烟气脱硫设计计算

合集下载

脱硫计算公式

脱硫计算公式

物料平衡计算1)吸收塔出口烟气量G2G2=(G1×(1-mw1)×(P2/(P2-Pw2))×(1-mw2)+G3×(1-0.21/K))×(P2/(P2-Pw2))G1:吸收塔入口烟气流量mw1:入口烟气含湿率P2:烟气压力Pw2:饱和烟气的水蒸气分压说明:Pw2为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。

(计算步骤见热平衡计算)2)氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50-60%。

采用氧枪式氧化分布技术,在浆池中氧化空气利用率ηo2=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1×q1-G2×q2)×(1-0.6)/2/22.41所需空气流量QreqQreq=S×22.4/(0.21×0.3)G3=Qreq×KG3:实际空气供应量K:根据浆液溶解盐的多少根据经验来确定,一般在2.0-3左右。

3)石灰石消耗量计算W1=100×qs×ηsW1:石灰石消耗量qs::入口SO2流量ηs:脱硫效率4)吸收塔排出的石膏浆液量计算W2=172××qs×ηs/SsW2:石膏浆液量Ss:石膏浆液固含量5)脱水石膏产量的计算W3=172××qs×ηs/SgW3:石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6)滤液水量的计算W4=W3-W2W3:滤液水量7)工艺水消耗量的计算W5=18×(G4-G1-G3×(1-0.21/K))+W3×(1-Sg)+36×qs×ηs +WWT蒸发水量石膏表面水石膏结晶水排放废水一、锅炉每小时产生的SO2量:锅炉产生的SO2量(mg/Nm3)= 耗煤量(t/h)×含硫量(%)×2×燃烧率×109 ? ?? ?? ?? ?100×干烟气体积(N m3/h)我厂锅炉设计的干烟气体积为277920Nm3/h,如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,那么每台锅炉每小时产生的SO2量则为2393mg/Nm3。

烟气脱硫简单设计计算

烟气脱硫简单设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量 285000m3/h引风机量 1台 .压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段.冷却至适合的温度后进入吸收塔.往上与逆向流下的吸收浆液反应.氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器.用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上.会导致除雾器堵塞、系统压损增大.需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底.吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气.使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整.而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时.氢氧化镁浆液通过输送泵自动补充到吸收塔底.在塔底搅拌器的作用下使浆液混合均匀.至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生.或直接使用氢氧化镁.因为氧化镁粉不纯.而且氢氧化镁溶解度很低.就使得熟化后的浆液非常易于沉积.因此搅拌机与氢氧化镁溶液输送泵必须连续运转.避免管线与吸收塔底部产生沉淀。

脱硫系统常用计算公式

脱硫系统常用计算公式

1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。

常用折算公式如下:烟气量(dry)=烟气量(wet) >(1-烟气含水量%)实际态烟气量=标态烟气量>气压修正系数x温度修正系数烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%)S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量)S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857物料平衡计算1 )吸收塔出口烟气量G2G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2))G1: 吸收塔入口烟气流量mw1: 入口烟气含湿率P2:烟气压力Pw2 :饱和烟气的水蒸气分压说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。

(计算步骤见热平衡计算)2) 氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。

采用氧枪式氧化分布技术,在浆池中氧化空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41所需空气流量QreqQreq=S x22.4/(0.21 0.x3)G3= Qreq >KG3:实际空气供应量K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。

3) 石灰石消耗量计算W1=100x qs xnsW1: 石灰石消耗量qs: :入口S02 流量n S兑硫效率4) 吸收塔排出的石膏浆液量计算W2=172xx qs xn s/SsW2:石膏浆液量Ss石膏浆液固含量5) 脱水石膏产量的计算W3=172xx qs xn s/SgW3: 石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6) 滤液水量的计算W4=W3-W2W3: 滤液水量7) 工艺水消耗量的计算W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT蒸发水量石膏表面水石膏结晶水排放废水。

烟气脱硫水平衡计算

烟气脱硫水平衡计算

水平衡计算一、根据阿伏伽德罗定律P1/P2=N1/N2计算1、在烟气出口,假设温度为50度,查表可以求出50度水的饱和蒸汽压P水=12.3KPa。

由于烟气出口混合气体与水蒸汽的体积、温度相同,所以P水/P干烟气=n水/n干烟气,P干烟气约为大气压+引风机出口压-脱硫系统压降-P水,一般选取105~109Kpa- P水=92.7~96.7。

