式为y =kx +b ,将点(60,600),(70,400)代入y =kx +b 中,得6006040070k b k b=+⎧⎨=+⎩, 解得201800k b =-⎧⎨=⎩, ∴y 与x 之间的函数解析式为y =-20x +1800;当y =0时,x =90,∴自变量x 的取值范围为60≤x ≤90;故答案为:y =-20x +1800;60≤x ≤90;(2)设第二个月的利润为w 元,由题意得,24040201()()()8002(0651250)0w x y x x x =-=-=+--+-.∵200-<,∴当x =65时,w 的最大值为12500.∴第二个月的销售单价定为65元/件时,可获得最大利润,最大利润是12500元.【点睛】本题主要考查了二次函数及一次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式,并根据题意确定等量关系,列出函数解析式.6.(1)515y x =-+(1≤x ≤2)(2)销售单价定为1.9万元时,利润最大为6.05万元【解析】(1)解:∵销售单价每上升1000元,则日均销量降低0.5吨,∴销售单价每上升1万元,则日均销量降低5吨.∴()1051515y x x =--=-+(1≤x ≤2);(2)解:依题意,得()()()220.8515519125 1.9 6.05x x x x W x =--+=-+-=--+, 5<0-,∴当x =1.9时,W 取得最大值,最大值为6.05万元.答:销售单价定为1.9万元时,利润最大为6.05万元.【点睛】本题考查了二次函数和一次函数的应用,关键是找到等量关系列出函数解析式.7.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.8.(1)y=﹣0.5x+160(20≤x≤60)(2)x的值为30(3)a的取值范围为0<a<15.5【解析】【分析】(1)根据函数图象中的数据,可以计算出y与x之间的函数关系;(2)根据题意和(1)中的结果,可以得到x(﹣0.5x+160)=4350,然后求解即可;(3)根据题意,可以得到利润w与m的函数关系式,再根据二次函数的性质,可以求得a的取值范围.解:(1)设y与x的函数关系式为y=kx+b,∵点(20,150),(60,130)在该函数图象上,∴20150 60130k bk b+=⎧⎨+=⎩,解得0.5160kb=-⎧⎨=⎩,即y与x的函数关系式为y=﹣0.5x+160(20≤x≤60);(2)由题意可得,xy=4350,又∵y=﹣0.5x+160,∴x(﹣0.5x+160)=4350,解得x1=30,x2=290(舍去),即x的值30;(3)设“线下”销售榴莲x箱,则“线上”销售榴莲(100﹣x)箱,总利润为w元,由题意可得,w=x(﹣0.5x+160﹣a)+100(100﹣x)=﹣12x2+(60﹣a)x+10000,该函数的对称轴为直线x=﹣6012()2a-⨯-=60﹣a,∵当20≤x≤45时,w随x增大而增大,∴60﹣a>44.5,解得a<15.5,∴0<a<15.5.【点睛】本题考查二次函数的应用、一次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的方程和函数关系式,利用数形结合的思想解答.9.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的长方形,依题意得:(28-2x)(52-2x)=640,整理得:x2-40x+204=0,解得:x1=6,x2=34.又∵28-2x>0,∴x<14,∴x=6.答:通道的宽是6米;解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.10.(1)w =−8x 2+32x +480;(2)每件商品应降价2.5元;(3)每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【解析】【分析】(1)设每件商品应降价x 元,由每件利润×销售数量=每天获得的利润可列出关于x 的关系式;(2)根据题意列出一元二次方程,解方程可得答案;(3)把w 关于x 的函数解析式配方成顶点式,再利用二次函数的性质可得答案.(1)解:由题意得w =(40−30−x )(4×0.5x +48)=−8x 2+32x +480, 答:w 与x 的函数关系式是w =−8x 2+32x +480;(2)解:由题意得,510=−8x 2+32x +480,解得:x 1=1.5,x 2=2.5,所以为尽快减少库存每件商品应降价2.5元;答:每天要想获得510元的利润,每件应降价2.5元.(3)解:∵w =−8x 2+32x +480=−8(x −2)2+512,∴当x =2时,w 有最大值512,此时售价为40−2=38(元),答:每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【点睛】此题主要考查了二次函数的应用,一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
(完整)初三二次函数应用题.docx
二次函数应用题1.一自动喷灌设备的喷流情况如图所示,设水管是抛物线状,喷头 B 与水流最高点 C 连线成45AB 在高出地面1.5米的 B 处有一自动旋转的喷水头,一瞬间流出的水流角,水流最高点 C 比喷头高2米,求水流落点 D 到 A 点的距离。
yCBA(O)D x2. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与 t 之间的关系).根据图象提供的信息,解答下列问题:( 1)由已知图象上的三点坐标,求累积利润s(万元)与时间s(万元 )t(月)之间的函数关系式;( 2)求截止到几月末公司累积利润可达到30 万元;4( 3)求第 8 个月公司所获利润是多少万元?321O1 2 3 4 5 6t(月 )-1-2-3第 3题图3.华联商场以每件30 元购进一种商品,试销中发现每天的销售量y(件)与每件的销售价x(元)满足一次函数y=162-3x.(1)写出商场每天的销售利润w(元)与每件的销售价 x(元)的函数关系式;(2)如果商场要想获得最大利润,每件商品的销售价定为多少为最合适?最大销售利润为多少?4.如图,有一座抛物线型拱桥,在正常水位时水面AB 的宽是 20 米,如果水位上升 3 米时,水面CD的宽为 10 米,( 1)建立如图所示的直角坐标系,求此抛物线的解析式;( 2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥280 千米,(桥长忽略不计)货车以每小时40 千米的速度开往乙地,当行驶到 1 小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时0.25米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?5.某商场经营一批进价为 2 元的小商品,在市场营销中发现日销售单价x 元与日销售量y 件有如下关系:x35911y181462( 1)预测此商品日销售单价为11.5 元时的日销售量;( 2)设经营此商品日销售利润(不考虑其他因素)为p 元,根据销售规律,试求日销售利润函数关系式,问日销售利润p 是否存在最大值或最小值?若有,试求出;若无,请说明理由;p 元与销售单价x 元之间的6.某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行销和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两方面的信息(如甲、乙两图)注:甲、乙两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本月份最低;甲图的图象是线段,乙图的图象是抛物线. 请根据图象提供的信息说明,解决下列问题:⑴在 3 月份出售这种蔬菜,每千克的收益是多少?⑵哪个月出售这种蔬菜,每千克的收益最大?说明理由 . (收益 =售价 - 成本)7.二次函数y ax 2bx c 的图象的一部分如右图,已知它的顶点M在第二象限,且经过点A(1, 0)和点 B( 0,1)。
中考二次函数应用题(及答案解析)
中考二次函数应用题(及答案解析)二次函数应用题1.2022年2月,北京冬奥会成功举办,吉祥物纪念品等深受人们喜爱.某商店在冬奥会前购进数量相同的甲、乙两种纪念品,分别花费10400元,14000元,已知乙种纪念品比甲种纪念品每个进价多9元.(1)求甲、乙两种纪念品每个的进价.(2)经销中发现,甲种纪念品每个售价46元时,每天可售40个,乙种纪念品每个售价45元时,每天可售80个,商店决定甲种纪念品降价,乙种纪念品提价.结果甲种纪念品单价降1元可多卖4个,乙种纪念品单价提1元就少卖2个,若某天两种纪念品共销售140个,则这天最大利润是多少?2.2022年冬奥会成功在北京张家口举行,奥林匹克精神鼓舞了越来越多的年轻人从事冰雪运动,在长8m ,高6m 的斜面上,滑雪运动员P 从顶端腾空而起,最终刚好落在斜面底端,其轨迹可视为抛物线的一部分.按如图方式建立平面直角坐标系,设斜面所在直线的函数关系式为1y kx b =+,运动员轨迹所在抛物线的函数关系式为2214y ax x c =++,设运动员P 距离地面的高度为()m h ,腾空过程中离开斜面的距离为()m d ,回答下列问题:(1)分别求出1y 、2y 与x 之间的函数关系式;(2)求出d 的最大值和此时点P 的坐标.3.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下: 时间x (分钟) 01 2 3 4 5 6 7 8 9 915x <≤ 人数y (人) 0 170 320 450 560 650 720 770 800 810 810 (1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x 之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?4.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?5.冰墩墩(BingDwenDwen ).是2022年北京冬季奥运会的吉样物.它将银猫形象与富有超能量的冰晶外壳结合.头部外壳造型取自冰雪运动头盔.装饰彩色光环.整体形象酷似航天员.冬奥会期间.某商家开始古样物“冰墩墩“纪含品的销售.每个纪念品进价40元.规定销售单价不低于44元.且不高于52元.销售期间发现.当销售单价定为44元时.每天可出售300个.销售单价每上涨1元.每天销量减少10个.现商家决定提价销售.设每天销售量为y 个.销售单价为x 元(1)求当每个纪念品的销售单价是多少元时.商家每天获利2400元:(2)将纪念品的销售单价定为多少元时.商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?6.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 7.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆;(2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?8.某市政府大力扶持大学生创业,小明在政府的扶持下投资销售一种进价为每千克6元的农产品.销售过程中发现,每天的销售量y (千克)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示,另外在销售过程中小明每天需要支付其他费用200元. 销售单价x (元/千克) 1011 销售量y (千克) 300 270(1)求y 与x 的函数关系式:(2)根据物价部门的规定,这种农产品的销售单价不得高于12元,那么如何定价才能使小明每天获得的纯利润最大?最大纯利润是多少元?9.为了优化人居环境、提升城市品质,某小区准备在空地上新建一个边长为8m 的正方形花坛;如图,该花坛由4块全等的小正方形组成.在小正方形ABCD 中,O 为对称中心,点E 、F 分别在AB 、AD 上,AE =AF ,G 、H 分别为BE 、DF 的中点.(1)设m AE x =,请用x 的代数式表示四边形OHFG 的面积S (单位:2m );(2)已知:小正方形ABCD 中,在△AFG 、四边形OHFG 内分别种植不同的花卉,每平方米的种植成本分别是80元、60元;其余部分种植草坪,每平方米的种植成本为95元.