潜水轴流泵设计说明书,

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QZ型潜水轴流泵设计说明书
设计参数:
流量Q=130m3/h
扬程H=3.7m
转速n=2900r/min
1.概述
本设计系。

轴流泵是一种高比转数的水泵,一般比转数s n ≈500~1000.当s n 大于500时,泵一般设计成轴流式。

轴流泵属于低扬程、大流量泵,一般性能范围为:扬程1~2m ;流量0.3~0.65m
3/s 。

轴流泵结构简单,重量轻,主要用于扬程低,流量大的场合。

中、小型轴流泵的结构油吸入喇叭口、叶轮、导流器、弯管等组成,叶轮一般采用不可调式,这种结构叶轮非常简单。

小型轴流泵的驱动电机可与泵连在一起,使用和安装均非常方便,缺点是效率曲线的高效区比较窄,泵比转数越高,高效区越窄。

对于大型轴流泵,可将叶轮设计成可调式的,以增加水泵的高效区。

在本设计中,设计参数:流量 Q=130m 3/h ,扬程 H =3.7m ,配套功率 P 配=2.2KW ,
属于小型泵,叶轮采用不可调式。

比转数4
365.3H
Q n n s
,代入参数计算得s n =754,故泵
的结构为轴流式。

作为潜水泵,需要在水下工作,为了安装和检修的方便,把泵和电机设计成一体,用一根轴连接。

汽蚀方面,泵在水下工作,一般不会发生汽蚀,可以不作要求。

2.叶轮的设计
(1)轴流泵的轮毂比D d h
轮毂用来固定叶片,在结构和强度上应保证安装叶片要求。

减小轮毂比D d h ,可减少水力摩擦,增加过流面积,有利于抗汽蚀性能的改善。

但过分的减少轮毂比,会增加叶片的扭曲,偏离设计工况时,会造成流动紊乱,在叶片进出口形成二次回流,使效率下降,高效范围变窄。

轴流泵的轮毂比D d h 根据比转数确定:
根据设计参数计算出的s n =754,试取D d h =0.45。

(2)轴流泵的叶片数Z
轴流泵的叶片数Z 可以根据比转数s n 来选定,一般Z=3~6,比转数高,叶片负荷轻,叶片数可少一些。

比转数s n =500~600,叶片数取6~5;比转数s n =700~900,叶片数取4个。

据此,本设计中取叶片数Z =4。

(3)叶轮外径D
叶轮的当量直径0D 的大小决定叶轮前轴面速度0m v 的大小,在转速一定情况下,
0m v 的大小与叶片前来流速度(相对速度)与圆周之间夹角0β大小有关。

0β影响着叶片中翼型的安放角c β,而c β太小叶片排挤系数就小,因此需要控制0β角。

为控制0β角在一定范围,鲁特捏夫建议按叶轮进口出轴面速度0m v 计算当量直径0D ,他建议取轴面速度0m v 为:
320)08.0~06.0(Qn v m =
计算出轴面速度后可以计算当量直径:
2
004D Q
v m π=
2
04m v Q
D π=
代入数据得:
3
2029003600
130
07.0⨯=m v =4.7m/s 7
.414.3036
.040⨯⨯=
D =0.99m
因此,
叶轮外径 2
)
(1D d D D h -=
=110mm
轮毂直径 D D
d d h
h ⨯=
=0.45⨯0.11=50mm
(4)估算效率
参照同类型潜水轴流泵,并根据设计要求,估选效率η=0.75,将该效率分配下去,得: 容积效率 98.0=v η
此效率只是初步估计,仅用于设计过程中的计算。

(5)确定计算截面
本设计中取5个截面,内外截面分别与轮缘和轮毂 留有一定距离,见图一。

以方便用样板检查。

所取各截面 见下表:
所取截面见右图。

(6)确定轴面速度m V 和速度环量Γ的分布规律
轴面速度 )
(4
2
2h m d D Q
v -=
π
,代入参数计算,得
s m v m /77.4)
05.011.0(4
036
.022=-=
π
速度环量 h
gH
ωηπ22=
Γ ,代入数值,得
s m n gH h /927.081.060
29007.381.96022=⨯⨯==
Γη 假设 01=Γ ,则绕翼型环量:
s m Z
/232.021
2=Γ-Γ=
Γ 本设计为小型泵,为提高效率可以选用非等环量分布设计,但可能会出现各参数相差较大的情况,无法获得满意的结果。