2、n干烟气的计算平均烟气成分按氮气80.34%,二氧化碳13.27%,水蒸气4.19%,氧气6%,二氧化硫0.39%。

脱硫塔进口烟气量已知,例如320000标立方,进口烟温135度,则n干烟气=320000*95.42%/22.4*1000=13631428 mol。

3、出口烟气中水含量的计算n水=12.3/94.7*13631428=1770502.2 molm水=18*n水/1000/1000 t=31.86t4、原烟气中的水含量n原水=320000/22.4*1000*4.19%=598571 molm原水=18* n原水/1000/1000 t=10.77 t5、烟气从系统中带出的水m =31.86-10.77=21.09t二、根据烟气放热量=水吸收热量计算1、查《热能工程设计手册》P30页,得脱硫塔进口烟气温度为135度时的各组分的焓值。

氮气:175.9;二氧化碳:63.8;水蒸气2746.5;氧气:179.2二氧化硫250,单位KJ/Kg。

脱硫塔出口温度为50度时各组分的焓值,氮气:65;二氧化碳:8.2;水蒸汽:2592.2;氧气:65.88。

2、150度烟气的平均mol焓值:H1=HN2MN2/1000*XN2+HCO2MCO2/1000*XCO2+HH2OMH2O/1000*XH2O+HO2MO2/1000*XO2+HSO2MSO2/1000*=6.807KJ/mol50度烟气的平均mol焓值:H2=同上=3.614KJ/mol3、烟气放热量Q=(6.807-3.614)*320000/22.4*1000=45242857KJ4、查表的50度水的汽化潜热为2382.9KJ/Kg水从20度升到50度吸收热量125KJ/Kg则蒸发的水量为Q/(2382.9+125)=18.04 t 总需水量39.13t3#炉1、在烟气出口,假设温度为50度,查表可以求出50度水的饱和蒸汽压P水=12.3KPa。

《烟气处理中的脱硫系统设计与计算》4500字

《烟气处理中的脱硫系统设计与计算》4500字

烟气处理中的脱硫系统设计与计算目录烟气处理中的脱硫系统设计与计算 ................................................................................................. 1 1.1脱硫工艺选择 (1)①工艺流程复杂程度和成熟度 ..................................................................................................... 1 ②吸收剂获得难易及工艺技术指标 ............................................................................................. 2 ③脱硫副产物的利用情况 ............................................................................................................. 2 ④一次性投资和脱硫运行成本 ..................................................................................................... 2 ③吸收剂中的碳酸钙与溶液中的水和氢离子反应解离出钙离子。

......................................... 2 ④吸收塔内溶液中SO2-4、Ca2+和水反应生成石膏。

.............................................................. 2 1.2脱硫工艺流程介绍 ...................................................................................................................... 2 1.3石灰石(石灰)/石膏湿法脱硫主要工艺设计与选型 (3)1.3.1吸收塔设备及选型 ................................................................................................................ 3 1.3.2脱硫系统工艺设计 ................................................................................................................ 4 1.4 吸收塔附属设备的选型和设计 .. (8)1.4.1 循环系统的设计 .................................................................................................................. 8 1.4.2 氧化风机的设计及选型 ....................................................................................................... 9 1.4.3 氧化吸收池搅拌机的选型 ................................................................................................... 9 1.5 脱硫设计参数汇总 (9)1.1脱硫工艺选择表5-1 目前国内外应用较成熟的脱硫工艺烟气脱硫技术 电子束法 石灰石/石膏法新氨法 新氨法 工艺简易度简单 复杂 复杂 复杂 工艺技术指标脱硫率可达90%以上,脱硫剂利用率30%脱硫率95%,钙硫比1:1,脱硫剂利用率90%脱硫率85%~90%,脱硫剂利用率90%脱硫率85%~90%,脱硫剂利用率90%吸收剂获得难易一般 容易 一般 一般 脱硫副产物副产物可用作氮源或复合肥料,无二次污染副产物石膏能被综合再利用,不会形成二次污染副产物可直接用于工业硫酸生产 副产物可直接用于工业硫酸生产一次性投资 中等 较高 少 少 脱硫运行成本高低高高①工艺流程复杂程度和成熟度石灰石/石膏法和新氨法的工艺流程较为复杂,设备数量和种类多,而喷雾干燥法工艺相比较则比较简单,电子束法是四种工艺中流程和设备最简单的工艺。

