信丰县第一中学校2018-2019学年高二上学期第一次月考试卷化学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信丰县第一中学校2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .
B .y=x 2
C .y=﹣x|x|
D .y=x ﹣2
2. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4 3. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 4. 在△AB
C 中,sinB+sin (A ﹣B )=sinC 是
sinA=的( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既不充分也非必要条件
5. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.
其中正确结论的序号是( ) A .①③
B .①④
C .②③
D .②④
6. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
7. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是( ) A .1个
B .2个
C .3个
D .4个
8. 已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D

9. 已知数列{}n a 的首项为11a =,且满足111
22
n n n a a +=
+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5
8
10.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个
11.设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .10
B .40
C .50
D .80
12.执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )
A .9
B .11
C .13
D .15
二、填空题
13.设函数f (x )=
的最大值为M ,最小值为m ,则M+m= .
14.记等比数列{a n }的前n 项积为Πn ,若a 4•a 5=2,则Π8= .
15.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为
,则|AC|= .
16.设函数f (x )=若f[f (a )],则a 的取值范围是 .
17.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,
()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.
18.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .
三、解答题
19.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
20.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;
(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.
21.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF=3,G 和H 分别是CE 和CF 的中点. (Ⅰ)求证:AC ⊥平面BDEF ; (Ⅱ)求证:平面BDGH ∥平面AEF ; (Ⅲ)求多面体ABCDEF 的体积.
22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()f x 为偶函数且图象经过原点,其导函数()'f x 的图象过点()12,. (1)求函数()f x 的解析式; (2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.
23.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;
(Ⅱ)若EF •FC=,求正方形ABCD 的面积.
24.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中 随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第 5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组 各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组 至少有一名志愿者被抽中的概率.
信丰县第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)
一、选择题
1.【答案】D
【解析】解:函数为非奇非偶函数,不满足条件;
函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;
函数y=﹣x|x|为奇函数,不满足条件;
函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;
故选:D
【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.
2.【答案】D
【解析】
考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
+=(D点是AB的中点),另外,要选好基底
OA OB OD
OA OB BA
-=,这是一个易错点,两个向量的和2
AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,
何意义等.
3.【答案】A
【解析】

点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
4. 【答案】A
【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0,
∴cosA=,
∴A=,
∴sinA=,
当sinA=,
∴A=
或A=

故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的充分非必要条件,
故选:A
5. 【答案】C
【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
∵a<b<c,且f(a)=f(b)=f(c)=0.
∴a<1<b<3<c,
设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,
∵f(x)=x3﹣6x2+9x﹣abc,
∴a+b+c=6,ab+ac+bc=9,
∴b+c=6﹣a,
∴bc=9﹣a(6﹣a)<,
∴a2﹣4a<0,
∴0<a<4,
∴0<a<1<b<3<c,
∴f(0)<0,f(1)>0,f(3)<0,
∴f(0)f(1)<0,f(0)f(3)>0.
故选:C.
6.【答案】C
【解析】解:由a2b>ab2得ab(a﹣b)>0,
若a﹣b>0,即a>b,则ab>0,则<成立,
若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,
若<则,即ab(a﹣b)>0,即a2b>ab2成立,
即“a2b>ab2”是“<”的充要条件,
故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
7.【答案】D
【解析】解:由{0,1}∪A={0,1}易知:
集合A⊆{0,1}
而集合{0,1}的子集个数为22=4
故选D
【点评】本题考查两个集合并集时的包含关系,以及求n个元素的集合的子集个数为2n个这个知识点,为基础题.
8.【答案】C
【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,
故选C.
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
9.【答案】B
【解析】
10.【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},
∴集合S=A∩B={1,3},
则集合S的子集有22=4个,
故选:C.
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.11.【答案】 C
【解析】
二项式定理.
【专题】计算题.
【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.
【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k
当k﹣1时,C5k25﹣k=C5124=80,
当k=2时,C5k25﹣k=C5223=80,
当k=3时,C5k25﹣k=C5322=40,
当k=4时,C5k25﹣k=C54×2=10,
当k=5时,C5k25﹣k=C55=1,
故展开式中x k的系数不可能是50
故选项为C
【点评】本题考查利用二项展开式的通项公式求特定项的系数.
12.【答案】C
【解析】解:当a=1时,不满足退出循环的条件,故a=5,
当a=5时,不满足退出循环的条件,故a=9,
当a=9时,不满足退出循环的条件,故a=13,
当a=13时,满足退出循环的条件,
故输出的结果为13,
故选:C
【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.
二、填空题
13.【答案】2.
【解析】解:函数可化为f(x)==,
令,则为奇函数,
∴的最大值与最小值的和为0.
∴函数f(x)=的最大值与最小值的和为1+1+0=2.
即M+m=2.
故答案为:2.
14.【答案】16.
【解析】解:∵等比数列{a n}的前n项积为Πn,
∴Π8=a1•a2a3•a4•a5a6•a7•a8=(a4•a5)4=24=16.
故答案为:16.
【点评】本题主要考查等比数列的计算,利用等比数列的性质是解决本题的关键.
15.【答案】1.
【解析】解:在△ABC中,A=60°,|AB|=2,且△ABC的面积为,
所以,
则|AC|=1.
故答案为:1.
【点评】本题考查三角形的面积公式的应用,基本知识的考查.
16.【答案】或a=1.
【解析】解:当时,.
∵,由,解得:,所以;
当,f(a)=2(1﹣a),
∵0≤2(1﹣a )≤1,若,则,
分析可得a=1.
若,即,因为2[1﹣2(1﹣a )]=4a ﹣2,
由,得:.
综上得:或a=1.
故答案为:
或a=1.
【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题.
17.【答案】()(),10,1-∞-⋃
【解析】
18.【答案】 .
【解析】解:∵=1﹣bi ,∴a=(1+i )(1﹣bi )=1+b+(1﹣b )i ,