事实证明,采用等环量和等轴面速度设计,各截面计算参数与非等环量情况相差不大,且结果也能令人满意,方法简单。

故本设计中采用等环量和等
D
v u πΓ=
2, 2212
)2/)((u u m v v u v w +-+=∞2
21u u m
v v u v arctg
+-
=∞β
下面是各截面的速度三角形的计算:
① 截面Ⅰ
s m n
D u /20.860
2900
054.014.360
1=⨯⨯=
=
π
s m D v u /47.5054
.014.3927.012=⨯=Γ=
π
s m v v u v w u u m /25.7)2
47.52.8(77.4)2/)((2
22212
=-
+=+-+=∞ ︒=-=+-
=∞12.41247
.52.877
.42
21arctg v v u v arctg
u u m β
② 截面Ⅱ
s m n
D u /17.1060
2900
067.014.360
2=⨯⨯=
=
π
s m D v u /41.4067
.014.3927.022=⨯=Γ=
π s m v v u v w u u m /28.9)2
41.42.8(77.4)2/)((2
22212
=-
+=+-+=∞ ︒=-=+-
=∞92.30241
.42.877
.42
21arctg v v u v arctg
u u m β
③ 截面Ⅲ
s m n
D u /14.1260
2900
08.014.360
3=⨯⨯=
=
π
s m D v u /72.308
.014.3927.032=⨯=Γ=
π
s m v v u v w u u m /31.11)2
72.32.8(77.4)2/)((2
22212
=-
+=+-+=∞ ︒=-=+-
=∞89.24272
.32.877
.42
21arctg v v u v arctg
u u m β
④ 截面Ⅳ
s m n
D u /11.1460
2900
093.014.360
4=⨯⨯=
=
π
s m D v u /17.3093
.014.3927.042=⨯=Γ=
π s m v v u v w u u m /4.13)2
17.32.8(77.4)2/)((2
22212
=-
+=+-+=∞ ︒=-=+-
=∞85.20217
.32.877
.42
21arctg v v u v arctg
u u m β
⑤ 截面Ⅴ
s m n
D u /09.1660
2900
11.014.360
5=⨯⨯=
=
π
s m D v u /79.211
.014.3927.052=⨯=Γ=
π s m v v u v w u u m /45.15)2
79.22.8(77.4)2/)((2
22212
=-
+=+-+=∞ ︒=-=+-
=∞98.17279
.22.877
.42
21arctg v v u v arctg
u u m β
(8)叶栅间距t
截面Ⅰ mm Z
D t 4.42454
14.31
=⨯=
=
π 截面Ⅱ mm Z
D t 6.524
67
14.32
=⨯=
=
π
截面Ⅲ mm Z
D t 8.62480
14.33
=⨯=
=
π
截面Ⅳ mm Z
D t 734
93
14.34
=⨯=
=
π 截面Ⅴ mm Z
D t 2.834
110
14.35
=⨯=
=
π 以上为叶轮设计的前期计算,无论采用升力法还是圆弧法设计该泵,均需进行以上部分的计算。

以下分别用升力法和圆弧法对叶轮进行设计。

一、 升力法设计叶轮
升力法设计轴流泵计算表
根据上表中的计算结果,对叶片进行绘型。

根据490翼型的结构,按比例计算翼型的尺寸,列入表格,即得翼型的绘型表。

绘型表见下一页。

绘型表中参数的意义见下图:
a
a
二、圆弧法设计
各参数的计算结果列在表中,具体见下表:
圆弧法设计轴流泵计算表
第一次逼近计算:
第一次逼近计算主要是为了求得α∆,如果︒≤∆1α,则说明计算结果理想,不用修正。

