2014年人教A版数学必修二导学案:1.3.2空间几何体的体积(1)

合集下载

人教版A版高中数学必修2课后习题解答

人教版A版高中数学必修2课后习题解答

第一章空间几何体1.1 空间几何体的结构练习(第7 页)1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;(4)由一个六棱柱挖去一个圆柱体而得到的组合体。

2.(1)五棱柱;(2)圆锥3.略习题1.1A组1.(1) C;(2)C;(3)D;(4) C2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。

(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面平面截得的几何体。

3.(1)由圆锥和圆台组合而成的简单组合体;(2)由四棱柱和四棱锥组合而成简单组合体。

4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。

5.制作过程略。

制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。

B组1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。

2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。

1.2 空间几何体的三视图和直观图练习(第15 页)1.略2.(1)四棱柱(图略);(2)圆锥与半球组成的简单组合体(图略);(3)四棱柱与球组成的简单组合体(图略);(4)两台圆台组合而成的简单组合体(图略)。

3.(1)五棱柱(三视图略);(2)四个圆柱组成的简单组合体(三视图略);4.三棱柱练习(第19 页)1.略。

2.(1)√(2)×(3)×(4)√3.A4.略5.略习题1.2A组1.略2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体3~5.略B组1~2.略3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。

1.3 空间几何体的表面积与体积。

高中数学人教A版必修2《1.3.2球的体积和表面积》教学案1

高中数学人教A版必修2《1.3.2球的体积和表面积》教学案1

必修二《1.3.2球的体积和表面积》教学案一、教材分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.二、教学目标1.知识与技能(1)了解几何体体积的含义,以及柱体、锥体与台体的体积公式.(不要求记忆公式)(2)熟悉台体与柱体和锥体之间体积的转换关系.(3)培养学生空间想象能力和思维能力.2.过程与方法(1)让学生通过对照比较,理顺柱体、锥体、台体之间的体积关系.(2)通过相关几何体的联系,寻找已知条件的相互转化,解决一些特殊几何体体积的计算.3.情感、态度与价值观通过柱体、锥体、台体体积公式之间的关系培养学生探索意识.三、重点难点教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.四、课时安排约1课时五、教学设计(一)导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.(二)推进新课、新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S =4πR 2,V =334R π.注意:球的体积和表面积公式的证明以后证明.(三)应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R .[来源:学+科+网] 则有V 球=334R π,V 圆柱=πR 2·2R =2πR 3,所以V 球=圆柱V 32. (2)因为S 球=4πR 2,S 圆柱侧=2πR ·2R =4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a ,则轴截面如图2(2),所以AA ′=14,AC =a 2,又∵4πR 2=324π,∴R =9.∴AC =28''22=-CC AC .∴a =8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g ,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g /cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm ,则钢球质量为 7.9·[3334)25(34x ππ-•]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x ≈2.24,∴直径2x ≈4.5.答:空心钢球的内径约为4.5 cm .例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2), 半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力. 变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决. 解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r =R R330tan =︒,圆锥母线l =2r =R 32,圆锥高为h =r 3=3R , ∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-, 球取出后,水形成一个圆台,下底面半径r =R 3,设上底面半径为r ′, 则高h ′=(r -r ′)tan 60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r ′2+rr ′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -, 解得r ′=6331634R R =, ∴h ′=(3123-)R .答:容器中水的高度为(3123-)R .思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形. 分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R =233,则该球的表面积为S =4πR 2=27π.答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键.变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π 分析:由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R =642221222=++,所以球的表面积为S =4πR 2=24π.答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V =3242a π. 答案:3242a π3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π. 答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x =0.6( cm ). 答:杯里的水下降了0.6 cm .点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键.变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g /cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g /cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g ). ∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g )>m 钢.∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g )>m 水. ∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22cm 的正方形,所以注水高为(1+22) cm .故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π(四)知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .1倍B .2倍C .59倍 D .47倍 分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+rr r πππ(倍). 答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( )A .32π B .3π C .32π D .322π分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a =1,则此球的直径为2.答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π.答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g /cm 3),每个钢球重145 kg ,并且外径等于50 cm ,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ).解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g ), 街心花园中钢球的质量为145 000 g ,而145 000<516 792, 所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-•]=145 000, 解得x 3≈11 240.98,x ≈22.4,2x ≈45(cm ). 答:钢球是空心的,其内径约为45 cm .5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =r 2,则球的体积与三棱锥体积之比是( )A .πB .2πC .3πD .4π分析:由题意得SO =r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r ×r =r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π.答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.(五)拓展提升问题:如图6,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A —BEFD 与三棱锥A —EFC 的表面积分别是S 1,S 2,则必有( )图6A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1,S 2的大小关系不能确定探究:如图7,连OA 、OB 、OC 、OD ,则V A —BEFD =V O —ABD +V O —ABE +V O —BEFD +V O —ADF ,V A—EFC=V O—AFC+V O—AEC+V O—EFC,又V A—BEFD=V A—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+S BEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7答案:C(五)课堂小结本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.(六)作业课本本节练习1、2、3.。

高一数学人教A版必修2:1-3-1-2 柱体、锥体、台体的体积

高一数学人教A版必修2:1-3-1-2 柱体、锥体、台体的体积
第一章 1.3 1.3.1 第2课时
第十一页,编辑于读教材P25-26,回答下列问题: 1.柱体的体积 (1)棱柱(圆柱)的高是指 两底面 之间的距离,即从一底面 上任意一点向另一个底面作垂线,这点与垂足(垂线与底面的 交点)之间的距离. (2)柱体的底面积为S,高为h,其体积V= Sh .特别地,圆 柱的底面半径为r,高为h,其体积V= πr2h .
第一章 1.3 1.3.1 第2课时
第二十六页,编辑于星期日:二十二点 二分。
[分析]明确几何体的形状及相应的体积公式是解决这类问 题的关键.因为玻璃杯是圆柱形的,所以铅锤取出后,水面 下降部分实际是一个小圆柱,这个小圆柱的底面与玻璃杯的 底面一样,是一直径为20cm的圆,它的体积正好等于圆锥形 铅锤的体积,这个小圆柱的高就是水面下降的高度.
第一章
空间几何体
第一章 空间几何体
第一页,编辑于星期日:二十二点 二分。
第一章
1.3 空间几何体的表面积与体积
第一章 空间几何体
第二页,编辑于星期日:二十二点 二分。
第一章
1.3.1 柱体、锥体、台体的表面积与体积
第一章 空间几何体
第三页,编辑于星期日:二十二点 二分。
第一章
第2课时 柱体、锥体、台体的体积
[答案] (6+π)
第一章 1.3 1.3.1 第2课时
第三十三页,编辑于星期日:二十二点 二分。
[解析] 此几何体是由一个长为3,宽为2,高为1的长方 体与底面直径为2,高为3的圆锥组合而成的,故V=V长方体+V圆 锥=3×2×1+π3×12×3=(6+π)m3.
第一章 1.3 1.3.1 第2课时
第一章 1.3 1.3.1 第2课时
第二十八页,编辑于星期日:二十二点 二分。

1.1.2圆柱、圆锥、圆台和球(2014年人教A版数学必修二导学案)

1.1.2圆柱、圆锥、圆台和球(2014年人教A版数学必修二导学案)
【学后反思】
课题:1.1.2圆柱、圆锥、圆台和球检测案
班级:姓名:学号:第学习小组
【课堂检测】
1.指出下列几何体分别由哪些简单几何体构成.
2.如图,将平行四边形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
3.充满气的车轮内胎可以通过什么图形旋转生成?
【课后巩固】
1.下列几何体中不是旋转体的是()
3.圆柱、圆锥、圆台和球的表示.
4.旋转体的有关概念
【课堂研讨】
例1、如图,将直角梯形 绕 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?
例2指出图1、2中的几何体是由哪些简单的几何体构成的.