,解得b=1,a=2.
∴|a ﹣bi|=|2﹣i|=.
故答案为:

【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.
三、解答题
19.【答案】(1)()2
6ln f x x x x =--;(2)3n =;(3)证明见解析.
【解析】

题解析: (1)()2a
f'x x b x =+-
,所以(1)251(1)106
f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211
121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢
⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦

2
1
1x t x =>,2(1)()ln 1t h t t t -=-
+, ∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又21
1
0x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 20.【答案】(1)证明见解析;(2)1
8
.
【解析】
试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,1
2
MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,
∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .
(2)由已知条件得1AC AD CD ===
,所以4
ACD S ∆=, 所以111328
A QCD Q ACD ACD V V S PA --∆==
⨯⨯=.
考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 21.【答案】
【解析】解:(Ⅰ)证明:∵四边形ABCD 是正方形, ∴AC ⊥BD .
又∵平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD=BD , 且AC ⊂平面ABCD , ∴AC ⊥平面BDEF ; (Ⅱ)证明:在△CEF 中, ∵G 、H 分别是CE 、CF 的中点, ∴GH ∥EF ,
又∵GH ⊄平面AEF ,EF ⊂平面AEF , ∴GH ∥平面AEF ,
设AC ∩BD=O ,连接OH ,在△ACF 中, ∵OA=OC ,CH=HF , ∴OH ∥AF ,
又∵OH ⊄平面AEF ,AF ⊂平面AEF , ∴OH ∥平面AEF .
又∵OH ∩GH=H ,OH 、GH ⊂平面BDGH , ∴平面BDGH ∥平面AEF .
(Ⅲ)由(Ⅰ),得 AC ⊥平面BDEF , 又∵AO=
,四边形BDEF 的面积S=3×
=6

∴四棱锥A ﹣BDEF 的体积V 1=×AO ×S=4, 同理,四棱锥C ﹣BDEF 的体积V 2=4. ∴多面体ABCDEF 的体积V=8.
【点评】本题考查了面面垂直的性质,面面平行的判定,考查了用分割法求多面体的体积,考查了学生的空间想象能力与推理论证能力.
22.【答案】(1)()2
f x x =;(2)1m -
【解析】(2)
据题意,()()()2
'2g x f x f x m x x m =+-=+-,即()2222{
22
m x x m x g x m
x x m x -+<
=+-≥,,,,
①若12m <-,即2m <-,当2m x <时,()()22
211g x x x m x m =-+=-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝
⎭,上
单调递减;当2m x ≥时,()()22
211g x x x m x m =+-=+--,故()g x 在12m ⎛⎫- ⎪⎝⎭
,上单调递减,在
()1-+∞,
上单调递增,故()g x 的最小值为()11g m -=--. ②若112m -≤
≤,即22m -≤≤,当2m x <时,()()211g x x m =-+-,故()g x 在2m ⎛
⎫-∞ ⎪⎝⎭,上单调递减; 当2m x ≥时,()()211g x x m =+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭
,上单调递增,故()g x 的最小值为
2
24m m
g ⎛⎫=
⎪⎝⎭. ③若12m >,即2m >,当2
m x <时,()()22
211g x x x m x m =-+=-+-,故()g x 在()1-∞,上单调递
减,在12m ⎛⎫ ⎪⎝⎭,上单调递增;当2m x ≥时,()()22
211g x x x m x m =+-=+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭
,上
单调递增,故()g x 的最小值为()11g m =-.
综上所述,当2m <-时,()g x 的最小值为1m --;当22m -≤≤时,()g x 的最小值为2
4
m ;当2m >时,
()g x 的最小值为1m -.
23.【答案】
【解析】证明:(Ⅰ)∵以D 为圆心、DA 为半径的圆弧与以BC 为直径半圆交于点F ,
且四边形ABCD 为正方形,
∴EA 为圆D 的切线,且EB 是圆O 的切线,
由切割线定理得EA 2
=EF •EC ,
故AE=EB .
(Ⅱ)设正方形的边长为a ,连结BF , ∵BC 为圆O 的直径,∴BF ⊥EC ,
在Rt △BCE 中,由射影定理得EF •FC=BF 2
=,
∴BF==,解得a=2,
∴正方形ABCD 的面积为4.
【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
24.【答案】(1)3,2,1;(2)710
. 【解析】111]
试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B
B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,
22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为
7
10
. 考点:1、分层抽样的应用;2、古典概型概率公式.。

相关文档
最新文档