事实上,本次计算结果除了截面Ⅰ,均很好的符合了要求,不需要进行修正。

1 圆弧法叶片绘型表
a
(9)叶片绘型
① 画翼型展开图 根据叶片绘型表的数据,将翼型加厚,得到各截面的翼型图。

② 确定叶片旋转轴线位置 取距离翼弦进口l 4.0处的骨线上的点作为旋转中心水平线。

必要时可以适当偏离骨线。

③ 作叶片轴面投影图 做各翼型的水平中心线,将翼型进出口端点到中心水平线的纵坐标方向距离,移到轴面图中心线的两侧,光滑连接各点得到叶片轴面投影的进出口边。

进出口边应该为光滑的曲线。

④ 作轴面投影和木模截线 在轴面投影图中,作一组垂直轴线的木模截面,按各截线间的距离画到各翼型展开图中。

同时在各翼型中画出一组竖线,竖线间水平距离等于对应半径截面︒10中心角的弧长ϕπ∆)360
2(
R。

将各翼型图中水平线1,2,3……与翼型工作面及背面交点,按所在角度位置用插入点法插入到平面图中相应的角度位置,分别光滑地连接,得到工作面的木模截线(实线)和背面木模截线(虚线)。

设计中要求木模截线光滑有规律变化。

详细见叶片木模图,在此不赘述。

3. 导叶的设计
轴流泵的导叶作用是消除液体环量,转换速度能为压力能。

本设计中,采用流线法设计导叶。

为了减少水泵的整体长度,本设计采用将导叶与扩散管合为一体的方案,在此我们称之为导流壳,详见零件图的导流壳部分。

为减少损失,导流壳的扩散角为︒10~6,本设计因水泵尺寸小,仅取为︒2。

导叶进口边应该与叶轮出口边平行,本设计尽量以此为原则,略微有些偏离。

导叶和叶轮间距离取mm 8~6。

叶片数取5个。

流线法设计导叶的步骤为: ① 绘制导叶的轴面投影图;
② 分流线 导叶有锥度,流面为锥面。

根据经验,以圆柱面代替,误差不大。

为简便
起见,本设计即以圆柱面代替锥面; ③ 计算各流面叶片进出口安放角4α和4α
由进口速度三角形,3
333ψαu m v v tg =
式中,3m v ——导叶进口轴面速度, )
(4
223
3h
m d D Q
v -=
π
3ϕ——叶片进口排挤系数, π
ψ33
31D zs u -
= 式中,3D ——计算流面的进口直径;
3u s ——导叶进口圆周方向厚度,3
33sin αs s u =
式中,3s ——计算流面导叶进口的流面厚度; 3α——导叶进口安放角;
3u v ——导叶进口处圆周分速度,按2233R v R v u u =计算。