例3、直角三角形 中, ,将三角形 分别绕边 , , 三边所在直线旋转一周,由此形成的几何体是哪一种简单的几何体?或由哪几种简单的几何体构成?
6.如图是一个圆台,请标出它的底面、轴、母线,并指出它是怎样生成的.
7.请指出图中的几何体是由哪些简单几何体构成的.
2.图中的几何体可由一平面图形绕轴旋转 形成,该平面图形是()
A
B
C
D
3.用平行与圆柱底面的平面截圆柱,截面是__________________________________.
4.__________________可以看作圆柱的一个底面收缩为圆心时,形成的空间几何体.
5.用平行于圆锥底面的一平面去截此圆锥,则底面和截面间的部分的名称是______.
课题:1.1.2圆柱、圆锥、圆台和球
班级:姓名:学号:第学习小组
【学习目标】
1、了解圆柱、圆锥、圆台和球的有关概念.
2、认识圆柱、圆锥、圆台和球及其简单组合体的机构特征

高中数学《空间几何体的体积》学案新人教A版必修2

高中数学《空间几何体的体积》学案新人教A版必修2

课题:空间几何体的体积编制人: 审核人: 下科行政:【学习目标】1. 了解柱体、锥体、台体、球体的体积计算公式。

2. 熟悉台体与柱体和锥体之间体积的转换关系.3. 培养学生空间想象能力和思维能力. 自主学习案 【知识梳理】1.柱体、锥体、台体、球体的体积公式: 1) V 柱体 = Sh (S 是底面积,h 为柱体高)2) V 锥体 =13Sh (S 是底面积,h 为锥体高)3) V 台体 =1()3S s h '++(S ′S 分别为上、下底面面积,h 为台体的高)4) 球的体积:343V R π=【预习自测】__________.2.长方体三个面的面积分别为6,3,2,则长方体的体积为( ) A. 22 B. 23 C. 3 D. 63. 圆柱侧面展开图面积为10,底面周长为π2,则它的体积为__________. 【合作探究】例1. 一堆铁制六角螺帽,共重11.6kg , 底面六边形,边长12mm ,内空直径 10mm ,高10mm ,估算这堆螺帽多 少个?(铁的密度7.8g/cm3)例2. 将若干毫升水倒入底面半径为2cm 的圆柱容器中,量的水面高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥容器中,求水面高度.例3例4. 正方体D C B A ABCD ''''-的棱长为1,过顶点B,D,A ’,截下一个三棱锥 (1)求此三棱锥的体积. (2)以BDA ’为底面时,求此三棱锥的高.【当堂检测】1. 若正方形的全面积增为原来的2倍,那么它的体积增为原来的( ) A. 2倍 B. 4倍 C. 2倍 D.22倍2. 圆柱的侧面展开图是边长π6和π4的矩形,则其圆柱的体积为__________3. 球的体积为π3500,求它的表面积 .课后练习案1. 已知高为3的棱柱C B A ABC '''-的底面边长为1的正三角形,则三棱锥ABC B -'的体积为( )A.41 B.21 C.83 D.432.等边三角形的边长为3,它绕一边所在直线旋转一周,则所得旋转体的体积为 __________.3. 一个圆柱形玻璃瓶内半径为3cm ,瓶里所装的水深8cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5cm ,则钢球的半径为_______________。

人教A版高二数学必修二第一章1.3.2 球的体积和表面积【教案】

人教A版高二数学必修二第一章1.3.2 球的体积和表面积【教案】

《1.3.2球的体积和表面积》教学设计教材:人民教育出版社A 版普通高中课程标准实验教科书《数学必修2》一、 教学目标知识目标:1、掌握球的体积公式343V R π=、表面积公式24S R π=. 2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力. 3、能解决与球的截面有关的计算问题及球的“内接”与“外切”的几何体问题. 能力目标:通过类比、归纳、猜想等合情推理培养学生勇于探索的精神. 提高学生分析、综合、抽象概括等逻辑推理能力情感目标:通过寻求如何研究球的内切与外接的方法,培养学生将数学知识和生活实际相联系的意识,对学生进行“事物具有多面性”的辩证唯物主义思想教育. 二、 教学重点、难点重点:球的体积和表面积的计算公式的应用.难点:解决与球相关的“内接”与“外切”的几何体问题 三、教学方法采用试验探索,启发式的教学方法.教辅手段:圆柱、圆锥、半球容积比实物模型;一盆水;多媒体. 四、教学过程2 球的表面积:(以后讲)11221(3)i i V h S h S h S ≈⋅∆+⋅∆++⋅∆+L L又∵i h R ≈,且S =12i S S S ∆+∆+++∆LL∴可得13V R S ≈⋅, 又∵343V R π=,∴13R S ⋅343R π=,∴24S R π=即为球的表面积公式 小结:球的体积公式343V R π=、表面积公式24S R π=都是以R 为 自变量的函数。

教师讲解,学生感悟分割、近似、极限等思想渗透微积分思想.应 用练习1:如果球的体积是36πcm 3,那么它的半径是 .3练习2: 若两个球的体积之比为8:27,那么两个球的表面积之比为( C )(A )8:27 (B )2:3 (C )4:9 (D )2:9例1 如图,圆柱的底面直径与高都等于球的直径,,求证: (1)球的体积等于圆柱体积的23(2)球的表面积等于圆柱的侧面积. 证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R.则有V 球=334R π,V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32.教师引导学生共同完成让学生巩固加深所学内容并灵举例(2)因为S球=4πR2,S圆柱侧=2πR·2R=4πR2,所以S球=S圆柱侧.变式1:把上一题的圆柱改为正方体,且正方体的棱长为a, 球的半径为多少?变式2:若把球吹大到内切于正方体的棱,且正方体的棱长为a,此时球的半径又为多少?变式3:若球接着吹大到刚好包围整个正方体即球各个顶点都在球面上,且正方体的棱长为a,此时球的半径又为多少?活运用.应用举例例2、如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm与2 cm,如图所示,俯视图是一个边长为4 cm的正方形.(1)求该几何体的全面积.(2)求该几何体的外接球的体积.解【审题指导】根据本题所给条件中的三视图,判断该几何体的形状与几何体中相关的数量关系,根据这些求该几何体的全面积及其外接球的体积.【规范解答】(1)由题意可知,该几何体是长方体,图1 图2图3RA 'C 'CAOA 'B 'C 'D 'D C BAO准备 课堂小结 1.通过做实验的方法,获得了球的体积公式和表面积公式. 2.掌握球的体积公式343V R π=、表面积公式24S R π= 3.熟练掌握球的内切、外接问题解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.学生小结,教师完善.学生小结,可以逐步提高学生自我获取知识的能力.教师完善,使知识更系统化.作业1、课本P29B12、《世纪金榜》 P16例23、《世纪金榜》P17 基础自主演练64、半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的边长为 6,求半球的表面积和体积。

1.3.2空间几何体的体积(1)(2014年人教A版数学必修二导学案)

1.3.2空间几何体的体积(1)(2014年人教A版数学必修二导学案)