脱硫各项计算公式

脱硫各项计算公式

脱硫各项计算公式脱硫是指通过化学或物理方法去除燃煤、燃油等燃料中的硫化物,以减少大气中的二氧化硫排放,保护环境。

在脱硫工程中,需要进行各项计算来确定设备的尺寸、操作参数等。

下面将介绍脱硫各项计算公式及其应用。

1. 脱硫效率计算公式。

脱硫效率是衡量脱硫设备去除硫化物的能力的重要指标。

脱硫效率的计算公式如下:脱硫效率 = (进口SO2浓度出口SO2浓度) / 进口SO2浓度× 100%。

其中,进口SO2浓度和出口SO2浓度分别表示进入脱硫设备的烟气中的二氧化硫浓度和离开脱硫设备后的二氧化硫浓度。

通过这个公式可以计算出脱硫设备的去除效果,为后续工艺设计和操作提供重要参考。

2. 石灰用量计算公式。

在石灰-石膏法脱硫工艺中,需要计算石灰的用量来保证脱硫效果。

石灰用量的计算公式如下:石灰用量 = (SO2排放浓度×烟气流量× 3600) / (100 × CaO含量×石灰利用系数)。

其中,SO2排放浓度表示烟气中的二氧化硫浓度,烟气流量表示单位时间内烟气的流量,CaO含量表示石灰中氧化钙的含量,石灰利用系数表示石灰的利用率。

通过这个公式可以计算出石灰的用量,为脱硫设备的运行提供指导。

3. 石膏产量计算公式。

在石灰-石膏法脱硫工艺中,石膏是脱硫产生的主要副产品,需要计算石膏的产量来合理处理。

石膏产量的计算公式如下:石膏产量 = SO2排放浓度×烟气流量× 3600 / 100。

通过这个公式可以计算出单位时间内产生的石膏量,为后续的石膏处理提供依据。

4. 脱硫塔液气比计算公式。

在湿法脱硫工艺中,需要计算脱硫塔的液气比来保证脱硫效果。

脱硫塔液气比的计算公式如下:液气比 = (进口SO2浓度×烟气流量) / (脱硫液循环速率× 3600)。

其中,进口SO2浓度和烟气流量表示进入脱硫塔的烟气中的二氧化硫浓度和烟气流量,脱硫液循环速率表示单位时间内脱硫液的循环速率。

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5%工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2+SO2→MgSO3+H2OMgSO3+SO2+H2O→Mg(HSO3)2Mg(HSO3)2+Mg(OH)2→2MgSO3+2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3+1/2O2→MgSO4Mg(HSO3)2+1/2O2→MgSO4+H2SO3H2SO3+Mg(OH)2→MgSO3+2H2OMgSO3+1/2O2→MgSO4是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20%氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20%氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

烟气脱硫设计有关计算

烟气脱硫设计有关计算
之一,它在相当程度上决定着水平衡。热平 衡中的蒸发水是系统的主要水耗。
Ò由于烟气中含有腐蚀性的酸性气体和水蒸
气的存在,烟气温度的高低,对于系统烟道 的防腐有着直接的影响,它决定了防腐材料 及措施的选择。而烟气温度的高低与吸收塔 的热平衡有很大的关系。
系统热平衡示意图
净 烟 气热 (处理后的烟气) 散热
5、热平衡
计算公式如下:公式4
不含蒸发水的烟气热量 氧化空气热量 工艺水热量
Q y1C p1T 1−Q y 2 C p 2T2 + Q yk (C k 1T 3−C k 2T2 ) + G w (C w1T w1−C w 2T2 )
Θ + ΔH m = M zf ( h 2 − h1)+ G石膏 C 石膏T2+ YC wT2
CaCO 3
64
SO 2
CaCO 3
其中:钙硫比Ca/S<=1.05 CaCO3量为: G石灰石×ACaCO3 kg/h 杂质量为: G石灰石×(1-ACaCO3)kg/h 如使用工业水制备30%含固量浆液,则需水量:G石灰石/0.3×0.7 kg/h 如使用v%含固量的脱硫反应塔塔底浆液旋流分离液制备30%含固量 浆液,设v%含固量旋流分离液中的固体物量为S kg/h,以水平衡可列 下式: S/v%×(1-v%)=(S+ G石灰石)/30%×(1-30%) 计算得到S kg/h,则所需的水量为: G水=S/v%×(1-v%)kg/h 则需v%的塔底浆液旋流分离液为: G制浆水=S+G水kg/h 30%浆液量为:G浆液=G水/(1-30%)kg/h
(1 − 25.5%) X (t ) (1 − 25.5%) X 3%( s )
Y (t ) 1.3%Y ( s )