本设计,先选定3ϕ,然后确定出3α。

根据确定出的3α求出3ϕ,然后与选定值比较,进行校核。

叶片出口角4α一般取︒90~80,本设计中取︒=904α。

④ 确定叶栅稠密度t l
本设计参考类似设计取定叶栅稠密度。

根据对流道扩散角的校核,满足扩散角为
︒10~6的要求。

流道扩散角的校核公式:
l
t t tg 2sin 23
αε-=
ε——流道扩散角。

⑤ 导叶高度 导叶高度2
sin
4
3αα+=l e 。

本设计取先确定e ,定出l ,再校核扩散角。

至此,导叶设计完毕。

以上为水力设计部分,下面转入水泵的结构设计。

4.轴流泵的结构设计
(1)概述
本设计为小型潜水轴流泵,电机为湿式的,且采用通用轴,这样再工艺、装配上都非常简便。

泵为上泵式,主要零件由进水段,叶轮,导叶体,接头和轴套等,工艺主要是铸造。

本设计中,对叶轮、导叶体、和轴套的加工要求较高,其他零件要求一般。

本结构设计以提高水泵效率为目的。

(2)叶轮
作为泵的能量转换部件,泵的效率主要取决于叶轮的效率,故需要提高叶轮的制造要求,特别是过流部件。

叶轮与轴通过键来联结,为防止叶轮的轴向移动,叶轮选用螺母锁紧。

(3)进水段
进水段的作用是将水平稳的引向叶轮,以减少损失;另外,进水段还起到支撑泵整体重量的作用,因此在设计中主要考虑以下两个方面:
90的转弯光滑。

本设计采取的是
①为提高能量性能,尽量使水流速度平缓,故要求
将进水段设计为一段圆弧,并将支撑筋的头部和尾部进行修圆。

②由于进水段还起到支撑重量作用,并且还要承受水流的冲击,要对支撑筋进行加厚。

为保守起见,本设计取支撑筋偏厚,保证强度满足要求。

(4)导流壳
导叶的作用是消除环量,将动能转换成压能,以减少液体出口的水力损失。

根据实际经验,导叶对效率的影响微乎其微,故对其要求不是很严格。

为了使结构紧凑,在本设计中,把导叶和扩散断设计成一个整体,即导流壳。

(5)接头
接头仅仅使为了联结水管,能够满足所要求的出口直径即可,对其没什么特殊要求。

以上各部件的尺寸详见零件图。

其他辅助部件,诸如轴瓦,油封,进水网罩等等,在设计中根据具体情况决定,在此不赘述。

参考文献
1.查森编:《叶片泵原理及水力设计》,第1版,北京,机械工业出版社,1988
2.关醒凡编著:《现代泵技术手册》,北京,宇航出版社,1995
3.镇江农机学院翻印资料:轴流式水泵设计计算资料汇编
4.查森编著:《离心式和轴流式水泵》,中国工业出版社,1961
5.丁成伟主编:《离心泵和轴流泵》,第1版,北京,机械工业出版社,1981
6.北京有色冶金设计研究院主编,《机械设计手册》,第3版,北京,化学工业出版社,1993
7.王之利,王大康主编:《机械设计综合课程设计》,北京,机械工业出版社,2003
8.西北工业大学工程制图教研室编:《画法几何及机械制图》,西安,陕西科学技术出版社,1998
9.甘永立主编:《几何量公差与检测》,第7版,上海,上海科学技术出版社,2005
10.西北工业大学机械原理及机械零件教研室编著:《机械设计》,第7版,北京,高等教育出版社,2001
目录
设计任务书
设计参数------------------------------------------------――――(1)1.概述-------------------------------------------------――――(1)2.叶轮的设计-------------------------------------------――――(1)一.升力法设计叶轮----------------------------------------- (6)二.圆弧法设计叶轮-----------------------------------------(21)3.导叶的设计-------------------------------------------――――(26)4.轴流泵结构设计---------------------------------------――――(29)
后记----------------------------------------------------――――(30)
参考文献------------------------------------------------――――(31)
付:外文翻译
电火花加工
电火花加工法对加工超韧性的导电材料(如新的太空合金)特别有价值。