2.已知一个铜质的五棱柱的底面积为 16cm ,高为 4cm ,现将它熔化后铸成一个正 方体铜块,那么铸成的铜块的棱长为多少(不计损耗)?
2
3.若一个六棱锥的高为10 cm ,底面是边长为 6cm 的正六边形,求这个六棱锥的体积.
/ /
7.若干体积的水倒入底面半径为 2cm 的圆柱形器皿中,量得水平面的高度为 6cm , 若将这些水倒入轴截面是正三角形的倒圆锥器皿中,求水面的高度.
/ /
备课大师:免费备课第一站!
【课外作业】
20cm , 1. 圆台上下底面直径分别为 10 cm , 高为 2cm , 则圆台的体积为_______ cm2 .
2. 已知矩形的长为 2 a , 宽为 a , 将此矩形卷成一个圆柱, 则此圆柱的体积为________.
3.长方体相邻的三个面的面积分别为 2 , 3 和 6 ,则该长方体的体积为______. 4.若一个圆台的下底面面积是上底面面积的 4 倍,高是 3cm ,体积是 63 cm3 , 则圆台的侧面积是____________. 5.若一圆锥的轴截面是边长为 a 的正三角形,则该圆锥的内切球的体积为_______. 6.已知正三棱锥的侧面积为 18 3 ,高为 3 ,求它的体积.
备课大师:免费备课第一站!
课题:1.3.2 空间几何体的体积(1)导学案
班级: 【学习目标】 【课前预习】
1.圆锥形烟囱的底面半径是 40cm ,高是 30 cm .已知每平方米需要油漆 150g ,油漆
姓名:
学号:

学习小组
了解柱、锥、台、球体积的计算公式
100 个这样的烟囱帽的外表面,共需油漆多少千克?( 取 3.14 ,精确到 0.1kg )
V柱体 ____________________________________________.

2014年人教A版必修二课件 1.3 空间几何体的表面积与体积

2014年人教A版必修二课件 1.3  空间几何体的表面积与体积

6 25 5 12
= 2[6 3 (24 + 12)]+ 612 5 + 6p 25 ≈1579.485 (mm2), 10000个零件的表面积约为15794850 mm2, 约合15.795平方米.
2. 如图是一种机器零件, 零件 下面是六棱柱 (底面是正六边形, 侧 面是全等的矩形) 形, 上面是圆柱 (尺寸如图, 单位: mm) 形, 电镀这 种零件需要用锌, 已知每平方米用 锌 0.11 kg, 问电镀 10000个零件需 要锌多少千克? (结果精确到 0.01 kg) 解: 这个零件的表面积为 S = S棱柱表+S圆柱侧
2. 柱体、锥体与台体的体积 问题 1. 还记得正方体、长方体、圆柱和圆锥的 体积公式吗? 由此类推柱体和锥体的体积公式如何? 你想想台体的体积怎样求? 柱体体积: V柱 = Sh (S 为底面面积, h为柱体高). 锥体体积: V锥 = 1 Sh (S 为底面面积, h为柱体高). 3 台体体积: V台 = V大锥体-V小锥体 (S为下底面积, S为上底面积, = 1 ( Sh大 - Sh小 ), 3 h 为台高). h S = ( 小 )2 , h大 - h小 = h, S h大 1 V台 = h( S + SS + S). 3
例 1. 已知棱长为 a, 各面均为等边三角形的四面 体 S-ABC, 求它的表面积. 解: 这四面体的表面是由 4 个全等 的等边三角形组成, A 所以它的表面积 S = 4S△SBC B D 在△SBC中, 边长为 a, SD为BC边上的高. a 2 2 = 3 a, 2 2 则 SD = SB - BD = a - ( ) 2 2 3 a2, 1 3 于是得 S△SBC= 1 BC SD = a a = 4 2 2 2 所以, 这个四面体的表面积为 3 S = 4 a 2= 3a 2 . 4