脱硫塔计算公式

脱硫塔计算公式

脱硫塔计算公式
一、锅炉每小时产生的SO2量:
锅炉产生的SO2量(mg/Nm3)= 耗煤量(t/h)×含硫量(%)×2×燃烧率×109
100×干烟气体积(Nm3/h)
我厂锅炉设计的干烟气体积为277920Nm3/h,如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,那么每台锅炉每小时产生的SO2量则为2393mg/Nm3。

二、每台吸收塔每小时脱除的SO2量:
脱除的SO2量(t)=耗煤量(t/h)×含硫量(%)×2×燃烧率×脱硫率
如锅炉每小时耗煤量为35吨,煤的含硫量为1%,锅炉的燃烧率为95%,设计脱硫率为90%,那么一台塔脱除的SO2量则为0.6吨。

三、脱硫系统每小时消耗的电石渣量:
脱硫系统消耗的电石渣(t/塔)= 脱除的SO2量(t)×56 64×0.65
如锅炉每小时耗煤量为35吨,煤的含硫量为1%,那么一台吸收塔运行,每小时消耗的电石渣为0.8吨。

可以用下式对电石渣耗量进行估算:
脱硫系统消耗的电石渣量(t/h)=80×锅炉(脱硫塔)运行台数×含硫量(%)
四、脱硫系统每小时补充的钠碱量:
脱硫系统补充的钠碱量(kg/塔)= 脱除的SO2量(t)×1000×0.05×40
64×0.3
如锅炉每小时耗煤量为35吨,煤的含硫量为1%,那么一台吸收塔运行,每小时补充的钠碱为62. 34kg。

可以用下式对钠碱量的补充量进行估算:
脱硫系统补充的钠碱时(kg/h)=6234×锅炉(脱硫塔)运行台数×含硫量(%)。

烟气脱硫设计计算范例

烟气脱硫设计计算范例

0.0392(6 k gH2O / k g干烟气)
第10页/共32页
2.2. 露点温度对应曲线
600
湿 度 ——露 点 对 应 曲 线
500
y = 4.2558e0.0608x
400
R2 = 0.9988
300
200
100
0
0
20
40
60
80
100
第11页/共32页
2.3.出口烟温与湿含量的确定
热水, 70℃
20323.78(kg/hr)
氧化镁,85%纯 3251.8(kg/hr)
氧化镁熟化罐
浆液,20%
23575.58(kg/hr)
第17页/共32页
单台机组浆液量
11787.79(kg/hr)
4. 预处理塔排出废水量
预处理塔液气比取1.34,实态烟气量为(m3/hr), 则循环水量为1316.57(m3/hr),预处理塔有效容积为45.33 (m3) 排水量按两个标准计算,即尘含量≤3%和氯离子Cl-浓度15000ppm。
第23页/共32页
7. 干燥机
进口物料为: 9032.35(kg/hr) 设计干料出口含固量90.00%,含水量10.00% 干燥热风温度300℃ 干燥热风焓值575.57(kJ/kg) 干燥出风温度 80℃ 干燥出风焓值350.48 (kJ/kg) 待干燥物料温度50℃ 干燥后物料温度75℃ 待干燥物料中水焓值(50℃)209.34(kJ/kg) 干燥出风中的水焓值(80℃)334.94(kJ/kg) 水蒸发潜热(80℃) 2307.80 (kJ/kg) 蒸发水量:2007.19(kg/hr) 物料比热:0.3
第15页/共32页
设计二氧化硫去除率为95%, 则被去除的二氧化硫摩尔数为: MSO2=31144.16×0.95=29586.95 (mol/hr)