这些金属很难用常规方法加工,用常规的切削刀具不可能加工极其复杂的形状,电火花加工使之变得相对简单了。

在金属切削工业中,这种加工方法正不断寻找新的应用领域。

塑料工业已广泛使用这种方法,如在钢制模具上加工几乎是任何形状的模腔。

电火花加工法是一种受控制的金属切削技术,它使用电火花切除(侵蚀)工件上的多余金属,工件在切削后的形状与刀具(电极)相反。

切削刀具用导电材料(通常是碳)制造。

电极形状与所需型腔想匹配。

工件与电极都浸在不导电的液体里,这种液体通常是轻润滑油。

它应当是点的不良导体或绝缘体。

用伺服机构是电极和工件间的保持0.0005~0.001英寸(0.01~0.02mm)的间隙,以阻止他们相互接触。

频率为20000Hz左右的低电压大电流的直流电加到电极上,这些电脉冲引起火花,跳过电极与工件的见的不导电的液体间隙。

在火花冲击的局部区域,产生了大量的热量,金属融化了,从工件表面喷出融化金属的小粒子。

不断循环着的不导电的液体,将侵蚀下来的金属粒子带走,同时也有助于驱散火花产生的热量。

在最近几年,电火花加工的主要进步是降低了它加工后的表面粗糙度。

用低的金属切除率时,表面粗糙度可达2—4vin.(0.05—0.10vin)。

用高的金属切除率[如高达15in3/h(245.8cm3/h)]时,表面粗糙度为1000vin.(25vm)。

需要的表面粗糙度的类型,决定了能使用的安培数,电容,频率和电压值。

快速切除金属(粗切削)时,用大电流,低频率,高电容和最小的间隙电压。

缓慢切除金属(精切削)和需获得高的表面光洁度时,用小电流,高频率,低电容和最高的间隙电压。

与常规机加工方法相比,电火花加工有许多优点。

1 . 不论硬度高低,只要是导电材料都能对其进行切削。

对用常规方法极难切削的硬质合金和超韧性的太空合金,电火化加工特别有价值。

2 . 工件可在淬火状态下加工,因克服了由淬火引起的变形问题。

3 . 很容易将断在工件中的丝锥和钻头除。

4 . 由于刀具(电极)从未与工件接触过,故工件中不会产生应力。

5 . 加工出的零件无毛刺。

6 . 薄而脆的工件很容易加工,且无毛刺。

7 . 对许多类型的工件,一般不需第二次精加工。

8 .随着金属的切除,伺服机构使电极自动向工件进给。

9 .一个人可同时操作几台电火花加工机床。

10.能相对容易地从实心坯料上,加工出常规方法不可能加工出来的极复杂的形状。

11.能用较低价格加工出较好的模具。

12.可用冲头作电极,在阴模板上复制其形状,并留有必须的间隙。

Electrical discharge machining
Electrical discharge machining has proved especially valuable in the machining of super-tough, electrically conductive materials such as the new space-age alloys. These metals would have been difficult to machine by conventional methods, but EDM has made it relatively simple to machine intricate shapes that would be impossible to produce with conventional cutting tools. This machining process is continually finding further applications in the metal-cutting industry. It is being used extensively in the plastic industry to produce cavities of almost any shape in the steel molds. Electrical discharge machining is a controlled metal removal technique whereby an electric spark is used to cut (erode) the workpiece, which takes a shape opposite to that of the cutting tool or electrode. The cutting tool (electrode) is made from electrically conductive material, usually carbon. The electrode, made to the shape of the cavity required, and the workpiece are both submerged in a dielectric fluid, which is generally a light lubricating oil. This dielectric fluid should be a nonconductor (or poor
conductor) of electricity. A servo mechanism maintains a gap of about 0.0005 to 0.001 in. (0.01 to 0.02 mm) between the electrode and the work, preventing them from coming into contact with each other. A direct current of low voltage and high
amperage is delivered to the electrode at the rate of approximately 20 000 hertz (Hz). These electrical energy impulses become sparks which jump the dielectric fluid. Intense heat is created in the localized area of the park impact, the metal melts and a small particle of molten metal is expelled from the surface of the workpiece . The dielectric fluid, which is constantly being circulated, carries away the eroded particles of metal and also assists in dissipating the heat caused by the spark.
In the last few years, major advances have been made with regard to the surface finishes that can be produced. With the low metal removal rates, surface finishes of 2 to 4 um. (0.05 to 0.10um) are possible. With high metal removal rates finishes of 1 000uin. (25um) are produced.
The type of finish required determines the number of amperes which can be used, the capacitance, frequency, and the voltage setting. For fast metal removal (roughing cuts), high amperage, low frequency, high capacitance, and minimum gap voltage are required. For slow metal removal (finish cut) and good surface finish, low amperage, high frequency, low capacitance, and the highest gap voltage are required.
Electrical discharge machining has many advantages over conventional machining processes.
1. Any material that is electrically conductive can be cut, regardless of its hardness. It is especially valuable for cemented carbides and the new supertough space-age alloys that are extremely difficult to cut by conventional means.
2. Work can be machined in a hardened state, thereby overcoming the deformation caused by the hardening process.
3. Broken taps or drills can readily be removed from workpieces.
4. It does not create stresses in the work material since the tool (electrode) never comes in contact with the work.
5. The process is burr-free.
6. Thin, fragile sections can be easily machined without deforming.
7. Secondary finishing operations are generally eliminated for many types of work.
8. The process is automatic in that the servomechanism advances the electrode into the work as the metal is removed.
9. One person can operate several EDM machines at one time.
10. Intricate shapes, impossible to produce by conventional means, are cut out of a solid with relative ease.
11. Better dies and molds can be produced at lower costs.
12. A die punch can be used as the electrode to reproduce its shape in the matching die plate, complete with the necessary clearance.
文本仅供参考,感谢下载!
文本仅供参考,感谢下载!。

相关文档
最新文档