人教版数学高一必修二导学案 1.3空间几何体的表面积与体积

人教版数学高一必修二导学案 1.3空间几何体的表面积与体积

1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积【考纲要求】[学习目标]1.通过对柱体、锥体、台体的研究,掌握柱体、锥体、台体的表面积和体积的求法.2.能运用公式求解柱体、锥体和台体的表面积,并且熟悉台体、柱体和锥体之间的转换关系.3.培养学生的空间想象能力和思维能力.[目标解读]1.求柱体、锥体、台体的表面积与体积是重点;2.求组合体的表面积与体积是难点.【自主学习】1.多面体与旋转体的表面积公式图形表面积公式多面体多面体的表面积就是的面积的和,也就是的面积.旋转体圆柱底面积:S底=侧面积:S侧=表面积:S=圆锥底面积:S底=侧面积:S侧=表面积:S=2.柱体、锥体、台体的体积公式(1)柱体:柱体的底面面积为S,高为h,则V=(2)锥体:锥体的底面面积为S,高为h,则V= .(3)台体:台体的上、下底面面积分别为S′,S,高为h,则V= .特别提醒:柱、锥、台的侧面积的求法要注意柱、锥、台的几何特征,必要时要展开.【考点突破】要点一柱体、锥体、台体的表面积1.求柱体、锥体、台体的侧面积或表面积时,可直接使用公式.但像台体的表面积公式比较复杂,不要求记忆,因此,表面积的求解方法是最重要的.2.在计算圆柱、圆锥、圆台的侧面积时,应根据条件计算出以上旋转体的母线长和底面圆的半径长.3.这些公式的推导方法向我们揭示了立体几何问题的解题思路,那就是主要通过空间概念等有关知识,将立体几何问题转化为平面几何问题.典型例题1、已知四棱锥S-ABCD中,各侧面为正三角形,底面为正方形,且各棱长均为5,求它的侧面积、表面积.【思路启迪】由题意可知,四棱锥的四个侧面为全等的正三角形,底面为正方形.【解】设E为AB中点,则SE⊥AB,∴S侧=4S△SAB=4×12×AB×SE=2×5×52-⎝⎛⎭⎫522=25 3.S表=S侧+S底=253+25=25(3+1).旋转体圆台上底面面积:S上底=下底面面积:S下底=侧面积:S侧=表面积:S=方法指导:求几何体的表面积问题,通常将所给几何体分成基本的柱、锥、台,再通过这些基本柱、锥、台的表面积进行求和或作差,从而获得几何体的表面积,另外有时也会用到将几何体展开求其展开图的面积进而得表面积.反馈训练1、若圆锥的侧面展开图是圆心角为120°、半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A .3:2B .2:1C .4:3D .5:3 要点二 柱体、锥体、台体的体积求几何体的体积首先要明确几何体的形状及相应的体积公式,其次需要计算几何体的底面积和高.当几何体不规则或直接求体积有困难时,可利用转化思想,采用间接方法,如割补法等求其体积,也可借助体积公式和图形的性质转化为其他等体积的几何体,再求体积.典型例题2、已知过三棱台上底面的一边与一条侧棱平行的一个截面,它的两个顶点是下底面两边的中点,求棱台被分成两部分的体积的比.【思路启迪】 注意应用棱台和棱柱的体积公式.【解】 设棱台上底面△A ′B ′C ′的面积为S ′,棱台的高为h . 由题意可知:△A ′B ′C ′≌△DBE .∵△DBE ∽△ABC ,D ,E 分别是AB ,BC 的中点, ∴S △DBE S △ABC =14.∴S △ABC =4S ′. ∴V 台ABC -A ′B ′C ′=13h ·(S ′+S ′·4S ′+4S ′)=13h ·7S ′=73h ·S ′, V 柱DBE -A ′B ′C ′=S ′·h .∴棱台被分成的两部分体积比为4:3或3:4.方法指导:求几何体的体积要分清是由什么几何体构成,利用相应几何体的体积公式进行求解.反馈训练2、如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .16 要点三 三视图与几何体的表面积与体积把几何体的表面积与体积的计算与三视图结合考查是高考的一个热点,解决此类问题的关键是正确地观察三视图,把它还原为直观图,特别要注意从三视图中得到几何体的度量,再结合表面积或体积公式解题.典型例题3、(2012·江西卷)若一个几何体的三视图如图所示,则此几何体的体积为( )A.112 B .5 C.92D .4 【思路启迪】 先根据三视图复原几何体,再根据几何体的特征与体积公式求其体积. 【解析】 由三视图可以判断该几何体为六棱柱,直观图如图所示.AB =1,AA 1=1. V ABCDEF -A1B 1C 1D 1E 1F 1=4×1=4. 【答案】 D方法指导:根据三视图首先确定几何体的结构特征,再依据三视图中的数据进行相应的计算. 反馈训练3、(1)某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B .16+16 2C .48D .16+32 2(2)某几何体的三视图如图所示,则它的体积是( )A .8-2π3B .8-π3C .8-2π D.2π3考点巩固1.一个圆锥的全面积是底面积的4倍,则轴截面的面积是底面积的( ) A.152π倍 B.15π倍C.2π倍 D.22π倍2.正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A 1-BC 1D 的体积为( )A.23B.13C.14D.123.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )4.一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .805.如图是一个正方体,H 、G 、F 分别是棱AB 、AD 、AA 1的中点,现在沿三角形GFH 所在的平面锯掉正方体的一个角,问锯掉的这块的体积是原正方体体积的_____ ___.6.已知正三棱锥V-ABC的正视图,俯视图如图所示,其中VA=4,AC=23,求该三棱锥的表面积.7.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.8.如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD 内过点C作l⊥CB,以l为轴旋转一周.求旋转体的表面积和体积.考点巩固-答案1、解析:设圆锥的底面半径为r,母线长为l,高为h依题意得πr2+πrl=4πr2∴l=3r,圆锥的高h=(3r)2-r2=22r故S 轴=r ·22r =22r 2,S 轴S 底=22π.答案:D2、解析:三棱锥A 1-BC 1D 是正方体ABCD -A 1B 1C 1D 1去掉4个角得到的,其体积V =1×1×1-4×13×12×1×1=13.答案:B3、解析:当俯视图为A 中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B 中圆时,几何体为底面半径为12,高为1的圆柱,体积为π4;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为12;当俯视图为D 中扇形时,几何体为圆柱的14,且体积为π4.答案:C 4、解析:由该几何体的三视图得出原型为: S 四边形A1B 1C 1D 1=4×2=8, S 四边形ABCD =4×4=16,四边形ADD 1A 1与四边形BCC 1B 1为全等的梯形,面积均为:(2+4)×42=12,四边形ABB 1A 1与四边形CDD 1C 1均为矩形,其中BB 1=42+1=17,∴面积均为:4×17=417.∴该几何体的全面积S =8+16+12×2+417×2=48+817. 答案:C5、解析:因为锯掉的是正方体的一个角,所以HA 与AG 、AF 都垂直,即HA 垂直于三角形AGF 所在的正方体的上底面,实际上锯掉的这个角,是以三角形AGF 为底面,H 为顶点的一个三棱锥,如果我们假设正方体的棱长为a ,则正方体的体积为a 3.三棱锥的底面是直角三角形AGF ,而∠FAG 为90°,G 、F 又分别为AD 、AA 1的中点,∴AF =AG =12a ,∴S △AGF =12×12a ×12a =18a 2,又AH =12a ,∴锯掉一角的体积为V =13×12a ×18a 2=148a 3,∴锯掉的这块的体积是原正方体体积的148.答案:1486、解:由正视图与俯视图可得正三棱锥的直观图如图,且VA =VB =VC =4, AB =BC =AC =23, 取BC 的中点D ,连接VD ,则 VD =VB 2-BD 2=42-(3)2=13,∴S △VBC =12×VD ×BC =12×13×23=39,S △ABC =12×(23)2×32=33,∴三棱锥V -ABC 的表面积为3S △VBC +S △ABC =339+33=3(39+3). 7、解析:由三视图可知该几何体是一个底面边长分别为6和8的矩形,高为4的四棱锥.设底面矩形为ABCD .如图所示,AB =8,BC =6,高VO =4. (1)V =13×(8×6)×4=64.(2)四棱锥中侧面VAD 、VBC 是全等的等腰三角形,侧面VAB 、VCD 也是全等的等腰三角形. 在△VBC 中,BC 边上的高 h 1=VO 2+⎝⎛⎭⎫AB 22=42+⎝⎛⎭⎫822=4 2.在△VAB 中,AB 边上的高 h 2=VO 2+⎝⎛⎭⎫BC 22=42+⎝⎛⎭⎫622=5.所以此几何体的侧面积S =2×⎝⎛⎭⎫12×6×42+12×8×5=40+24 2.8、解:如图,在梯形ABCD 中,∠ABC =90°,AD ∥BC ,AD =a ,BC =2a ,∠DCB =60°, ∴CD =BC -ADcos60°=2a ,AB =CD sin60°=3a ,∴DD ′=AA ′-2AD =2BC -2AD =2a , ∴DO =12DD ′=a .由于以l 为轴将梯形ABCD 旋转一周后形成的几何体为圆柱中挖去一个倒放的与圆柱等高的圆锥.由上述计算知,圆柱母线长3a ,底面半径2a ,圆锥的母线长2a ,底面半径a . ∴圆柱的侧面积S 1=2π·2a ·3a =43πa 2, 圆锥的侧面积S 2=π·a ·2a =2πa 2,圆柱的底面积S 3=π(2a )2=4πa 2,圆锥的底面积S 4=πa 2, ∴组合体上底面积S 5=S 3-S 4=3πa 2,∴旋转体的表面积S =S 1+S 2+S 3+S 5=(43+9)πa 2.