烟气脱硫简单设计计算

烟气脱硫简单设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

脱硫设计计算方法

脱硫设计计算方法

清华同方股份有限公司
工艺数据表
能源环境公司
专业
工艺
山西古交电厂烟气脱硫项目
设备位号 T201
T301
数 量 2套
阶段
初设
版 次 A / 2001.09.30
图 号 M0102-PR01.03.30-0
张 数 共3 张第 1 张
名称型号 脱硫塔
制造厂
运行方式
连续运行
物料名称
石膏浆液
烟气
温度
操 密度 作 参 粘度 数 pH
氧化曝气装置
• 循环氧化槽的容量 • 氧化空气的停留时间 • 氧化空气的过量系数 • 氧化空气的压力、温度 • 循环浆液的pH值 • CaSO3的结晶与CaSO4结晶 • 氧化曝气装置的防堵塞 • 氧化曝气装置的防腐蚀
浆液喷射装置
• 浆液流量的调节 • 喷嘴的特殊结构 • 浆液管道的防腐蚀 • 浆液管道的防堵、防垢
烟气出口 循环浆液入口 除雾器冲洗水入口 人孔
h1-3 DN100 PN1.6 突面 HG20593-97 浆液回流口
j1-2 DN100 PN1.6 突面 HG20593-97 出料口
k1-n DN100 PN1.6 突面 HG20593-97 氧化风进口
m1-3 DN80 PN1.6 突面 HG20593-97 仪表接口
0,803[kg / Nm砞
m water 77.800 [Nm³/ h] 0,803[kg / Nm砞 62.500 [kg / h]
燃煤烟气成分
• 烟气密度
assumed data
• Density flue gas → 1,35 [kg/Nm³] • 质量流量
m flue gas,dry Vdry,inlet flue gas,dry

干货收藏烟气脱硫常用计算公式汇总!

干货收藏烟气脱硫常用计算公式汇总!

干货收藏烟气脱硫常用计算公式汇总!一、钠碱法脱硫工艺:采用氢氧化钠(NaOH,又名烧碱,片碱)或碳酸钠(Na2CO3又名纯碱,块碱)。

1、NaOH 反应方程式:2NaOH+SO2=Na2SO3(亚硫酸钠)+H2O (PH 值大于 9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5<PH<9)当 PH 值在 5-9 时,亚硫酸钠和 SO2反应生成亚硫酸氢钠。

2、Na2CO3反应方程式:Na2CO3+SO2=Na2SO3(亚硫酸钠)+CO2↑(PH 值大于 9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5<PH<9)当 PH 值在 5-9 时,亚硫酸钠和 SO2反应生成亚硫酸氢钠。

二、双碱法脱硫工艺:1、脱硫过程:Na2CO3+SO2=Na2SO3+CO2↑2NaOH+SO2=Na2SO3+H2O用碳酸钠启动用氢氧化钠启动种碱和SO2 反应都生成亚硫酸钠Na2SO3+SO2 +H2O=2NaHSO3 (5<PH<9)当 PH 值在 5-9 时,亚硫酸钠和SO2 反应生成亚硫酸氢钠。

2、再生过程:CaO(生石灰)+H2O=Ca(OH)2(氢氧化钙)Ca(OH)2+2NaHSO3(亚硫酸氢钠)=Na2SO3 CaSO3↓ (亚硫酸钙)+2H2OCa(OH)2+Na2SO3 =2NaOH+CaSO3↓氢氧化钙和亚硫酸钠反应生成氢氧化钠。

三、煤初始排放浓度:按耗煤量按500kg/h,煤含硫量按1%,煤灰份按20%,锅炉出口烟气温度按 150℃。

1、烟气量:按 1kg 煤产生 16~20m3/h 烟气量,=500×20= 10000m3/h2、SO2初始排放量:=耗煤量t/h×煤含硫量%×1600(系数)=0.5×0.01×1600= 8kg/h也可以计算:=2×含硫量×耗煤量×硫转化率 80%=2×0.01×500×0.8=8kg/h3、计算标态烟气量:=工况烟气量×【273÷(273+150 烟气温度)】=10000×0.645=6450Nm3/h已知标况烟气量和烟气温度,计算其工况烟气量:=标况烟气量×【(273+150 烟气温度)÷273】=6450×1.55=10000 m3/h4、SO2初始排放浓度:=SO2初始排放量×106÷标态烟气量=8×106÷6450=8000000÷6450=1240mg/Nm35、粉尘初始排放量:=耗煤量t/h×煤灰份%×膛系数 20%=500×0.2×0.2=20kg/h6、粉尘初始排放浓度:=粉尘初始排放量×106÷标态烟气量=20×106÷6450=20000000÷6450=3100mg/Nm3四、运行成本计算:需先计算出 SO2初始排放量 kg/h,然后按化学方程式计算。