若另外的3块正方形区域也按相同方式种植,问:在这个花坛内种植花卉和草坪至少需要花费多少元?10.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天可多销售4件,设每件商品的售价下降x 元,每天的销售利润为w 元.(1)求w 与x 的函数关系式;(2)每天要想获得510元的利润,每件应降价多少元?(3)每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?【参考答案】二次函数应用题1.(1)甲、乙两种纪念品每个进价分别为26元、35元(2)2000元【解析】【分析】(1)设甲种纪念品每个进价为m 元,则乙种纪念品每个进价为()9m +元,根据购进甲乙两种纪念品的数量相等列出方程即可求解;(2)设甲种纪念品每个降价x 元,则每天销售甲种纪念品()404x +个,进而每天销售乙种纪念品140(404)(1004)x x -+=-个,表示出乙种纪念品的单价提高了多少元,最后利用甲乙两种纪念品的利润和等于一天的总利润列出函数关系式求解即可.(1)解:设甲种纪念品每个进价为m 元,则乙种纪念品每个进价为()9m +元 由题意,得10400140009m m =+.解得26m =.经检验26m =是原方程的解.此时935m +=.即甲、乙两种纪念品每个进价分别为26元、35元.(2)解:设甲种纪念品每个降价x 元,则每天销售甲种纪念品()404x +个.进而每天销售乙种纪念品140(404)(1004)x x -+=-个.比原来销售80个少(420)x -个,因此乙种纪念品的单价提高了(210)x -元.设每天的销售毛利为y 元,则(4626)(404)[4535(210)](1004)y x x x x =--++-+--.整理,得212(10)2000(520)y x x =--+≤≤.当10x =时,y 取得最大值,最大值为2000.即这一天销售的最大利润是2000元.【点睛】本题考查了分式方程的应用及二次函数性质的应用求最大值问题,解题的关键是理解题意,找出题目中数量关系,列出方程或函数关系式.2.(1)1364y x =-+,2211684y x x =-++; (2)max 85d =m ,P (4,5) 【解析】【分析】(1)把点(8,0)和(0,6)分别代入直线的函数关系式1y kx b =+,运动员轨迹所在抛物线的函数关系式2214y ax x c =++,,进而得出答案; (2)设与抛物线2211684y x x =-++相切,且与1364y x =-+平行的直线:334y x h =-+,那么切点就是所求的点P ,直线1364y x =-+与直线334y x h =-+之间的距离就是所求的距离.(1)解:把点(8,0)和(6,0)代入直线 1y kx b =+得,806k b b +=⎧⎨=⎩ 解得346k b ⎧=-⎪⎨⎪=⎩ ∴1364y x =-+把点(8,0)和(6,0)代入抛物线2214y ax x c =++得, 210=8846a c c⎧⨯+⨯+⎪⎨⎪=⎩ 解得186a c ⎧=-⎪⎨⎪=⎩ ∴2211684y x x =-++ (2)解:设与抛物线2211684y x x =-++相切的直线为334y x h =-+, 联立2y 与3y 得:211684x x -++34x h =-+, 化简得:20168x x h ++-=- ∵抛物线2y 与直线3y 相切∴20168x x h ++-=-有两个相等的实数根 ∴ ∆=114()(8)08h -⨯-⨯-= 解得8h =∴3384y x =-+ 联立抛2y 和3y 解得:45x y =⎧⎨=⎩ 此时点P 的坐标为(4,5)如图,过点A 作AC ⊥直线3y ,垂足为点C ,∵ 直线AC 与直线1y 垂直且过点A (0,6)∴直线AC 的解析式为4463y x =+联立3y 和4y 得34384463y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩解得242518225x y ⎧=⎪⎪⎨⎪=⎪⎩∴ 点C 的坐标为(2425,18225) 线段AC 的长度就是所求的 d ,max 408255d ===. 【点睛】本题考查了一次函数和二次函数图像的综合题,解题的关键是数形结合,熟练掌握抛物线的三种解析式,特别是顶点式;还要注意当直线与抛物线相切时距离最大;两条直线互相垂直的直线:121k k =-.3.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)2【解析】【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.(1)根据表格中数据可知,当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得 17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩, ∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<, ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小,∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0,解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810,解得m ≥118, ∵m 是整数,∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点.【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键.4.(1)213482y x x =-++ (2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【解析】【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可. (1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得: 2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩,∴抛物线C 2的函数解析式为:213482y x x =-++; (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得: ﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1, 整理得:(m ﹣12)(m +4)=0,解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.5.(1)50元(2)52元;2640元【解析】【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围,根据销售量×(售价-进价)=2400,解方程求出在自变量范围内的解即可;(2)根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:由题意得:300104410740y x x =--=-+(), ∴y 与x 之间的函数关系式为107404452y x x =-+≤≤();当获利2400元时,由题意得:10740402400x x -+-=()(), 整理得:211432000x x -+=,解得:125064x x ==,,∵4452x ≤≤,∴50x =,∴当每个纪念品的销售单价是50元时,商家每天获利2400元;(2)根据题意得:2210740401011402960010572890w x x x x x =-+-=-+-=--+()()() ,∵-10<0,∴当57x <时,w 随x 的增大而增大,∵4452x ≤≤,∴当52x =时,w 有最大值,最大值为2640,∴将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润最大,最大利润是2640元.【点睛】本题考查了二次函数在实际生活中的应用以及一元二次方程的应用,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得. 6.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.7.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 8.(1)y =-30x +600(2)当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【解析】【分析】(1)根据待定系数法设y =kx +b (k ≠0),代入数值组成二元一次方程组求解即可;(2)设每天获得的纯利润为W 元,可列出二次函数表达式,根据二次函数的性质可得.(1)解:设y =kx +b (k ≠0)根据题意得:10+=30011+=270k b k b ⎧⎨⎩, 解得:=-30=600k b ⎧⎨⎩∴y =-30x +600(2)解:设每天获得的纯利润为W 元,根据题意得:W =(-30x +600)(x -6) -200=-30x 2+780x -3800=-30(x -13)2+1270∵-30<0∴抛物线开口向下∵抛物线对称轴为x =13,销售单价不得高于12元∴当x ≤12时,W 随x 的增大而增大∴当x =12时,W 有最大值,W 最大值=-30× (12-13)2+1270=1240 (元)答:当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【点睛】本题考查的是求一次函数的解析式和二次函数的应用,学会用待定系数法求解析式和求最大值是解题的关键.9.(1)21=44S x -+ (2)5475元【解析】【分析】(1)分别计算出AGF 和四边形AGOH 的面积即可得到答案;(2)首先计算出正方形ABCD 中种草坪部分的面积,再根据题意可用x 表示出总共的花费,最后根据二次函数的性质即得出答案.(1)解:∵AE x =,4AB =∴4BE x =-, ∴122EG BG x ==-, ∴112222AG AE EG x x x =+=+-=+, ∴2111()224122AGF AG A S F x x x x =⋅=⨯=++. ∵O 为对称中心,∴O 到AD 的距离等于O 到AB 的距离等于422=, ∴1=22242AGO AHO AGO AGOH S S G x S S A +==⋅⋅⨯+=四边形 ∴2211=4()444A OH GF AG S S x Sx x x -=+-+=-+四边形; (2) 解:在正方形ABCD 中,种植草坪的面积为221144()(4)1244AGF ABCD S S x S x x x --=⨯-+--+=-正方形, ∴在正方形ABCD 中,需要费用为2221180()60(4)95(12)515138044x x x x x x ++-++-=-+, ∴在这个花坛内种植花卉和草坪需要花费2224(5151380)2060552020(3)5475x x x x x -+=-+=-+.∴当3x =时,在这个大正方形花坛内种植花卉和草坪所需的总费用最低,为5475元.【点睛】本题考查了二次函数的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出等式.10.(1)w =−8x 2+32x +480;(2)每件商品应降价2.5元;(3)每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【解析】【分析】(1)设每件商品应降价x 元,由每件利润×销售数量=每天获得的利润可列出关于x 的关系式;(2)根据题意列出一元二次方程,解方程可得答案;(3)把w 关于x 的函数解析式配方成顶点式,再利用二次函数的性质可得答案.(1)解:由题意得w =(40−30−x )(4×0.5x +48)=−8x 2+32x +480, 答:w 与x 的函数关系式是w =−8x 2+32x +480;(2)解:由题意得,510=−8x 2+32x +480,解得:x 1=1.5,x 2=2.5,所以为尽快减少库存每件商品应降价2.5元;答:每天要想获得510元的利润,每件应降价2.5元.(3)解:∵w =−8x 2+32x +480=−8(x −2)2+512,∴当x =2时,w 有最大值512,此时售价为40−2=38(元),答:每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【点睛】此题主要考查了二次函数的应用,一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