又由题意知形成的几何体的体积为一个圆柱的体积减去一个圆锥的体积.V 柱=Sh =π·(2a )2·3a =43πa 3.V 锥=13S ′h =13·π·a 2·3a =33πa 3.∴V =V 柱-V 锥=43πa 3-33πa 3=1133πa 3.1.3.2球的体积和表面积【考纲要求】[学习目标]1.了解球的体积和表面积公式.2.会用球的体积和表面积公式解决实际问题. 3.培养学生的空间想象能力和逻辑思维能力. [目标解读]1.球的表面积与体积公式的应用是重点;2.解决球的组合体及三视图中球的有关问题是难点. 【自主学习】1.球的体积公式是V 球 = (R 为球的半径). 2.球的表面积公式是S 球 = (R 为球的半径). 特别提醒:在球的截面中,经过球心的截面是最大的圆. 【考点突破】要点一 球的表面积与体积1.球的体积是球体所占空间的大小的度量,设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数即V =43πR 3.2.球的表面积是对球的表面大小的度量,它也是关于球半径的函数即S =4πR 2. 典型例题1、(1)已知球的直径为6cm ,求它的表面积和体积;(2)已知球的表面积为64π,求它的体积; (3)已知球的体积为5003π,求它的表面积.【思路启迪】 利用条件确定半径R 代入相关公式可求. 【解】 (1)∵直径为6cm ,∴半径R =3cm , ∴表面积S 球=4πR 2=36π(cm 2), 体积V 球=43πR 3=36π(cm 3).(2)∵S 球=4πR 2=64π,∴R 2=16,即R =4, ∴V 球=43πR 3=43π×43=2563π.(3)∵V 球=43πR 3=5003π方法指导:已知球半径可以利用公式求它的表面积和体积;反过来,已知体积或表面积也可以求其半径.反馈训练1、(1)把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为 ( ) A .R B .2R C .3R D .4R(2)若两球表面积之比为4:9,则其体积之比为__ ___. 要点二 球的切接问题球通常可以与其他空间几何体构成一个组合体,主要包括“内切”和“外接”等有关的问题,像长方体内接于球,正方体内接于球,正四面体内接于球,球内切于正方体,球内切于正四面体,球内切于圆台等组合体.解决这类问题的关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.典型例题2、正三棱锥(三棱锥的底面是正三角形,顶点在底面的投影是底面三角形的中心)的高为1,底面边长为26,内有一个球与四个面都相切,求棱锥的全面积和球的表面积.【思路启迪】 本题关键是求出球的半径.类比三角形内切圆半径的求法(即分割法),求出三棱锥内切球半径.【解】:如图,过侧棱PA 与球心O 作截面PAE ,交侧面PBC 于PE .∵△ABC 为正三角形,易知AE 既是△ABC 底边BC 上的高,又是BC 边上的中线. 作正三棱锥的高PD ,则PD 过球心O ,且D 是正△ABC 的中心, ∵AB =26,∴DE =13AE =13·32AB = 2.∴PE =12+(2)2= 3.∴S 全=S 侧+S 底=3·12·26·3+34(26)2=92+63,即棱锥的全面积为92+6 3.以球心为顶点,棱锥的四个面为底面把正三棱锥分割为四个小棱锥,球半径为r . 则V 1+V 2+V 3+V 4=13r ·S 全=13h ·S △ABC ,∴r =S △ABC ·hS 全=34·(26)2·192+63=6-2,∴S 球=4πr 2=4π(6-2)2. 方法指导:(1)与球有关的组合体问题一种是内切,一种是外接,明确切点和接点的位置,并作出合适的截面图,是确定有关元素间的数量关系的关键.(2)球外接于正方体、长方体时,正方体、长方体的对角线长等于球的直径.(3)球与旋转体的组合,通常作轴截面解题.反馈训练2、有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积.要点三球的截面问题解决球的问题时常常用到球的轴截面,在轴截面图形中,球半径、截面圆半径、球心与圆心的连线所构成的直角三角形是把空间问题转化为平面问题的主要途径.球心是球的灵魂,抓住了球心就抓住了球的位置.典型例题3、已知球的两平行截面的面积为5π和8π,它们位于球心的同一侧,且相距为1,求这个球的表面积.【思路启迪】要求球的表面积,只需求出球的半径,因此要抓住球的轴截面(过直径的球的平面).【解】如图所示,设以r1为半径的截面面积为5π,以r2为半径的截面面积为8π,O1O2=1,球的半径为R,OO2=x,那么可得下列关系式:r22=R2-x2且πr22=π(R2-x2)=8π,r21=R2-(x+1)2且πr21=π[R2-(x+1)2]=5π,于是π(R2-x2)-π[R2-(x+1)2]=8π-5π,即R2-x2-R2+x2+2x+1=3,∴2x=2,即x=1.又∵π(R2-x2)=8π,∴R2-1=8,R2=9,∴R=3.球的表面积为S =4πR 2=4π×32=36π(平方单位).方法指导:球的轴截面(球的过直径的截面)是将球的问题(立体问题)转化为圆的问题(平面问题)的关键,因此在解决球的有关问题时,我们必须抓住球的轴截面,并充分利用它来分析解决问题.反馈训练3、用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.32π3 B.8π3 C .82π D.82π3考点巩固1.把球的表面积扩大到原来的2倍,那么体积扩大到原来的( ) A .2倍 B .22倍 C.2倍D .32倍2.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面面积和球的表面积之比为( )A .4:3B .3:1C .3:2D .9:43.某几何体的三视图如图所示(单位:m),则该几何体的体积为( )A.⎝⎛⎭⎫8+4π3m 3 B.⎝⎛⎭⎫8+2π3m 3 C.⎝⎛⎭⎫4+4π3m 3 D.⎝⎛⎭⎫4+2π3m 3 4.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是________.5.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为__________.6.据说伟大的阿基米德死了以后,敌军将领马塞拉斯给他建了一块墓碑.在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点在圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图形中圆锥、球、圆柱的体积之比.7.一个倒立圆锥形容器,它的轴截面是正三角形,在这容器内注入水并且放入一个半径为r的铁球,这时水面恰好和球面相切,问将球从圆锥内取出后,圆锥内水平面的高是多少.8.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积.(其中∠BAC=30°)考点巩固-答案1、解析:设原来球的半径为r ,变化后的球半径为r ′, ∴4πr ′2=2·4πr 2,∴r ′=2r . ∴V ′V =43πr ′343πr 3=(2r )3r3=2 2. 答案:B2、解析:作轴截面如图,则PO =2OD ,∠CPB =30°,CB =33PC =3r ,PB = 23r ,圆锥侧面积S 1=6πr 2,球的面积S 2=4πr 2,S 1:S 2=3:2. 答案:C3、解析:该几何体是一棱长为2的正方体,上面放了一个半径为1的半球,所以其体积为23+2π3=8+2π3(m 3). 答案:B4、解析:据三视图可知该几何体由球和圆柱体组成,如上图所示. 故该几何体的表面积为S =S 圆柱+S 球=2π+6π+4π=12π. 答案:12π5、解析:设两圆锥高分别为h 1,h 2,(设h 2<h 1)球半径为R ,圆锥底面半径为r ,如图,S 1S 2=2R ,AO 1=r ,且∠S 1AS 2=90°,AO 1⊥S 2S 1,∴AO 21=S 1O 1·S 2O 1, 即r 2=h 1h 2,又∵πr 2=3164πR 2,∴r =32R ,∴⎩⎪⎨⎪⎧h 1h 2=34R 2h 1+h 2=2R∴h 1,h 2分别为32R ,12R ,∴h 2h 1=13.答案:136、解:设圆柱的底面半径为r ,高为h ,则V 圆柱=πr 2h , 图中圆锥的底面半径为r ,高为h ,则V 圆锥=13πr 2h ,球的半径为r ,所以V 球=43πr 3,又h =2r所以V 圆锥:V 球:V 圆柱=⎝⎛⎭⎫13πr 2h :⎝⎛⎭⎫43πr 3: (πr 2h ) =⎝⎛⎭⎫23πr 3:⎝⎛⎭⎫43πr 3: (2πr 3)=1:2:3.7、解:设球未取出时高PC =h ,球取出后水面高PH =x .如图所示,∵AC =3r ,PC =3r ,∴以AB 为底面直径的圆锥容积为V 圆锥=13πAC 2·PC =13π(3r )2·3r =3πr 3,V 球=43πr 3.球取出后水面下降到EF ,水的体积为 V 水=13πEH 2·PH=13π(PH ·tan30°)2·PH =19πx 3. 而V 水=V 圆锥-V 球,即19πx 3=3πr 3-43πr 3,∴x =315r . 故球取出后水面的高为315r . 8、解:如图所示,过C 作CO 1⊥AB 于O 1.在半圆中可得∠BCA =90°,∠BAC =30°,AB =2R , ∴AC =3R ,BC =R ,CO 1=32R . ∴S 球=4πR 2,S 圆锥AO 1侧=π×32R ×3R =3π2R 2,S 圆锥BO 1侧=π×32R ×R =3π2R 2, ∴S 几何体表=S 球+S 圆锥AO 1侧+S 圆锥BO 1侧 =11π2R 2+3π2R 2=11+32πR 2. 故旋转所得几何体的表面积为11+32πR 2. 章末小结【知识框架】。