烟气脱硫计算公式汇总(烟气量、脱硫量、空气量、产物量等)

烟气脱硫计算公式汇总(烟气量、脱硫量、空气量、产物量等)
9)
干烟气中SO2含量
ngSO2'
%
0.01866*0.375Sar/Vgy'
10)
湿烟气中N2含量
nshN2'
%
(0.79alfa'V0+0.008Nar)/Vy'
11)
干烟气中N2含量
ngN2'
%
(0.79alfa'V0+0.008Nar)/Vgy'
6
总燃烧产物实际湿体积
Vtshy
Nm3/h
Vy'*Bj*1000
Nm3/kg
0.79V0+0.008Nar
2)
二氧化物
VRO20
Nm3/kg
0.01866(Car+0.375Sar)
3)
水蒸汽
VH2O0
Nm3/kg
0.111Har+0.0124Mar+0.0161V0
3
燃烧产物实际体积
Vy'
Nm3/kg
Vy0+0.0161(alfa'-1)V0+(alfa'-1)V0
Cso2
mg/Nm3
M/Vtshy(标态,干基,6%O2)
ppm
Cso2*22.41/64
3
要求脱硫量
Ms
kg/h
M*η*n/100
kmol/h
Ms/64
4、吸收剂消耗量计算
1
石灰石(CaCO3)理论消耗量
M3
kmol/h
Ms/64*(Ca/S)
kg/h
M3*M1
2
石灰石(CaCO3)实际消耗量
M3'

烟气脱硫水平衡计算

烟气脱硫水平衡计算

水平衡计算一、根据阿伏伽德罗定律P1/P2=N1/N2计算1、在烟气出口,假设温度为50度,查表可以求出50度水的饱和蒸汽压P水=12.3KPa。

由于烟气出口混合气体与水蒸汽的体积、温度相同,所以P水/P干烟气=n水/n干烟气,P干烟气约为大气压+引风机出口压-脱硫系统压降-P水,一般选取105~109Kpa- P水=92.7~96.7。

2、n干烟气的计算平均烟气成分按氮气80.34%,二氧化碳13.27%,水蒸气4.19%,氧气6%,二氧化硫0.39%。

脱硫塔进口烟气量已知,例如320000标立方,进口烟温135度,则n干烟气=320000*95.42%/22.4*1000=13631428 mol。

3、出口烟气中水含量的计算n水=12.3/94.7*13631428=1770502.2 molm水=18*n水/1000/1000 t=31.86t4、原烟气中的水含量n原水=320000/22.4*1000*4.19%=598571 molm原水=18* n原水/1000/1000 t=10.77 t5、烟气从系统中带出的水m =31.86-10.77=21.09t二、根据烟气放热量=水吸收热量计算1、查《热能工程设计手册》P30页,得脱硫塔进口烟气温度为135度时的各组分的焓值。

氮气:175.9;二氧化碳:63.8;水蒸气2746.5;氧气:179.2二氧化硫250,单位KJ/Kg。

脱硫塔出口温度为50度时各组分的焓值,氮气:65;二氧化碳:8.2;水蒸汽:2592.2;氧气:65.88。

2、150度烟气的平均mol焓值:H1=HN2MN2/1000*XN2+HCO2MCO2/1000*XCO2+HH2OMH2O/1000*XH2O+HO2MO2/1000*XO2+HSO2MSO2/1000*=6.807KJ/mol50度烟气的平均mol焓值:H2=同上=3.614KJ/mol3、烟气放热量Q=(6.807-3.614)*320000/22.4*1000=45242857KJ4、查表的50度水的汽化潜热为2382.9KJ/Kg水从20度升到50度吸收热量125KJ/Kg则蒸发的水量为Q/(2382.9+125)=18.04 t 总需水量39.13t3#炉1、在烟气出口,假设温度为50度,查表可以求出50度水的饱和蒸汽压P水=12.3KPa。