中考二次函数应用题含答案解析
中考二次函数应用题含答案解析二次函数应用题1.某书店以每本30元的价格购进一批图书进行销售,物价局根据市场行情规定这种图书的销售单价不低于42元且不高于62元.在销售中发现,该种图书每天的销售数量y (本)与销售单价x(元)之间存在某种函数关系,对应如表:销售单价x(元)43454749…销售数量y(本)54504642…(1)用你所学过的函数知识,求出y与x之间的函数关系式;(2)请问该种图书每天的销售利润w(元)的最大值是多少?(3)如果该种图书每天的销售利润必须不少于600元,试确定该种图书销售单价x的范围.2.冰墩墩是2022年北京冬季奥运会的吉祥物.冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①直接写出w关于x的函数解析式,并求每周总利润的最大值;②当每周总利润大于1870元时,直接写出每个冰墩墩玩偶的售价.3.为响应江阴市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x cm,面积为y m2如图所示).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(m2/0.410.4棵)4.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?5.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?6.某商场出售A 商品,该商品按进价提高50%后出售,售出10件可获利100元.(1)求A 商品每件的进价和售价分别是多少元?(2)已知A 商品每星期卖出200件,为提高A 商品的利润,商场市场部进行了调查,获得以下反馈信息:信息一:每涨价1元,每星期会少卖出10件. 信息二:每降价1元,每星期可多卖出25件.①结合上述两条信息,A 商品售价为多少元时,利润最大?②某顾客带320元到商场购买A 、B 两种商品至少各1件(A 商品为第①小题中利润最大时的售价),B 商品售价为25元/个,现要求A 商品的数量不少于B 商品的数量.在不超额的前提下,如何购买这两种商品,使在总数量最多的情况下,总费用最少.7.为了助农增收,推动乡村振兴,某网店出售“碱水”面条.面条进价为每袋40元,当售价为每袋60元时,每月可销售300袋.为了吸引更多顾客,该网店采取降价措施.据市场调研反映,销售单价每降1元,则每月可多销售30袋.该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.设当每袋面条的售价降了x 元时,每月的销售量为y 袋.(1)求出y 与x 的函数关系式;(2)设该网店捐款后每月利润为w 元,则当每袋面条降价多少元时,每月获得的利润最大,最大利润是多少?8.用总长为24m 的篱笆围成如图的花圃(四边形ABEF 和四边形CDFE 均为矩形),现一面利用墙(墙的最大可用长度为10m ),设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式及x 的取值范围;(2)要围成面积为45m 2的花圃,AB 的长是多少米?(3)AB 的长为多少米时,围成的花圃面积最大,请直接写出AB 的长度.9.某商店购进一批成本为每件30元的商品,销售单价为40元时,每天销售量为80件,经调查发现,销售单价每上涨1元,每天销售量减少2件.设该商品每天的销售量y (件)与销售单价x (元).(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)求当销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?(3)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(4)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?10.我国铅球运动员巩立姣在2021年8月1日东京奥运会铅球比赛中以20.53米的成绩力压群雄夺得冠军.如图是在她的一次赛前训练中,铅球行进高度y (米)与水平距离x (米)之间存在的函数关系式是2119512123y x x =-++.求:(1)这次训练中,巩立姣推铅球的成绩是多少米;(2)这次训练中,铅球距离地面的最大高度为多少米.【参考答案】二次函数应用题1.(1)2140y x =-+(2)800元(3)4260x ≤≤【解析】【分析】(1)由表格可知y 与x 之间存在一次函数的关系,再用待定系数法求解即可;(2)先根据利润=(销售单价-进价)×销售数量得出w 和x 之间的关系式,再利用二次函数求最值得方法求解即可;(3)先根据(2)中函数关系式,求得当w =600时的x 值,再根据二次函数和一次函数的性质求解即可.(1)解:由表格可知:当销售单价每提高2元,则销售数量减少4件,故y 与x 之间存在一次函数的关系,设其解析式为:y kx b =+ ,将x =43,y =54;x =45,y =50代入解析式得:43544550k b k b +=⎧⎨+=⎩ , 解得:2140k b =-⎧⎨=⎩, 2140y x ∴=-+ ,由题意得:4260x ≤≤,2140y x ∴=-+(4260x ≤≤);(2)根据题意得∶(30)(2140)w x x =--+ ,整理得:22220042002(50)800w x x x =-+-=--+ ,20a < ,∴当x =50时,w 有最大值为800元,∴该种图书每天的销售利润的最大值是800元;(3)当w =600时,可得:26002(50)+800x , 解得:1260,40x x (舍) ,由二次函数的图象可得:当4260x ≤≤ 时,该种图书每天的销售利润不少于600元.【点睛】本题考查了待定系数法求一次函数解析式,一次函数与二次函数在实际问题中的应用,熟练掌握一次函数和二次函数的相关性质和应用是解题的关键.2.(1)每个冰墩墩玩偶的进价为12元(2)①w 关于x 的函数解析式为y =﹣10x 2+520x ﹣4800,每周总利润的最大值为1960元;②售价为24元或25元或26元或27元或28元【解析】【分析】(1)设每个冰墩墩玩偶的进价为x 元,根据题意列分式方程解答即可;(2)①根据w=销售量×每件的利润列出关系式,再通过配方得到最大值;②根据二次函数的性质解答即可.(1)解:设每个冰墩墩玩偶的进价为x 元, 由题意得,2400x+50()2400120%x =-, 解得x =12,经检验,x =12是原方程的解,答:每个冰墩墩玩偶的进价为12元;(2)解:①w =(x ﹣12)[200﹣10(x ﹣20)]=﹣10x 2+520x ﹣4800=﹣10(x ﹣26)2+1960, 答:w 关于x 的函数解析式为y =﹣10x 2+520x ﹣4800,每周总利润的最大值为1960元; ②由题意得,﹣10x 2+520x ﹣4800=1870,解得x =23或29,∵抛物线开口向下,∴当23<x <29时,每周总利润大于1870元,∴售价为24元或25元或26元或27元或28元.【点睛】本题考查了分式方程的应用,二次函数在实际生活中的应用以及一元二次方程的应用,最大销售利润的问题常利函数的增减性来解答,解题的关键是吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.3.(1)y =﹣2x 2+36x (9≤x <18)(2)丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.理由见解析【解析】【分析】(1)根据矩形的面积公式计算即可;(2)利用二次函数的性质求出y 的最大值,设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意得1440016288600a b a b --++=(),可得71500a b +=,推出b 的最大值为214,此时2a =,再求出实际植物面积即可判断.(1)解:∵AB =x ,∴BC =36﹣2x ,∴y =x (36﹣2x )=﹣2x 2+36x ,∵0<36﹣2x ≤18,∴9≤x <18.∴y 与x 之间的函数关系式为y =﹣2x 2+36x (9≤x <18);(2)解:∵y =﹣2x 2+36x =﹣2(x ﹣9)2+162,∴x =9时,y 有最大值162(m 2),设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意:14(400﹣a ﹣b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,此时a =2.需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2(m 2)<162m 2,∴丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.【点睛】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题.4.(1)213482y x x =-++ (2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【解析】【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可. (1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得:2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩, ∴抛物线C 2的函数解析式为:213482y x x =-++; (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得: ﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1, 整理得:(m ﹣12)(m +4)=0,解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.5.(1)A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元(2)①B 型汽车的最低售价为414万元/台,②A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元【解析】【分析】(1)设未知数,用未知数分别表示A 型汽车、B 型汽车的进价,然后根据花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同列分式方程求解即可.(2)①用利润公式:利润=(售价-进价)×数量,分别表示出A 、B 型汽车利润,然后列不等式求解即可;②B 型号的汽车售价为t 万元/台,然后将两车的总利润相加得出一个二次函数,求二次函数的最值即可.(1)解:设B 型汽车的进货单价为x 万元,根据题意,得:502x +=40x, 解得x =8,经检验x =8是原分式方程的根,8+2=10(万元),答:A 种型号汽车的进货单价为10万元、B 两种型号汽车的进货单价为8万元;(2)设B 型号的汽车售价为t 万元/台,则A 型汽车的售价为(t +1)万元/台,①根据题意,得:(t +1﹣10)[﹣(t +1)+18]≥(t ﹣8)(﹣t +14),解得:t ≥414, ∴t 的最小值为414,即B 型汽车的最低售价为414万元/台, 答:B 型汽车的最低售价为414万元/台; ②根据题意,得: w =(t +1﹣10)[﹣(t +1)+18]+(t ﹣8)(﹣t +14)=﹣2t 2+48t ﹣265=﹣2(t ﹣12)2+23,∵﹣2<0,当t =12时,w 有最大值为23.答:A 、B 两种型号的汽车售价各为13万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是23万元.【点睛】本题考查了分式方程的应用,不等式的应用,二次函数的应用,理清数量关系,明确等量关系是解题关键.6.