高中数学必修2人教A全册导学案第一章空间几何体

高中数学必修2人教A全册导学案第一章空间几何体

第一章空间几何体(复习)1. 认识柱、锥、台、球及其简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;2. 能画出简单空间图形的三视图,能识别三视图所表示的立体模型;3. 会用斜二侧画法画几何体的直观图;4. 会求简单几何体的表面积和体积.237复习1:空间几何体的结构①多面体、旋转体有关概念;②棱柱、棱锥、棱台结构特征及其分类;③圆柱、圆锥、圆台结构特征;④球的结构特征;⑤简单组合体的结构特征.复习2:空间几何体的三视图和直观图①中心投影与平行投影区别,正投影概念;②三视图的画法:长对正、高平齐、宽相等;③斜二测画法画直观图:x'轴与y'轴夹角045,平行于x轴长度不变,平行于y轴长度减半;复习3:空间几何体的表面积与体积①柱体、锥体、台体表面积求法(利用展开图);②柱体、锥体、台体的体积公式;③球的表面积与体积公式.二、新课导学※典型例题例1在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是______.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四边体;④每个面都是等边三角形的四边体;⑤每个面都是直角三角形的四面体.例2将正三棱柱截去三个角(如图1所示,A、B、C分别是GHI△三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为().例3如下图,已知一平面图形的直观图是底角为45°,上底和腰均为1的等腰梯形,画出原图形,并求出原图形的面积.例4 已知某个几何体的三视图如图所示,根据图中的尺寸,这个几何体的体积是多少?※动手试试练1. 下列几何体各自的三视图中,有且仅有两个视图相同的是().①正方体②圆锥③三棱台④正四棱锥A. ①②B. ①③C. ①④D. ②④S A B C D都在同一个球面上,练2. 正四棱锥S ABCD-,点,,,,则该球的体积为多少?练3. 一个用鲜花做成的花柱,它的下面是一个直径为2m、高为4m的圆柱形物体,上面是一个半球形体,如果每平方米大约需要鲜花200朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.14)?三、总结提升※学习小结1. 空间几何体结构的掌握;2. 实物图、三视图、直观图三者之间的转换;3. 特殊几何体(正棱柱、正棱锥、正棱台、球)表面积与体积的求法;特殊空间关系(内外切、内外接)的处理.※知识拓展通过本章的学习,同学们应该理解和掌握处理空间几何体的基本方法:把空间图形转化为平面图形;并且体会到解题过程中归纳、转化、数形结合的数学思想,初步了解运动变化这.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 已知ABC∆是一个直角三角形,则经过平行投影后所得三角形是().A.直角三角形B.锐角三角形C.钝角三角形D.以上都有可能2. 某棱台上、下底面半径之比为1﹕2,则上、下底面的面积之比为( ).A.1﹕2B.1﹕4C.2﹕1D.4﹕13. 长方体的高等于h ,底面积等于S ,过相对侧棱的截面面积为S ',则长方体的侧面积等于( ).A. B.C.4. 下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是__________.5. 三棱柱ABC A B C '''-中,若,E F 分别为,AB AC 的中点,平面EB C F ''将三棱柱分成体积为12,V V 的两部分,那么1V ﹕2V =________.1. 正四棱台高是12cm ,两底面边长之差为10cm ,全面积为2512cm ,求上、下底面的边长.2. 如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V 1为小球相交部分(图中阴影部分)的体积,V 2为大球内、小球外的图中黑色部分的体积,试比较12,V V 的大小关系.。

1.3.2空间几何体的体积(2)(2014年人教A版数学必修二导学案)

1.3.2空间几何体的体积(2)(2014年人教A版数学必修二导学案)

姓名:
学号:

学习小组
3.已知: ABCD A1 B1C1 D1 是棱长为 a 的正方体, E , F 分别为棱 AA 1 与 CC1 的 中点,求四棱锥 A1 EBFD 1 的体积.
4、如图,在长方体 ABCD A1 B1C1 D1 中, AB AD 3cm , AA1 2cm , 求三棱锥 A B1 D1 D 的体积
S M C E D A B
2
/ /
备课大师:免费备课第一站!
课题:1.3.2 空间几何体的体积(2)导学案
班级: 【学习目标】 姓名: 学号: 第 学习小组
初步掌握求体积的常规方法,例如割补法,等积转换等 【课前预习】 1.如图,在三棱锥 P ABC 中,已知 PA BC , PA BC l , PA ED ,
BC ED ,且 ED h .求证:三棱锥 P ABC 的体积为 V
D1 A1 D B B1
C1
C
A
/ /
备课大师:免费备课第一站!
【课外作业】
1. 一个圆锥的底面半径和一个球的半径相等, 体积也相等, 则它们的高度之比为____.
2.球面面积膨胀为原来的两倍,其体积变为原来的____________________倍.来自【学后反思】/ /
备课大师:免费备课第一站!
课题:1.3.2 空间几何体的体积(2)检测案
班级: 【课堂检测】
1. 两个球的体积之比为 8 : 27 , 则这两个球的表面积之比是_____________________. 2.若两个球的表面积之差为 48 ,两球面上两个大圆周长之和为 12 ,则这两球 的半径之差为________________________.

1.3.1空间几何体的表面积(2014年人教A版数学必修二导学案)

1.3.1空间几何体的表面积(2014年人教A版数学必修二导学案)

8.已知六棱锥 P ABCDEF ,其中底面 ABCDEF 是正六边形,点 P 在底面的投 影 是 正 六 边 形 的 中 心 O 点 , 底 面 边 长 为 2cm , 侧 棱 长 为 3cm , 求 六 棱 锥 P ABCDEF 的表面积.
/ /
【课堂研讨】
例 1、设计一个正四棱锥形冷水塔塔顶,高是 0.85 m ,底面的边长是 1.5m ,制造这种 塔顶需要多少平方米铁板?(结果保留两位有效数字) .
S 0.85
O 1.5
E
例 2、一个直角梯形上底、下底和高之比为 2 : 4 : 5 .将此直角梯形以垂直于底的腰 为轴旋转一周形成一个圆台,求这个圆台上底面积、下底面积和侧面积之比.
姓名:
学号:

学习小组
3.如果用半径为 r 的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是多少?
4、一个正三棱台的上、下底面边长分别为 3cm 和 6cm ,高是 面积.
3 cm ,求三棱台的侧 2
/ /
备课大师:免费备课第一站!
S直棱柱侧 S正棱锥侧 S正棱台侧
,其中 c 指的是 ,其中 h 指的是



3.圆柱、圆锥和圆台的侧面积公式:
S圆柱侧


S圆台侧
S圆锥侧
. .
/ /
备课大师:免费备课第一站!
【课外作业】 1.棱长都为 1 的正三棱锥的全面积等于________________________.
2.正方体的一条对角线长为 a ,则其全面积为_________________. 3.在正三棱柱 ABC AB C 中, AB BB ,且 S ABC 3 ,则正三棱柱的全面 积为_____________________. 4.一张长、宽分别为 8cm 、 4cm 的矩形硬纸板,以这硬纸板为侧面,将它折成正四 棱柱,则此四棱柱的对角线长为___________________. 5. 已知四棱锥底面边长为 6 , 侧棱长为 5 , 则棱锥的侧面积为____________________. 6. 已知圆台的上、 下底面半径为 6 、8 , 圆台的高为 5 , 则圆台的侧面积为_______. 7.已知一个正三棱台的两个底面的边长分别为 8cm 和 18 cm ,侧棱长为 13cm , 求它的侧面积.