脱硫计算公式比较全

脱硫计算公式比较全

脱硫计算公式比较全湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。

温度为70℃。

2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。

取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。

其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。

氧化空气进口温度为20℃,进塔温度为80℃。

3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。

由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。

(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

镁法脱硫优点技术成熟氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。

原料来源充足在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。

其资源主要分布在辽宁、、、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。

因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。

脱硫效率高在化学反应活性方面氧化镁要远远大于钙基脱硫剂,并且由于氧化镁的分子量较碳酸钙和氧化钙都比较小。

因此其它条件相同的情况下氧化镁的脱硫效率要高于钙法的脱硫效率。

一般情况下氧化镁的脱硫效率可达到95-98%以上,而石灰石/石膏法的脱硫效率仅达到90-95%左右。

投资费用少由于氧化镁作为脱硫本身有其独特的优越性,因此在吸收塔的结构设计、循环浆液量的大小、系统的整体规模、设备的功率都可以相应较小,这样一来,整个脱硫系统的投资费用可以降低20%以上。

运行费用低决定脱硫系统运行费用的主要因素是脱硫剂的消耗费用和水电汽的消耗费用。

氧化镁的价格比氧化钙的价格高一些,但是脱除同样的SO2氧化镁的用量是碳酸钙的40%;水电汽等动力消耗方面,液气比是一个十分重要的因素,它直接关系到整个系统的脱硫效率以及系统的运行费用。

对石灰石石膏系统而言,液气比一般都在15L/m3以上,而氧化镁在7 L/m3以下,这样氧化镁法脱硫工艺就能节省很大一部分费用。

同时氧化镁法副产物的出售又能抵消很大一部分费用。

运行可靠镁法脱硫相对于钙法的最大优势是系统不会发生设备结垢堵塞问题,能保证整个脱硫系统能够安全有效的运行,同时镁法PH值控制在6.0-6.5之间,在这种条件下设备腐蚀问题也得到了一定程度的解决。

总的来说,镁法脱硫在实际工程中的安全性能拥有非常有力的保证。

第二章设计计算1、二氧化硫排放量的计算方法《通知》规定二氧化硫的排放量可以按实际监测或物料衡算法计算,由于火力发电厂烟气监测装置的应用并没有普及,因此大多采用物料平衡方法进行计算:GSO2=2BFS(1-NSO2)(1)式中GSO2——二氧化硫排放量,kg;B ——耗煤量,kg ;F ——煤中硫转化成二氧化硫的转化率(火力发电厂锅炉取0.90;工业锅炉、炉窑取0.85;营业性炉灶取0.80);S ——煤中的全硫份含量,%;NSO2——脱硫效率,%,若未采用脱硫装置,NSO2=0。

由此可见,此计算方法涉及燃煤的重量(B )、含硫量(S ,全硫,下同)和锅炉的型式(F ,电站锅炉视为常数)及其脱硫效率(含湿式除尘器的脱硫率,NSO2)等量值的计算。

1t/h 锅炉的功率为0.7MW ,1W 为1焦耳/秒,一小时为3600秒,所以1t/h 一小时能产生2520000000焦耳能量,合600000大卡,1公斤动力煤约5000大卡,这样可以算出,1t/h 一小时需耗煤120kg ,再除以锅炉效率0.8,实际每小时耗煤150kg ,这是锅炉满负荷时的耗煤量。

(1T 煤=10050m3 烟气)1、1 条件:燃煤含硫量1.5% 130t/h 流化床锅炉 燃煤量1T/h 需要150kg 煤GSO2=2BFS (1-NSO2)=2*150*130*0.9*1.5%=526.5 Kg/h工况下满负荷烟气量285000m 3/h ,设工况温度为130则标况下烟气量为QQ=130273273285000+⨯=193065Nm 3/h=53.7Nm 3/s 脱硫塔进口二氧化硫的含量C1C1=193065526.5=2727mg/Nm 3需要的脱硫效率为:η=100%2727200-2727⨯=92.7% 2、 烟道的尺寸2、1 主烟道尺寸工况下烟气流量为285000m 3/h ;取烟气在烟道里的流速为15m/s ,设烟道高宽比为1:1.2;则烟道的尺寸为:高为2.1m ,宽为2.5m ;校核实际烟速为: (当多条烟道交汇一起时,所有烟道的高度都应相同,)v 实==⨯⨯36002.52.128500015.08m/s 2、2 旁路烟道尺寸旁路烟道主要用于脱硫塔在检修或出现故障需要紧急停止运行,防止对塔体及内部设备造成损害而设立的烟气旁路输送烟道。