(1)A 商品每件的进价和售价分别是20,30元;(2)①A 商品售价为35元时,利润最大;②在总数量最多的情况下,购买A 、B 商品的数量都为5个时,总费用最少.【解析】【分析】(1)设进价为x 元,则售价为(150%)x +元,根据题意列方程求解即可;(2)①分商品涨价和降价两种情况,分别列出函数关系式,利用二次函数的性质求解即可;②设购买A 商品数量为m 个,B 商品数量为n 个,根据题意列出不等式组,求解即可.(1)解:设A 的进价为x 元,则售价为(150%)x +元,由题意可得:[(150%)]10100x x +-⨯=,解得20x(150%)30x +=, 答:A 商品每件的进价和售价分别是20,30元;(2)①设售价为x 元,获得利润为w 元当商品涨价时,则30x ≥,此时销售量为20010(30)50010x x -⨯-=-件,22(20)(50010)107001000010(35)2250w x x x x x =--=-+-=--+则当x =35时,w 最大,为2250,当商品降价时,则30x <,此时销售量为20025(30)95025x x +⨯-=-件22(20)(95025)2514501900025(29)2025w x x x x x =--=-+-=--+∴当x =29时,w 最大,为2025,∵2025<2250∴当x =35时,w 最大,为2250,答:A 商品售价为35元时,利润最大;②设购买A 商品数量为m 个,B 商品数量为n 个,由题意可得:003525320m n m n m n ≥⎧⎪>⎪⎨>⎪⎪+≤⎩且m ,n 为正整数, 当1m =,n =1时,352560m n +=,符合题意;当m =2,n =2时,3525120m n +=,符合题意;当m =3,n =3时,3525180m n +=,符合题意;当m =4,n =4时,3525240m n +=,符合题意;当m =5,n =5时,3525300m n +=,符合题意;当m =6,n =5时,3525335320m n +=>,不符合题意;综上,在总数量最多的情况下,购买A 、B 商品的数量都为5个时,总费用最少.【点睛】此题考查了一元一次方程的应用,二次函数的应用以及二元一次不等式组的应用,解题的关键是理解题意,找到题中的等量关系或不等式关系,正确列出方程、函数以及不等式. 7.(1)30030y x =+(2)当降价5元时,每月获得的利润最大,最大利润是6550元【解析】【分析】(1)由销售单价每降1元,则每月可多销售30袋,可知降了x 元时,销量增加30x 袋,由此可解;(2)根据每月利润=每袋利润×月销量-捐款,得到w 关于x 的函数表达式,改成顶点式求出函数的最大值即可.(1)解:由题意得,y 与x 之间的函数关系式为y =300+30x ;(2)解:由题意得,22(6040)(30030)200303005800=305)6550w x x x x x =--+-=-++--+(,∵300-<,∴当x =5时,w 有最大值,最大值为6550.答:当降价5元时,每月获得的利润最大,最大利润是6550元.【点睛】本题考查二次函数的实际应用,根据题意列出w 关于x 的函数表达式是解题的关键. 8.(1)S 与x 的函数关系式为S =﹣3x 2+24x ,x 值的取值范围是143≤x <8; (2)AB 的长为5m ;(3)当AB 的长是143m 时,围成的花圃的面积最大,最大面积是2140m 3【解析】【分析】(1)根据矩形的面积即可写出函数关系式;(2)根据(1)中所得函数关系式当S为45时,列出一元二次方程即可求出AB的长;(3)根据(1)中所得函数关系式化为顶点式,再根据自变量的取值范围即可求出最大面积.(1)解:根据题意,得:S=x(24﹣3x)=﹣3x2+24x,∵0<24﹣3x≤10,∴143≤x<8.答:S与x的函数关系式为S=﹣3x2+24x,x值的取值范围是143≤x<8;(2)解:根据题意,得:当S=45时,﹣3x2+24x=45,整理,得x2﹣8x+15=0,解得x1=3,x2=5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立.答:AB的长为5m;(3)解:S=﹣3x2+24x=﹣3(x﹣4)2+48,∵143≤x<8,且抛物线的对称轴x=4,开口向下,∴当x=143时,S最大,最大值=﹣3(143﹣4)2+481403.答:当AB的长是143m时,围成的花圃的面积最大,最大面积是2140m3【点睛】本题考查了二次函数的应用、一元二次方程的应用,解决本题的关键是综合掌握二次函数的性质和一元二次方程的解法.9.(1)y=-2x+160(2)定价为55元时,每天的销售利润有最大值为1250(3)销售单价定为50元时,该超市每天的利润最大,最大利润1200元(4)70元【解析】【分析】(1)根据题意可得y与x的关系式;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)根据二次函数的关系式和单价的取值范围可得最大利润;(4)由题意可得:(x -30)(-2x +160)=800,再根据函数的图象可得答案.(1)依题意得,y =80-2(x -40)=-2x +160;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,∴当55x =时,w 有最大值,此时,1250w =,(3)20-<,故当55x <时,w 随x 的增大而增大,而3050x ≤≤,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(4)由题意得:(30)(2160)800x x --+≥,解得:4070x ≤≤,∴销售单价最多为70元.【点睛】此题主要考查了二次函数的应用,正确利用销量×每件的利润=w 得出函数关系式是解题关键.10.(1)20米 (2)14716米 【解析】【分析】(1)令y =0,得到关于x 的方程,解方程即可;(2)将二次函数关系式化为顶点式,再求铅球距离地面的最大高度.(1)解:令y =0,则21195012123x x =-++, 解得x 1=20,x 2=-1(舍去),∴巩立姣推铅球的成绩是20米;(2)2211951191471212312216y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴当192x =时,y 有最大值,为14716, ∴铅球距离地面的最大高度为14716米. 【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.。
中考二次函数应用题(含答案)
中考二次函数应用题(含答案)1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件。
商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件。
1) 求商家降价前每星期的销售利润为多少元?解:每件滑板的利润为售价减去进价,即130-100=30元。
每星期的销售利润为80件乘以每件的利润,即80×30=2400元。
2) 降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?解:设降价后每件滑板的售价为x元,则每星期的销售量为80+20(x-130)/5=80+4(x-130)件。
每星期的销售利润为销售量乘以每件的利润,即(80+4(x-130))×(x-100)元。
化简得到销售利润的函数为y=4x-0.04x^2-600.这是一个开口向下的二次函数,最大值出现在顶点处,即x=50时,y=2200元。
因此,商家应将售价定为80元,最大销售利润为2200元。
2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。
调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。
1) 假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式。
解:每台冰箱的利润为售价减去进价,即2400-2000=400元。
每天销售的利润为销售量乘以每台冰箱的利润,即8×400=3200元。
每降价50元,销售量就增加4台,因此销售量与售价之间的函数表达式为销售量=8+4(x-2400)/50=8+0.08x-38.4.每天销售的利润为销售量乘以每台冰箱的利润,即y=400(8+0.08x-38.4)=3200-16x元。
2) 商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?解:每天销售的利润为4800元,代入y=3200-16x中,得到16x=1600,即x=100元。
中考二次函数经典例题及解析
中考二次函数经典例题及解析中考二次函数经典例题及解析一、引言二次函数是中学数学中的重要内容,也是中考数学考试中常见的题型。
通过解析经典的二次函数例题,我们可以更好地理解和掌握二次函数的特点和解题方法。
本文将结合多个经典的中考二次函数例题,深入分析题目,探讨解题思路和方法,帮助读者全面理解二次函数的应用。
二、例题一题目:已知二次函数y=ax^2+bx+c的图像经过点(1,1),(2,4),(3,9)。
求a,b,c的值。
解析:根据已知条件,代入三个点的坐标,得到三个方程:a+b+c=14a+2b+c=49a+3b+c=9通过解方程组,可以求解出a,b,c的值,进而得到二次函数的表达式。
三、例题二题目:已知二次函数y=ax^2+bx+c的图像的对称轴为x=2,顶点在直线y=1-x上。
求a,b,c的值。
解析:根据已知条件,对称轴为x=2,顶点在直线y=1-x上,可以列出方程:-b/(2a)=21-4a+2b+c=0通过求解方程组,可以得到a,b,c的值,进而得到二次函数的表达式。
四、例题三题目:已知二次函数经过点(1,-3),且在x轴上的交点为x=4。
求函数的解析式。
解析:根据已知条件,可以列出方程:a+b+c=-316a+4b+c=0通过解方程组,可以求解出a,b,c的值,进而得到二次函数的解析式。
五、总结通过以上例题的解析,我们可以看到在解二次函数相关题目时,首先需要根据题目的条件列方程,并运用相关的解方程技巧得到二次函数的系数a,b,c的值,从而得到二次函数的解析式。
在解题过程中,我们还可以借助对称轴和顶点等概念来辅助求解,这些解题方法和技巧都是我们在中考数学中必须掌握的知识点。
个人观点和理解:二次函数作为中学数学中的重要内容,其在中考数学中的考查也是至关重要的。
掌握二次函数的特点和解题方法,不仅有助于解题,还可以帮助我们更深入地理解函数的性质和应用。
通过解析经典的二次函数例题,我们可以更好地掌握二次函数的知识,并在中考数学中取得更好的成绩。
人教版九年级上册数学 第二十二章 二次函数应用题 专题训练(含答案)