高中数学必修二空间几何体的体积教案(高二数学)

高中数学必修二空间几何体的体积教案(高二数学)

高中数学必修二空间几何体的体积教案
教学目标:
1.了解柱、锥、台的体积公式,能运用公式求解有关体积计算问题;
2.了解柱体、锥体、台体空间结构的内在联系,感受它们体积之间的关系;
3.培养学生空间想象能力、理性思维能力以及观察能力.
教材分析及教材内容的定位:
通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,
体会数与形的完美结合.
教学重点:
柱、锥、台的体积计算公式及其应用.
教学难点:
运用公式解决有关体积计算问题.
教学方法:
通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,
体会数与形的完美结合.
教学过程:
一、问题情境
类似于用单位正方形的面积度量平面图形的面积,我们可以用单位正方体(棱长为1个长度单位的正方体)的体积来度量几何体的体积.
一个几何体的体积是单位正方体体积的多少倍,那么这个几何体的体积的数值就是多少.
长方体的长、宽、高分别为a,b,c,那么它的体积为
V长方体=abc或V长方体=Sh
(这里,S,h分别表示长方体的底面积和高.)
二、学生活动
阅读课本P65“祖暅原理”.
第1页共3页。

人教新课标版数学高一A版必修2导学案 1.3.1柱体、锥体、台体的表面积与体积(第1课时)

人教新课标版数学高一A版必修2导学案 1.3.1柱体、锥体、台体的表面积与体积(第1课时)

第1课时柱体、锥体、台体的表面积1.了解柱体、锥体、台体侧面展开图,掌握柱体、锥体、台体的表面积的求法.2.能运用公式求解柱体、锥体和台体的表面积,并了解柱体、锥体和台体表面积之间的关系.3.初步掌握面积在实际生活中的应用.1.柱体的表面积(1)侧面展开图:棱柱的侧面展开图是__________,一边是棱柱的侧棱,另一边等于棱柱的________,如图a所示;圆柱的侧面展开图是____,其中一边是圆柱的母线,另一边等于圆柱的底面周长,如图b所示.(2)面积:柱体的表面积S表=S侧+2S底.特别地,圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=____,表面积S表=________.表面积是几何体表面的面积,它表示几何体表面的大小.常把多面体展开成平面图形,利用平面图形求多面体的表面积.侧面积是指侧面的面积,与表面积不同.一般地,表面积=侧面积+底面积.【做一做1】圆柱OO′的底面半径r=2 cm,母线l=3 cm,则圆柱OO′的表面积等于______cm2.2.锥体的表面积(1)侧面展开图:棱锥的侧面展开图是由若干个______拼成的,则侧面积为各个三角形面积的__,如图a所示;圆锥的侧面展开图是____,扇形的半径是圆锥的____,扇形的弧长等于圆锥的________,如图b所示.(2)面积:锥体的表面积S表=S侧+S底.特别地,圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=____,表面积S表=________.【做一做2】圆锥的母线长为5,底面半径为3,则其侧面积等于()A.15 B.15π C.24π D.30π3.台体的表面积(1)侧面展开图:棱台的侧面展开图是由若干个____拼接而成的,则侧面积为各个梯形面积的__,如图a所示;圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,如图b所示.(2)面积:台体的表面积S表=S侧+S上底+S下底.特别地,圆台的上、下底面半径分别为r′,r,母线长为l,则侧面积S侧=________,表面积S表=____________.圆柱、圆锥、圆台的侧面积有如下关系:【做一做3】圆台的上、下底面半径分别是3和4,母线长为6,则其表面积等于() A.72 B.42π C.67π D.72π答案:1.(1)平行四边形底面周长矩形(2)2πrl2πr(r+l)【做一做1】20π2.(1)三角形和扇形母线底面周长(2)πrlπr(l+r)【做一做2】B3.(1)梯形和(2)π(r+r′)lπ(r2+r′2+rl+r′l)【做一做3】C面积公式对比 剖析:如下表所示.题型一:求几何体的表面积 【例1】 如图所示的几何体是一棱长为4 cm 的正方体,若在其中一个面的中心位置上,挖一个直径为2 cm 、深为1 cm 的圆柱形的洞,求挖洞后几何体的表面积是多少?(π取3.14)反思:求几何体的表面积时,通常将所给几何体分成基本的柱、锥、台体,再通过这些基本的柱、锥、台体的表面积,进行求和或作差,从而获得几何体的表面积.本题中将几何体的表面积表达为正方体的表面积与圆柱侧面积的和是非常有创意的想法,如果忽略正方体没有被打透这一点,思考就会变得复杂,当然结果也会是错误的.题型二:与三视图有关的面积计算【例2】一个几何体的三视图如图所示,则这个几何体的表面积为()A.72 B.66 C.60 D.30反思:已知三视图求面积的步骤:(1)根据三视图明确几何体的结构特征;(2)明确三视图中各数据所反映的几何体的特征;(3)代入相应的面积公式.题型三:实际应用问题【例3】粉碎机的下料斗是正四棱台形(两个底面均是正方形,侧棱相等,侧面是全等的等腰梯形),如图所示,它的两个底面边长分别是80 mm和440 mm,侧棱是300 mm.计算制造这个下料斗所需铁板的面积是多少?反思:解决此类问题首先要分清是求几何体的表面积还是侧面积,其次将实物转化为空间图形,最后转化到平面图形上进行处理,这是常用的方法.答案:【例1】解:正方体的表面积为4×4×6=96(cm2),圆柱的侧面积为2π×1×1≈6.28(cm2),则挖洞后几何体的表面积约为96+6.28=102.28(cm2).【例2】 A【例3】 解:如图所示,设四边形ABCD 是该下料斗的一个侧面,过点A 作AE ⊥CD 于点E ,则AE =AD 2-DE 2.由题意,CD =440 mm ,AB =80 mm ,AD =BC =300 mm , 故DE =440-802=180(mm).∴AE =AD 2-DE 2=3002-1802=240(mm).∴S 梯形ABCD =12×(440+80)×240=62 400(mm 2).故四棱台的侧面积为62 400×4=249 600(mm 2). ∴制造这个下料斗所需铁板面积为249 600 mm 2.1.如图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .6πB .12πC .18πD .24π2.已知圆柱OO ′的母线l =4 cm ,表面积为42π cm 2,则圆柱OO ′的底面半径r =____cm.3.一个几何体的三视图如图所示,若图中圆半径为1,等腰三角形腰长为3,则该几何体的表面积为__________.4.已知各棱长为5,底面为正方形,各侧面均为正三角形的四棱锥S-ABCD ,如图所示,求它的表面积.5.牧民居住的蒙古包的形状是一个圆柱与一个圆锥的组合体,尺寸如图所示,请你算出要搭建这样的一个蒙古包至少需要多少篷布?(精确到0.01 m 2)答案:1.B 2.3 3.5π4.解:∵四棱锥S -ABCD 的各棱长均为5, 各侧面都是全等的正三角形, 设E 为AB 的中点, 则SE ⊥AB ,∴S 侧=4S △SAB =4×12×5×2=,S 底=52=25,∴S 表面积=S 侧+S 底=25=1).5.解:m ,则其侧面积为S 1=π×52(m 2). 下部分圆柱体的侧面积为S 2=π×5×1.8=9π (m 2). 所以搭建这样的一个蒙古包至少需要的篷布为S =S 1+S 2=π×529π≈50.03(m 2), 即至少需要约50.03 m 2的篷布.。