烟气的流速取15m/s ,烟道与主烟道相连接,所以其高度应与已有烟道相同,便于施工,取高为2.1m ;烟气量为全部工况下最大烟气量,即285000m 3/h ,则烟道的宽度为2.5m 。

3、脱硫塔的设计计算3、1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计3、1、1喷淋塔的直径设计根据锅炉排放的烟气,计算运行工况下的塔内烟气体积流量,此时要考虑以下几种引起烟气体体积流量变化的情况:塔内操作温度低于进口烟气温度,烟气容积变小;浆液在塔内蒸发水分以及塔下部送入空气的剩余氮气使得烟气体积流量增大。

喷淋塔内径在烟气流速和平均实际总烟气量确定的情况下才能算出来,而以往的计算都只有考虑烟道气进入脱硫塔的流量,为了更加准确,本方案将浆液蒸发水分V 2 (m 3/s)和氧化风机鼓入空气氧化后剩余空气流量V 3 (m 3/s) 均计算在内,以上均表示换算成标准准状态时候的流量。

(1) 吸收塔进口烟气量V a (m 3/s)计算该数值已经由设计任务书中给出,烟气进口量为:53.7(m 3/s)然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量,而在喷淋塔内延期温度会随着停留时间的增大而降低,根据PVT 气体状态方程,要算出瞬间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。

(2) 蒸发水分流量V 2 (m 3/s)的计算烟气在喷淋塔内被浆液直接淋洗,温度降低,吸收液蒸发,烟气流速迅速达到饱和状态,烟气水分由6%增至13%,则增加水分的体积流量 V 2 (m 3/s)为:V 2=0.07×53.7(m 3/s)=3.76(m 3/s)(标准状态下)(3) 氧化空气剩余氮气量V 3 (m 3/s)在喷淋塔内部浆液池中鼓入空气,使得亚硫酸镁氧化成硫酸钙,这部分空气对于喷淋塔内气体流速的影响是不能够忽略的,因此应该将这部分空气计算在内。

假设空气通过氧化风机进入喷淋塔后,当中的氧气完全用于氧化亚硫酸镁,即最终这部分空气仅仅剩下氮气、惰性气体组分和水汽。

理论上氧化1摩尔亚硫酸钙需要0.5摩尔的氧气。

(假设空气中每千克含有0.23千克的氧气 )又V SO2=0.05 m 3/s 质量流率G SO2=s g /644.2210000.05⨯⨯=0.14286kg/s ≈0.14kg/s 根据物料守蘅,总共需要的氧气质量流量G O2=0.14×0.5kg/s=0.07Kg/s该质量流量的氧气总共需要的空气流量为空气G = G O2/0.23=0.31 Kg/s标准状态下的空气密度为1.293kg/ m 3 [2]故V 空气=0.31/1.293(m 3/s)=0.24 (m 3/s)V 3=(1-0.23) ×V 空气=0.77×0.24m 3/s=0.19 m 3/s综上所述,喷淋塔内实际运行条件下塔内气体流量V g =V a +V 2+V 3=53.7+3.76+0.19=57.83 (m 3/s) 标况(4) 喷淋塔直径的计算假设喷淋塔截面为圆形,将上述的因素考虑进去以后,可以得到实际运行状态下烟气体积流量V g ,从而选取烟速u ,则塔径计算公式为:D i = 2 ×u V gπ其中: V g 为实际运行状态下烟气体积流量,57.64 m 3/su 为烟气速度,3.5m/s (3-5m/s )因此喷淋塔的内径为 D i = 2 ×u V g π=2×5.314.357.83⨯=4.589m ≈4.6m 3、1、2 喷淋塔的高度设计喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

3、1 、2、1喷淋塔吸收区高度设计为了更加准确,减少计算的误差,需要将实际的喷淋塔运行状态下的烟气流量考虑在内。

而这部分的计算需要用到液气比(L/G)、烟气速度u(m/s)。

本设计中的液气比L/G是指吸收剂氢氧化镁液浆循环量与烟气流量之比值(L/M3)。

相关文档
最新文档