人教版九年级上册数学第二十二章二次函数应用题专题训练1.某超市购进一批水果,成本为8元/kg ,根据市场调研发现,这种水果在未来10天的售价m (元/kg )与时间第x 天之间满足函数关系式1182m x =+(110x ≤≤,x 为整数),又通过分析销售情况,发现每天销售量()kg y 与时间第x 天之间满足一次函数关系,下表是其中的三组对应值.(1)求y 与x 的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?2.荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元. (1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示). (2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?3.来商店经市场调查发现:某种商品的周销售量y (件)与售价x (元/件)的关系为2200y x =-+,其售价与周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价) (1)求该商品的进价;(2)求当该商品的售价是多少元/件时,周销售利润为1600元?4.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件. (1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?5.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是______(填一次函数或二次函数),求这个函数关系式;(2)若当月销售量不低于300件,售价为多少时,当月利润最大?最大利润是多少?6.在学习一次函数时,我们经历了列表、描点、连线画函数图像,并结合图像研究函数性质的过程下面我们尝试利用之前的学习经验研究函数2y x 的性质及其应用,请按要求完成下列各题.(1)函数2yx 中自变量x 的取值范围是:_________.(2)请同学们通过列表、描点、连线画出此函数的图像; (3)根据函数图像,写出此函数的三条性质; (4)写出不等式26x x -+<的解集.7.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该商品销售价定为每干克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?8.为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y (千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围.(2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大利润为多少?9.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价-进价)(1)直接完成下列填空①每件商品的进价为元/件①y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(50<m<70),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,求出周销售的最大利润.10.某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?11.某商场销售一款工艺品,每件工艺品的进价为11元,经过一段时间的销售发现,每天的销量y(件)与每件工艺品的售价x(元)满足一次函数关系,当每件售价为15元时,每天销售150件;当每件售价为20元时,每天销售100件.(1)求y与x之间的函数关系式;(2)设商场销售该工艺品每天获得的利润为W(元),试求W与x的函数表达式;(3)既要保障商场每天的获利最大,还要尽快减少库存,问每件工艺品售价应定为多少?商场每天获得的最大利润是多少?12.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x (元)( x≥30)满足一次函数关系m=162﹣3x.(提示:注意m的取值范围.)(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式(写出自变量x 的取值范围).(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.13.在平面直角坐标系中已知抛物线L1:y=ax2+bx﹣3经过点A(﹣1,0)和点B(3,0),点D为抛物线的顶点.(1)求抛物线L1的表达式及点D的坐标;(2)将抛物线L1关于点A对称后的抛物线记作L2,抛物线L2的顶点记作点E,求抛物线L2的表达式及点E的坐标;(3)是否在x轴上存在一点P,在抛物线L2上存在一点Q,使D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出Q点坐标,若不存在,请说明理由.14.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?15.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x 元时,每天销售利润为y元.(1)求y与x之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要元.16.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?17.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?18.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg ,每日销售量y (kg )与销售单价x (元/kg )满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg .设公司销售板栗的日获利为w (元).(1)请求出日销售量y 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w 最大?最大利润为多少元? (3)当销售单价在什么范围内时,日获利w 不低于42000元?19.某件产品的成本是每件10元,试销售阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表所示.(1)观察以上数据,根据我们所学到的一次函数、二次函数,回答:y 是x 的什么函数?并求出解析式. (2)要使得每日的销售利润最大,每件产品的销售价应定为多少?此时每日的销售利润是多少?20.某商场销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y (件)与销售单价(元)满足y =﹣10x +400,设销售这种商品每天的利润为w (元). (1)求w 与x 之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得750元的利润,应将销售单价定为多少元? (3)当每天销售量不少于30件,且销售单价至少为35元时,该商场每天获得的最大利润是多少?答案1.(1)y =−x +35(1≤x ≤10,x 为整数);(2)在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元. 2.(1)()4010x +(2)21060400y x x =-++ (3)24元/千克3.(1)该商品的进价为40元/件(2)当售价为60元/件或80元/件时,周销售利润为1600元 4.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元. 5.(1)一次函数,10900y x =-+(2)当售价定为60元时,利润最大,最大值为6000元 6.(1)x 取任意实数 (2)见解析(3)①图像关于y 轴对称;①此函数有最小值0;①当0x >时,y 随x 的增大而增大.(答案不唯一) (4)3x <-或2x >7.(1)221201600w x x =-+-(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元 (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元 8.(1)()209601830y x x =-+≤≤ (2)这天该农产品的售价为28元/千克(3)当销售单价为30元时,当天获得的利润最大,最大利润是4320元 9.(1)①20;①y =-2x +200(2)每件售价为60元时,利润W 最大,为3200元(3)当50<m <62时,周销售最大利润为2(22484800)m m -+-元;当62≤m <70时,周销售最大利润为2888元 10.(1)401016()y x x =-+≤≤(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元. 11.(1)10300y x =-+; (2)2104103300W x x =-+-;(3)每件工艺品售价应定为20元,商场每天获得的最大利润是900元 12.(1)32524860y x x -+-=(30≤x ≤54)(2)商场每天销售这种商品的销售利润不能达到500元13.(1)抛物线1L 的函数表达式为223y x x =--,顶点D 的坐标为()1,4- (2)抛物线2L 的函数表达式为265y x x =---,点E 的坐标为()3,4-(3)点Q 的坐标为()5,0-或()38---或()38-+- 14.(1)y =﹣2x +160 (2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元15.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500016.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元 17.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805018.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元 19.(1)y 是x 的一次函数,40y x =-+(2)产品的销售价应定为25元,此时每日的销售利润最大,为225元 20.(1)W =﹣10x 2+600x ﹣8000 (2)应将销售单价定为25元(3)该商场每天获得的最大利润是750元。
人教版九年级上册数学第二十二章二次函数应用题训练
人教版九年级上册数学第二十二章二次函数应用题训练1.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为x m(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?2.某服装店销售一款卫衣,该款卫衣每件进价为60元,规定每件售价不低于进价.经市场调查发现,该款卫衣每月的销售量y(件)与每件售价x(元)满足一次函数关系y=-20x+2800.(1)若服装店每月既想从销售该款卫衣中获利24000元,又想尽量给顾客实惠,售价应定为多少元?(2)为维护市场秩序,物价部门规定该款卫衣的每件利润不允许超过每件进价的50%.设该款卫衣每月的总利润为w(元),那么售价定为多少元时服装店可获得最大利润?最大利润是多少元?3.为响应国家提出的由中国制造向中国创造转型的号召,某公司自主设计了一款可控温杯,每个的生产成本为18元,投放市场进行试销,经过调查得到每月销售量y(万/个)与销售单价x(元/个)之间的部分数据如下:(1)试判断y 与x 之间的函数关系,并求出函数关系式; (2)设每月的利润为w (万元),求w 与x 之间的函数关系式;(3)该公司既要获得一定利润,又要符合相关部门规定(产品利润率不高于50%),请你帮助分析,公司销售单价定为多少时可获利最大?求出最大利润.4.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,1224x ≤<)满足一次函数的关系,部分数据如下表:(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销售量固定为400件. ①当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润; ①若线下月利润与线上月利润的差不低于800元,直接写出x 的取值范围.5.某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:千克)之间的函数关系.(1)求折线ABD 所表示的,1y 与x 之间的函数表达式.(2)若产品产量不超过70千克,求产量x 为多少千克时,获得的利润最大?最大利润是多少?6.某农场有100亩土地对外出租,现有两种出租方式:方式一 若每亩土地的年租金是400元,则100亩土地可以全部租出.每亩土地的年租金每增加5元土地少租出1亩. 方式二 每亩土地的年租金是600元.(1)若选择方式一,当出租80亩土地时,每亩年租金是_____元;(2)当土地出租多少亩时,方式一与方式二的年总租金差.....最大?最大值是多少? (3)农场热心公益事业,若选择方式一,农场每租出1亩土地捐出a 元()0a >给慈善机构;若选择方式二,农场一次性捐款1800元给慈善机构,当租出的土地小于60亩时,方式一的年收入高于方式二的年收入,直接写出a 的取值范围. (注:年收入=年总租金-捐款数)7.已知每张门票价格为30元时,平均每天有游客4000人,经调研知,若每张门票价格每增加10元,平均每游客减少500人,物价部门规定,每张门票不低于30元,不高于100元.设每天游客人数为y (人),每张门票价格涨价x (元)(x 为10的倍数).(1)写出y 与x 之间的函数关系式,并写出自量x 的取值范围;(2)若某天的门票收入为15万元,此收入是否为每天的门票最大收入?