高中数学 空间几何体的体积学案 新人教A版必修2

高中数学 空间几何体的体积学案 新人教A版必修2

高二数学学案(25 ) 空间几何体的体积教学目标:⒈通过直观感知长方体的体积公式,并由此推出柱、锥、台的体积公式,并能运用体积公式求出相关几何体的体积。

⒉了解柱体、锥体、台体空间结构的内在联系,感受它们体积之间的关系,初步掌握求体积的常规方法,例如割补法,等积转换等。

一、课前预习1.回忆初中学过的计算长方体的体积公式.V Sh =长方体或V abc =长方体.2.两个底面积相等、高也相等的棱柱,它们的体积是否一样?3. 取一摞书堆放在桌面上,组成一个长方体,推动一下,改变形状,保持高不变,体积是否改变?4.两个底面积相等、高也相等的棱柱,它们的体积是否一样?(通过一摞书演示,说明祖暅原理:两个等高的几何体,若在所有高处的截面面积相等,则此两个几何体的体积相等)二、课中研学(探究柱、锥、台的体积公式及关系)1.棱柱(圆柱)可由多边形(圆)沿某一方向平移得到,因此,两个底面积相等、高也相等的棱柱(圆柱)应该具有相等的体积.柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh =柱体.2.类似于柱体,底面积相等、高也相等的两个锥体,它们的体积也相等.棱锥的体积公式可把一个棱柱分成三个全等的棱锥得到,由于底面积为S ,高为h 的棱柱的体积V Sh =棱锥,所以1V Sh =锥体. (1) 三棱锥的体积:V 柱=1A ABC V -+11A BCC V -+111B A B C V -,而1A ABC V -=111B A B C V -,11A BCC V -=11C A BC V -=1A A BC V -=故V 柱=3V 锥, 所以V 三棱锥=13V 棱柱=13Sh (2)根据祖暅原理一般锥体体积V 锥=13Sh 3台体由锥体截得,以三棱台为例,如图设台体上下底面面积为S /、S,高为h,台大锥小锥13S(x+h)-13S /x=13Sh+13(S-S /)x,而x h x +=,于是,代入 V 台=13Sh+13(13+S /)hA1C 1B1BC A D第(11)题台体(棱台、圆台)的体积1()3V h S S '=++台体.4.柱锥台体积公式间的关系 锥上底面缩为一点台上下底面全等柱⒌运用祖暅原理类似的方法我们还能证实这样一个结论:一个底面半径和高都等于R 的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得几何体的体积与一个半径为R 的半球的体积相等.由此得到223112233V R R R R R πππ=-= 球,所以343V R π=球.这个结论可以通过“倒沙实验”得到.⒍设想一个球由许多顶点在球心,底面都在球面上的“准锥体”组成,这些“准锥体”的底面并不是真正的多边形,但只要这些“准锥体”的底面足够地小,就可以把它们近似地看成棱锥.这时,这些“准锥体”的高趋向于球半径R ,底面积123,,,S S S ……的和趋向于球面积,所有这些“准锥体”的体积的和趋向于球的体积,因此312341113333R V RS RS RS π==+++球 (1)3RS =球面,所以24S R π=球面. 例1.有一堆相同规格的六角螺帽毛坯共重6kg .已知底面正六边形边长是12mm ,高是10mm ,内孔直径是10mm .那么约有毛坯多少个?(铁的比重是37.8/g cm )思考:如何求几何体的体积?(1)公式法;(2)割补法例2.AB 、CD 分别在两平行平面α、β内,AB ⊥CD ,AB=CD=a,α、β的距离为h ,求四面体ABCD 的体积说明:补的技巧是:分析出要补成的结果,先画后找三、课堂巩固⒈课本P54/1,2,3,4⒉如图,在正三棱柱111C B A ABC -中,D 为棱1AA 的中点,若截面DBC 1∆是面积为6的直角三角形,则此三棱柱的体积为 。

(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案

(新教材)人教A版高中数学必修第二册学案   立体几何导学案含含配套练习答案

8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEF­A′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′­AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′­ABC,B′­A′BC,C′­A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥A­A1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1F­CC1E和棱柱ABF A1­DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.已知一个铜质的五棱柱的底面积为 16cm ,高为 4cm ,现将它熔化后铸成一个正 方体铜块,那么铸成的铜块的棱长为多少(不计损耗)?
2
3.若一个六棱锥的高为10 cm ,底面是边长为 6cm 的正六边形,求这个六棱锥的体积.
【课外作业】
20cm , 1. 圆台上下底面直径分别为 10 cm , 高为 2cm , 则圆台的体积为_______ cm2 .
4.球面被经过球心的平面截得的圆叫做球的大圆,大圆的半径等于球半径. 球的表面积公式为____________________;这表明球的表面积是球大圆面积的 4 倍
【课堂研讨】
例 1、有一堆相同规格的六角螺帽毛坯(如图)共重 6kg .已知毛坯底面正六边形边长 是 12 mm ,高是 10 mm ,内孔直径是 10 mm .那么这堆毛坯约有多少个? (铁的密度是 7.8g / cm )
2.某长方体纸盒的长、宽、高分别为 7cm , 5cm , 4cm ,则每层有 7 5 个单位正方 体,共有 4 层,因此它的体积为______________________.设长方体的长、宽、高 分别为 a , b , c ,那么它的体积为__________或___________. 3.柱体、锥体、台体、球的体积公式:
V柱体 ____________________________________________.
V锥体 ____________________________________________.
V台体 ____________________________________________. V球 _____________________________________________.
7.若干体积的水倒入底面半径为 2cm 的圆柱形器皿中,量得水平面的高度为 6cm , 若将这些水倒入轴截面是正三角形的倒圆锥器皿中,求水面的高度.
课题:1.3.2 空间几何体的体积(1)导学案
班级: 【学习目标】 【课前预习】
1.圆锥形烟囱的底面半径是 40cm ,高是 30 cm .已知每平方米需要油漆 150g ,油漆
姓名:
学号:

学习小组
了解柱、锥、台、球体积的计算公式
100 个这样的烟囱帽的外表面,共需油漆多少千克?( 取 3.14 ,精确到 0.1kg )
3
例 2、正棱锥的底是内接于一圆柱下底的正六边形,而其顶点为圆柱上底的中心. 已知棱锥的高为 6cm ,体积为 12 3cm3 ,求
【学后反思】
课题:1.3.2 空间几何体的体积检测案
班级: 姓名: 学号: 第 学习小组 【课堂检测】 1. 用一张长 12 cm 、宽 8cm 的矩形铁皮围成圆柱形的侧面,求这个圆柱的体积.
2. 已知矩形的长为 2 a , 宽为 a , 将此矩形卷成一个圆柱, 则此圆柱的体积为________.
3. 长方体相邻的三个面的面积分别为 2 , 3 和 6 ,则该长方体的体积为______. 4.若一个圆台的下底面面积是上底面面积的 4 倍,高是 3cm ,体积是 63 cm3 , 则圆台的侧面积是____________. 5.若一圆锥的轴截面是边长为 a 的正三角形,则该圆锥的内切球的体积为_______. 6.已知正三棱锥的侧面积为 18 3 ,高为 3 ,求它的体积.
相关文档
最新文档