请说明理由; (3)请分析并回答门票价格在什么范围内每天门票收入不低于12万元.8.“童心迎六一,欢乐共成长”,某超市计划在儿童节期间进行一款文具的促销活动.该文具进价为5元/件,售价为9元/件时,当天的销售量为100件.在销售过程中发现:售价每下降0.5元,当天的销售量就增加5件.设当天销售单价统一为x 元/件(59x <≤,且x 是按0.5元的倍数下降),当天销售利润为y 元.(1)求y与x的函数关系式;(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过60%,要想当天获得最大利润,每件文具的售价应为多少元?并求出最大利润.9.某景区由A,B两个核心区域构成,可单独购票,也可购联票,挂牌价格如下表.去年6月份旺季到来,选择甲、乙、丙三种购票方式人数分别约有2万、3万、2万.预测今年6月份大致相当.为鼓励游客扩大游玩区域,决定调整联票价格.预期丙种票单价每下降1元,将约有原计划购甲种票600人,乙种票400人改购丙种票.(1)若丙种票单价下降10元,求景区今年6月份门票预期总收入.(2)将丙种票单价下降多少时,今年6月份门票总收入有最大值?最大值是多少?10.某超市用2400元购进一批冰墩墩玩偶出售.若进价降低20%,则可以多买50个.市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个.(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元.①求w关于x的函数解析式,并求每周总利润的最大值;①当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围.11.调查了某个考点上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,并绘制了如图所示图像.(1)研究发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x之间的函数关系式;(2)如果考生一进考点就开始排队测量体温,体温监测点有2个,每个监测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?12.用一根长20cm的铁丝围矩形.(1)若围成的矩形的面积是16cm2,求该矩形的长和宽;(2)当长和宽分别为多少时,该矩形的面积最大?最大面积是多少?13.如图,小亮父亲想用长为80m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边m,面积为2AB xS.m(1)写出S与x之间的关系式,并指出x的取值范围;AB BC分别为多少米时,羊圈的面积最大?最大面积是多少?(2)当,14.自由落体运动是由于引力的作用而造成的,地球上物体自由下落的时间t (s )和下落的距离h (m )的关系是h =4.9t 2.我们知道,月球的引力大约是地球引力的16,因此月球上物体自由下落的时间t (s )和下落的距离h (m )的关系大约是h =0.8t 2. (1)在同一平面直角坐标系中作图,分别表示地球、月球上h 和t 的关系; (2)比较物体下落4s 时,在地球上和月球上分别下落的距离;(3)比较物体下落10m 时,在地球上和月球上分别所需要的时间(结果精确到0.1s ).15.如图,有一座抛物线型拱桥,在正常水位时水面宽20m AB =,当水位上升3m 时,水面宽10m CD =.(1)按如图所示的直角坐标系,求此抛物线的函数表达式;(2)有一条船以5km /h 的速度向此桥径直驶来,当船距离此桥35km 时,桥下水位正好在AB 处,之后水位每小时上涨0.25m ,当水位达到CD 处时,将禁止船只通行.如果该船的速度不变,那么它能否安全通过此桥?16.一个高尔夫球手击出一个高尔夫球,水平距离()m d 和球上升的高度()m h 满足关系:20.004h d d =-.(1)当球飞了90m 远时,它上升的高度是多少?(2)当球第一次到达50m 高处时,它已飞了多远?(结果精确到1m )17.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?18.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.设生产并销售B型车床x台.x 时,完成以下两个问题:(1)当4①请补全下面的表格:①若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当0<x≤14时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润.19.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).20.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x元,每个月的销售量为y件.(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?。
中考二次函数应用题(含答案解析)
中考二次函数应用题(含答案解析)二次函数应用题1.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间t 0、人的反应时间t 1、系统反应时间t 2、制动时间t 3,相应的距离分别为d 0,d 1,d 2,d 3,如下图所示.当车速为v (米/秒),且(0,33.3]v ∈时,通过大数据统计分析得到下表给出的数据(其中系数k 随地面湿滑程度等路面情况而变化,[1,2]∈k ).阶段 0.准备 1.人的反应 2.系统反应 3.制动时间时间 t 0 t 1=0.8秒 t 2=0.2秒 t 3距离d 0=10米d 1d 22320v d k =米(1)请写出报警距离d (米)与车速v (米/秒)之间的函数关系式d (v );(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?2.某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y (件)是关于售价x (元/件)的一次函数,下表仅列出了该商品的售价x ,周销售量y ,周销售利润W (元)的三组对应值数据.x 30 50 80 y 140 100 40 W140030002400(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a (元/件),售价x 为多少时,周销售利润W 最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m (元/件)()0m >,公司为回馈消费者,规定该商品售价x 不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是2700元,求m 的值.3.某企业研发出一种新产品,该产品的成本为每件3000元.在试用期间营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件,每多购一件,所购产品的销单价均降5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出购买产品______件时,销售单价恰好为3200元;x ,且x为整数),该公司所获利润为y元,求y与x之(2)设购买这种产品x件(其中10间的函数解析式,并写出自变量x的取值范围;(3)在试用期间,当购买产品的件数超过10件时,为使销售数量越多,公司所利润越大,公司应将最低销售单价调整为多少元(其它销售条件不变)?4.李大爷每年春节期间都会购进一批新年红包销售,根据往年的销售经验,这种红包平均每天可销售50袋,每袋盈利3元,若每袋降价0.5元,平均每天可多售出25袋,设每袋降x元,平均每天的利润为y元.(1)请求出y与x的函数表达式;(2)若李大爷想让每天的利润最大化,应该降价多少元销售?最大利润为多少元?5.某地想要建造儿童直线斜坡轨道滑车设施(如图),为防止滑车下滑速度过快,轨道与地面夹角要适度,根据儿童能够在斜坡轨道上的滑行时间来确定直线斜坡轨道的长度.为解决此问题,小明用小车沿斜面滑下的实验来模拟此过程.借助打点计时器(一种测量短暂时间的工具,每隔0.02s打一次点),让小车带动纸带通过打点计时器,再按顺序测得相邻各点之间的距离数据如下表:时间(秒)00.020.040.060.080.10相邻各点的距离(厘米)00.30.50.70.9 1.0(1)当时间为0.04秒时,滑行距离是______厘米;(2)请在下图网格中建立平面直角坐标系,以时间为横坐标,以滑行距离为纵坐标,根据表格中的数据计算并描点,用平滑的曲线连起来;(3)通过计算确定滑车能够在斜坡轨道上滑行10秒时直线斜坡轨道的长度.6.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元,销售量是600件,而销售单价每涨1元,就会少售出10件玩具. (1)不妨设该种品牌玩具的销售单价为x 元(40x >),请你分别用x 的代数式来表示销售量y 件和销售该品牌玩具获得利润ω元.(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?7.为进一步落实“双减增效”政策,某校增设活动拓展课程——开心农场.如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB BC ⊥,3AB =米,1BC =米)和总长为14米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,①设DF 的长为x 米,请用含x 的代数式表示EF 的长;②若要求所围成的小型农场DBEF 的面积为12平方米,求DF 的长; (2)DF 的长为多少米时,小型农场DBEF 的面积最大?最大面积为多少平方米? 8.在“乡村振兴”行动中,某村办企业开发了一种有机产品,该产品的成本为每盒30元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒,每涨价1元,每天少销售10盒.(1)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式;(2)当每盒售价订为多少元时,可使当天获得最大销售利润,销售利润是多少?(3)现在该企业打算回报社会,每销售1盒捐赠a 元()5a >给村级经济合作社,物价部门要求该产品销售定价不得超过每盒75元,该企业在严格执行物价部门的定价前提下欲使每天捐赠后的日销售利润随产品售价的增大而增大,求a 的取值范围.9.为了“创建文明城市,建设美丽家园”,青春科技生态有限公司种植和销售一种有机绿色草皮.已知该草皮的成本是15元/2m ,规定销售价格不低于成本,又不高于成本的两倍.经市场调查发现,某天该草皮的销售量()2m y 与销售价格x (元/2m )的函数关系如图所示.(1)求y 与x 间的函数解析式;(2)求这一天销售草皮获得的利润w 的最大值;(3)若该公司按每销售21m 草皮提取1元用于捐资助学,且保证捐款后每天的销售利润不低于7200元,直接写出该草皮销售价格的范围. 10.问题提出(1)如图①,在矩形ABCD 中,4AB =,6BC =,点F 是AB 的中点,点E 在BC 上,2BE EC =,连接FE 并延长交DC 的延长线于点G ,求CG 的长;问题解决(2)如图②,某生态农庄有一块形状为平行四边形ABCD 的土地,其中4km AB =,6km BC =,60B ∠=︒.管理者想规划出一个形状为EMP 的区域建成亲子采摘中心,根据设计要求,点E 是AD 的中点,点P 、M 分别在BC 、AB 上,PM AB ⊥.设BP 的长为(km)x ,EMP 的面积为y 2(km ).①求y 与x 之间的函数关系式;②为容纳更多的游客,要求EMP 的面积尽可能的大,请求出EMP 面积的最大值,并求出此时BP 的长.【参考答案】二次函数应用题1.(1)()210033.320v d v v k =++<≤(2)汽车的行驶速度应限制在72千米/小时 【解析】 【分析】(1)根据0123=+++d d d d d 即可得到答案;(2)由已知得21020v d v k=++,要求50d <,即要求2140120k v v <-恒成立,根据12k 可得2401120v v ->,即可解得答案. (1)解:由题意得 20123100.80.220v d d d d d v v k =+++=+++,故答案为:()210033.320v d v v k =++<≤;(2)解:对任意()12k k ,均要求50d <, 2105020v v k∴++<恒成立,即2140120k v v <-恒成立, 12k ,∴111402020k, ∴2401120v v ->, 化简整理得2208000v v +-<, 解得4020v -<<,020v ∴<<,∴汽车的行驶速度应限制在20米/秒以下,即72千米/小时以下,答:汽车的行驶速度应限制在72千米/小时. 【点睛】本题考查二次函数的实际应用和列函数关系式,解题的关键是读懂题意,根据12k 得出2401120v v ->. 2.(1)2200y x =-+(2)售价为60元时,周销售利润最大为3200元 (3)5 【解析】 【分析】(1)设y =kx +b ,把x =30,y =140和x =50,y =100,代入可得解析式;(2)根据利润=(售价−进价)×数量,得()()202200w x x =--+,根据顶点的纵坐标是有最大值求解即可;(3)根据利润=(售价−进价)×数量,得W =()()202200x m x ---+(x ≤55),其对称轴x =60+2m>60,0<x ≤55时,函数单调递增,只有x =55时周销售利润最大,即可得m =5. (1)解:设y 关于x 的函数解析式为y kx b =+, 把x =30,y =140和x =50,y =100,代入得,1403010050k bk b =+⎧⎨=+⎩, 解得2200k b =-⎧⎨=⎩,∴2200y x =-+;(2)∵()140301400a -=, ∴20a =,()()()22202200224040002603200w x x x x x =--+=-+-=--+,∴售价为60元时,周销售利润最大为3200元. (3)()()()2202200222402004000w x m x x m x m =---+=-++--对称轴为:60552mx =+> ∵55x ≤,在对称轴左侧,w 随x 的增大而增大,当55x =时,w 最大=2700,()()55202552002700m ---⨯+=, ∴5m =. 【点睛】本题考查了本题考查二次函数的应用,解本题的关键理解题意,掌握二次函数的性质和销售问题中利润公式. 3.(1)90(2)()2200905650(1090)x x xyx x x x⎧≥⎪=⎨-+<<⎪⎩,为整数,为整数(3)公司应将最低销售单价调整为3325元【解析】【分析】(1)购买这种产品x件时,销售单价恰好为3200元,由题意得:3600-5(x-10)=3200,即可求解;(2)分10<x<90和x≥90两种情况,分别求解即可;(3)根据(2)中求出的函数解析式,结合二次函数与一次函数的增减性求解即可.(1)解:设购买这种产品x件时,销售单价恰好为3200元,由题意得:3600-5(x-10)=3200,解得:x=90,故答案为:90;(2)当x≥90时,一件产品的利润为:3200-3000=200元,故此时y与x的函数关系式为:y=200x(x≥90);当10<x<90时,一件产品的利润为:3600-5(x-10)-3000=(-5x+650)元,故此时y与x的函数关系式为:y=x[-5x+650]=-5x²+650x(10<x<90);故答案为:()2200905650(1090)x x xyx x x x⎧≥⎪=⎨-+<<⎪⎩,为整数,为整数;(3)要满足购买数量越大,利润越多.故y随x的增大而增大,y=200x,y随x的增大而增大,y=-5x2+650x,其对称轴为x=65,故当10≤x≤65时,y随x的增大而增大,若一次购买65件,设置为最低售价,则可以避免y随x增大而减小的情况发生,故x=65时,设置最低售价为3600-5×(65-10)=3325(元),所以公司应将最低销售单价调整为3325元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).4.(1)y=−50x2+100x+150(2)应该降价1元销售,最大利润为200元.【解析】【分析】(1)根据题意和题目中的数据,可以写出y与x的函数表达式;(2)将(1)中函数关系式化为顶点式,然后利用二次函数的性质即可得到x为何值时,y 取得最大值.(1)解:由题意可得, y =(3−x )(50+0.5x×25)=−50x 2+100x +150, 即y 与x 的函数表达式是y =−50x 2+100x +150; (2)由(1)知:y =−50x 2+100x +150=−50(x −1)2+200, ∴当x =1时,y 取得最大值,此时y =200,答:若李大爷想让每天的利润最大化,应该降价1元销售,最大利润为200元. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,写出相应的函数关系式,利用二次函数的性质求最值. 5.(1)0.8 (2)见解析 (3)250米 【解析】 【分析】(1)根据表格即可求得答案;(2)根据题意在网格中建立直角坐标系,然后描点、并用平滑的曲线连起来即可得到图像;(3)根据()2S a t =,求出加速度a ,然后根据212S at =即可求解. (1)解:由表格可知,0.3OA =,0.5AB =, ∴当时间为0.04秒时,滑行距离是0.8厘米; (2) 解:如图,(3)解:∵()2S a t =,由表格可知:0.02t =秒,0.2S =厘米=0.002米,∴()20.0020.02a =⨯, 解得:5a =米/秒 ∴221522S at t ==, 当10t =秒时,51002502S =⨯=米【点睛】本题主要考查了探究匀变速直线运动规律,解题的关键是理解和掌握计算加速的方法. 6.(1)y=1000−10x ,w =−10x 2+1300x −30000; (2)商场销售该品牌玩具获得的最大利润为8640元. 【解析】 【分析】(1)由销售单价每涨1元,就会少售出10件玩具,得y =600−(x −40)×10=1000−10x ,利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)首先求出x 的取值范围,然后把w =−10x 2+1300x −30000转化成y =−10(x −65)2+12250,结合x 的取值范围,求出最大利润. (1)解:由题意得:销售量y=600−(x −40)×10=1000−10x ,销售玩具获得利润w =(1000−10x )(x −30)=−10x 2+1300x −30000; (2)解:根据题意得10001054045x x -≥⎧⎨≥⎩,解之得:45≤x ≤46,w =−10x 2+1300x −30000=−10(x −65)2+12250, ∵a =−10<0,对称轴是直线x =65, ∴当45≤x ≤46时,w 随x 增大而增大. ∴当x =46时,w 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元. 【点睛】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大. 7.(1)①153EF x =-;②4米(2)饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米 【解析】 【分析】(1)①根据题意结合图形即可求解; ②根据矩形的面积公式列方程求解即可;(2)设饲养场DBEF 的面积为S ,求出关于DF 的长的关于x 的函数关系式,根据二次函数的性质即可解答.(1)①设DF 的长为x 米, ∵点D 在线段AB 上,∴()()1421153EF x x x =---=-米, ②∵3AB =,∴3EF ≤,即1533x -≤, ∴4x ≥;设DF 的长为x 米,根据题意得:()15312x x -=, 解得:14x =,21x =(此时点D 不在线段AB 上,舍去), ∴4x =,答:饲养场的长DF 为4米; (2)设饲养场DBEF 的面积为S ,DF 的长为x 米, ①点D 在15段AB 上,由(1)知此时4x ≥, 则()22575153315324S x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,∵30a ,抛物线对称轴是直线52x =, ∴在对称轴右侧,S 随x 的增大而减小,∴4x =时,S 有最大值,23415412S =-⨯+⨯=最大值(平方米);②点D 在线段BA 的延长线上,此时4x <, 则()()2132715333222S x x x =-+=--+, ∵302a =-<,34<,∴3x =时,S 有最大值,272S =最大值, ∴3x =时,272S =最大值(平方米); ∵27122>, ∴饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 答:饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 【点睛】此题主要考查的是二次函数的应用,一元二次方程的应用,掌握矩形的面积计算方法是解题的关键.8.(1)w =-10x 2+1400x -33000;(2)每盒售价订为70元时,可使当天获得最大销售利润,销售利润是16000元;(3)10≤a<30.【解析】【分析】(1)根据利润=(售价-进价)×销量,即可得到w关于x的函数解析式;(2)把(1)中的函数解析式化成顶点式,根据二次函数的性质,即可得出答案;(3)根据题意,仿照(1)列出函数关系式,求出对称轴,再根据二次函数的性质分析,即可得到a的取值范围.(1)解:当售价为x元时,上涨(x-60)元,销量为500-10(x-60)=-10x+1100,∴w=(x-30)(-10x+1100)=-10x2+1400x-33000,故w关于x的函数解析式是w=-10x2+1400x-33000;(2)解:w=-10x2+1400x-33000=-10(x-70)2+16000∵-10<0∴抛物线开口向下,函数有最大值即当x=70时,w有最大值,最大值是16000,故每盒售价订为70元时,可使当天获得最大销售利润,销售利润是16000元.(3)解:由题意得w=(x-30-a)(-10x+1100)=-10x2+(1400+10a)x-(33000+1100a)其中60≤x≤75,∵-10<0∴抛物线开口向下,函数有最大值,抛物线的对称轴是x=140010170202aa+-=+-,∵每天捐赠后的日销售利润随产品售价的增大而增大,∴当60≤x≤75时,w随着x的增大而增大,∴1702a+≥75即a≥10,又∵x-30-a>0,∴a<x-30,其中60≤x≤75,∴a<60-30,即a<30时,a<x-30恒成立,∴ 10≤a<30∴a的取值范围是10≤a<30.【点睛】本题考查了二次函数在销售问题中的应用,熟练应用二次函数求最值是解决问题的关键.9.(1)()()200580015258002530x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)最大值为12000元(3)2030x ≤≤【解析】【分析】(1)根据图象中的点,待定系数法求解析式即可;(2)根据(1)的解析式,分1525≤≤x ,2530x <≤,两种情况列出w 的解析式,根据二次函数和一次函数的性质分别求得最大值;(3)根据二次函数的性质解不等式求得当1525≤≤x 时的定价范围,解一元一次不等式求得当2530x <≤时的定价范围.(1)解:根据函数图像可知,当2530x <≤时,800y =,当1525≤≤x 时,设y kx b =+将()()15,2800,25,800代入得,28001580025k b k b=+⎧⎨=+⎩ 解得2005800k b =-⎧⎨=⎩2005800y x ∴=-+综上所述,()()200580015258002530x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)当1525≤≤x 时,()()()215152005800200880087000w x y x x x x =-=--+=-+- 对称轴为8800222400b a --==- 22x ∴=时,w 最大,2max 20022880022870009800w =-⨯+⨯-=当2530x <≤时,()1580080012000w x x =-⨯=-当30x =时,取得最大值,最大值为12000元综上所述,最大值为12000元(3)①当1525≤≤x 时,()()()2151162005800200900092800w x y x x x x =--=--+=-+-当22009007209002800x x -+-=解得:1220,25x x ==∴定价为2025x ≤≤②当2530x <≤时,()()151158007200w x y x =--=-⨯≥解得25x ≥∴定价范围为2030x ≤≤【点睛】本题考查了一次函数的应用,二次函数的应用,一元一次不等式的应用,根据题意列出函数关系式是解题的关键.10.(1)1CG =(2)①2y x =;②EMP 2,此时BP 的长为11km 2 【解析】【分析】(1)证明FEB GEC △∽△,依据相似三角形的性质进行求解即可;(2)①分点P 在点H 左侧和右侧两种情况讨论求解即可;②由二次函数的性质可得解.(1)在矩形ABCD 中,90ABC BCD BCG ∠=∠=∠=︒,∵FEB GEC ∠=∠,∴FEB GEC △∽△, ∴BF BE CG CE =, ∵4AB =,6BC =,点F 是AB 的中点,2BE EC =,∴2BF =,4BE =,2CE =, ∴242CG =, ∴1CG =.(2)①过点E 作EH //AB 交BC 于点H ,交射线MP 于点G ,易得四边形ABHE 是平行四边形, ∴4EH AB ==.∵EH //AB ,PM AB ⊥,∴60PHG B ∠=∠=︒,EG PM ⊥,即EG 是PME △边MP 上的高.∵点E 是AD 的中点,∴3BH AE ==.如图1-1,当点P 在点H 左侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=+=+=. 如图1-2,当点P 在点H 右侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=-=-=, ∴PME △的边MP 上的高112x EG -=. 在Rt MBP 中,3sin 60x MP BP =⋅︒=∴2113113113222x x y MP EG x -=⋅==. ②)222311333111213112y x x x x ⎫==-=-⎪⎝⎭ ∴当112x =时,1213y =最大 ∴EMP 21213,此时BP 的长为11km 2. 【点睛】 本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用.在解答时添加辅助线构建全等形和相似形是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级二次函数应用题中考真题举例1.(2019黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?【解答】解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.2.(2019荆门)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售的30天中,其销售价格m(元/公斤)与第x天之间满足m=(x为正整数),销售量n(公斤)与第x天之间的函数关系如图所示:如果李大爷的草莓在上市销售期间每天的维护费用为80元.(1)求销售量n与第x天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y的最大值及相应的x.1)当1≤x≤10时,设n=kx+b,由图知可知,解得∴n=2x+10同理得,当10<x≤30时,n=﹣1.4x+44∴销售量n与第x天之间的函数关系式:n=(2)∵y=mn﹣80∴y=整理得,y=(3)当1≤x≤10时,∵y=6x2+60x+70的对称轴x===﹣5∴此时,在对称轴的右侧y随x的增大而增大∴x=10时,y取最大值,则y10=1270当10<x<15时∵y=﹣4.2x2+111x+580的对称轴是x=﹣==≈13.2<13.5∴x在x=13时,y取得最大值,此时y=1313.2当15≤x≤30时∵y=1.4x2﹣149x+3220的对称轴为x==>30∴此时,在对称轴的左侧y随x的增大而减小∴x=15时,y取最大值,y的最大值是y15=1300综上,草莓销售第13天时,日销售利润y最大,最大值是1313.2元3.(2019十堰)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.4.(2019随州)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p (百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)销售价格x(元/千2 4 (10)克)市场需求12 10 (4)量q(百千克)已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为______元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为______元/千克.解:(1)由表格的数据,设q与x的函数关系式为:q=kx+b根据表格的数据得,解得故q与x的函数关系式为:q=-x+14,其中2≤x≤10(2)①当每天的半成品食材能全部售出时,有p≤q即x+8≤-x+14,解得x≤4又2≤x≤10,所以此时2≤x≤4②由①可知,当2≤x≤4时,y=(x-2)p=(x-2)(x+8)=x2+7x-16当4<x≤10时,y=(x-2)q-2(p-q)=(x-2)(-x+14)-2[x+8-(-x+14)]=-x2+13x-16即有y=(3)当2≤x≤4时,y=x2+7x-16的对称轴为x===-7∴当2≤x≤4时,除x的增大而增大∴x=4时有最大值,y==20当4<x≤10时y=-x2+13x-16=-(x-)2+,∵-1<0,>4∴x=时取最大值即此时y有最大利润要使每天的利润不低于24百元,则当2≤x≤4时,显然不符合故y=-(x-)2+≥24,解得x≤5故当x=5时,能保证不低于24百元故答案为:,55.(2019武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1) ①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值6.(2019咸宁)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x 天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?【解答】解:(1)由图象可知,第40天时的成本为40元,此时的产量为z=﹣2×40+120=40则第40天的利润为:(80﹣40)×40=1600元故答案为1600(2)①设直线AB的解析式为y=kx+b(k≠0),把(0,70)(30,40)代入得,解得∴直线AB的解析式为y=﹣x+70(Ⅰ)当0<x≤30时w=[80﹣(﹣x+70)](﹣2x+120)=﹣2x2+100x+1200=﹣2(x﹣25)2+2450∴当x=25时,w最大值=2450(Ⅱ)当30<x≤50时,w=(80﹣40)×(﹣2x+120)=﹣80x+4800∵w随x的增大而减小∴当x=31时,w最大值=2320∴第25天的利润最大,最大利润为2450元②(Ⅰ)当0<x≤30时,令﹣2(x﹣25)2+2450=2400元解得x1=20,x2=30∵抛物线w=﹣2(x﹣25)2+2450开口向下由其图象可知,当20≤x≤30时,w≥2400此时,当天利润不低于2400元的天数为:30﹣20+1=11天(Ⅱ)当30<x≤50时,由①可知当天利润均低于2400元综上所述,当天利润不低于2400元的共有11天.6.(2019鄂州)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元…………6′(3)由题意,得:-5(x-70)2+4500=4220+200 解之,得:x 1=66 x2=74 …………8′∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.7.(2019湘潭)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A、B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【解答】解:(1)根据题意,可设平均每天销售A礼盒x盒,B种礼盒为y盒,则有,解得故该店平均每天销售A礼盒10盒,B种礼盒为20盒.(2)设A种湘莲礼盒降价m元/盒,利润为W元,依题意总利润W=(120﹣m﹣72)(10+)+800化简得W=m2+6m+1280=﹣(m﹣9)2+1307∵a=<0∴当m=9时,取得最大值为1307,故当A种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.8.(2019盘锦)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x (1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x… 3 4 5 6 …售价y1/元…12 14 16 18 …(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?9.(2019铁岭)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润..解:(1)根据题意得,y=200﹣10(x﹣8)=﹣10x+280,故y与x的函数关系式为y=﹣10x+280;(2)根据题意得,(x﹣6)(﹣10x+280)=720,解得:x1=10,x2=24(不合题意舍去),答:要使日销售利润为720元,销售单价应定为10元;(3)根据题意得,w=(x﹣6)(﹣10x+280)=﹣10(x﹣17)2+1210,∵﹣10<0,∴当x<17时,w随x的增大而增大,当x=12时,w最大=960,答:当x为12时,日销售利润最大,最大利润960元.10.(2019营口)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量y(kg)与时间第t天之间的函数关系式为y=2t+100(1≤t≤80,t为整数),销售单价p(元/kg)与时间第t天之间满足一次函数关系如下表:时间第t天 1 2 3 (80)销售单价p/(元/kg)49.5 49 48.5 (10)(1)直接写出销售单价p(元/kg)与时间第t天之间的函数关系式.(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?解:(1)设销售单价p (元/kg )与时间第t 天之间的函数关系式为:p =kt +b , 将(1,49.5),(2,49)代入得,, 解得:, ∴销售单价p (元/kg )与时间第t 天之间的函数关系式为:p =﹣t +50;(2)设每天获得的利润为w 元,由题意得,w =(2t +100)(50﹣0.5t )﹣6(2t +100)=﹣t 2+38t +4400=﹣(t ﹣19)2+4761,∵a =﹣1<0∴w 由最大值,当t =19时,w 最大,此时,w 最大=4761, 答:第19天的日销售利润最大,最大利润是4761元.11.(2019抚顺)某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y (件)与销售单价x (元)满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.(1)求y 与x 之间的函数关系式.(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?【解答】解:(1)设y 与x 之间的函数关系式为y kx b =+,根据题意得,3535040300k b k b +=⎧⎨+=⎩, 解得:10700k b =-⎧⎨=⎩, y ∴与x 之间的函数关系式为10700y x =-+;(2)设利润为w 元,30(160%)48x ⨯+=,48x ∴,根据题意得,22(10700)(30)1010002100010(50)4000w x x x x x =-+-=-+-=--+, 100a =-<,对称轴50x =,∴当48x =时,210(4850)40003960w =-⨯-+=最大,答:当销售单价为48时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是3960元.。