高考数学模拟试题
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
数学高考模拟试题及答案
数学高考模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 若f(x) = 2x - 3,求f(5)的值:A. 1B. 4C. 7D. 103. 已知等差数列的前三项为2, 5, 8,求第10项的值:A. 21B. 22C. 23D. 244. 圆的半径为5,求其面积:A. 25πB. 50πC. 75πD. 100π5. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (0, 3)C. (3, 0)D. (1, 0)6. 函数y = x^3 - 6x^2 + 9x + 2的极值点是:A. x = 1B. x = 2C. x = 3D. x = 47. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}8. 抛物线y^2 = 4x的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 已知三角形ABC,∠A = 60°,AB = 2,AC = 3,求BC的长度:A. 1B. 2√3C. 3D. 410. 根据题目所给的二项式定理,求(a + b)^5展开式的通项公式:A. T_n = C_5^n a^n b^(5-n)B. T_n = C_5^n a^(5-n) b^nC. T_n = C_5^n a^(4-n) b^nD. T_n = C_5^n a^n b^(4-n)二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值:________。
12. 若sin(θ) = 0.6,求cos(θ)的值:________。
13. 已知函数f(x) = x^2 - 4x + 3,求其对称轴:________。
高考数学模拟试题含答案详解
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
2024年高考数学精选模拟试卷及答案
2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
高考数学模拟试题(六)
一、选择题1.设集合A ={}x |y =1-x ,B ={x |(x +1)()x -2}<0,则A ⋂B =().A.[)1,2B.(]-1,1C.()-1,1D.()-1,22.复数z 满足(1+i )z =|-2i |,则z =().A.2+2i B.1+i C.2-2i D.1-i 3.已知直线m ⊥平面α,则“直线n ⊥m ”是“n ∥α”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.上海地铁2号线早高峰时每隔4.5分钟一班,其中含列车在车站停留的0.5分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为().A.17B.18C.19D.1105.《孙子算经》中曾经记载,中国古代诸侯的等级从高到低分为:公、侯、伯、子、男,共有五级.若给有巨大贡献的甲、乙两人进行封爵,则甲比乙获封等级高的概率为().A.25B.15C.45 D.356.已知MOD 函数是一个求余数函数,MOD ()m ,n ()m ∈N +,n ∈N +表示m 除以n的余数,例如MOD ()8,3=2.如图1是某个算法的程序框图,若输入m 的值为28,则输出的值为().A.3B.4C.5D.67.已知a,b 是不共线的向量,OA =λa +μb , OB =2a -b ,OC =a -2b,若A 、B 、C 三点共线,则λ、μ满足().A.λ=μ-3B.λ=μ+3C.λ=μ+2D.λ=μ-28.已知变量x ,y 满足ìíîïï0≤x ≤3,x +y ≥0,x -y +3≤0,则z =2x -3y的最大值为().A.-9B.9C.-12D.129.已知函数f ()x =2sin ωx ()ω>0在x ∈[]a ,2()a <0上最大值为1且递增,则2-a 的最大值为().A.6B.7C.9D.810.已知函数f (x )=(x 2-2x )sin(x -1)+xx -1在[-1,3]上的最大值为M ,最小值为m ,则M +m =().A.1B.2C.3D.411.在直角坐标系xOy 中,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1()a >0,b >0的左、右焦点,点P ()x 0,y 0是双曲线右支上的一点,满足 PF 1∙PF 2=0,若点P 的横坐标取值范围是x 0∈æèöø54a ,43a ,则双曲线C 的离心率取值范围为().A.æèöø54,43 B.æèöø167,92C.èøD.èø12.已知对任意实数x 都有f ′()x =3e x +f ()x ,f ()0=-1,若不等式f ()x <a ()x -2(其中a <1)的解集中恰有两个整数,则a 的取值范围是().A.éëöø43e ,12 B.éëöø43e ,1 C.éëêöø÷74e 2,43e D.éëêöø÷74e 2,12二、填空题13.若直线2x -cy +1=0是抛物线x 2=y 的一条切线,则c =______.14.一个棱长为2的正方体中有一个实心圆柱体,圆柱的上、下底面在正方体的上、下底面上,侧面与正方体的侧面相切,则在正方体与圆柱的空隙中能够放置的最大球的半径为______.15.已知{}a n ,{}b n 都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=______.16.一只蚂蚁从一个正四面体ABCD 的顶点A 出发,每次从一个顶点爬行到另一个顶点,则蚂蚁爬行五次还在点A 的爬行方法种数是______.三、解答题(一)必考题17.已知f ()x =4tan x sin æèöøπ2-x cos æèöøπ3-x -3,ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B 为锐角,何小敏图152且f ()B =3.(1)求角B 的大小;(2)若b =3,a =2c ,求ΔABC 的面积.18.如图2,在四棱锥P -ABCD 中,PD ⊥面ABCD ,AB //DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45∘,E 为PA 的中点.(1)求证:DE //面PBC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,说明理由.19.在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村100户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x .将指标x 按照[)0,0.2,[)0.2,0.4,[)0.4,0.6,[)0.6,0.8,[]0.8,1.0分成五组,得到如图3所示的频率分布直方图.规定若0≤x <0.6,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当0≤x <0.2时,认定该户为“亟待帮住户”.工作组又对这100户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.图3(1)完成下面的列联表,并判断是否有95%的把握认为绝对贫困户数与受教育水平不好有关:绝对贫困户相对贫困户总计受教育水平良好2受教育水平不好52总计100(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于[)0,0.4的贫困户中,随机选取两户,用X 表示所选两户中“亟待帮助户”的户数,求X 的分布列和数学期望EX .附:K 2=n ()ad -bc 2()a +b ()c +d ()a +c ()b +d ,其中n =a +b+c +d .P ()K 2≥k 0k 00.152.0720.102.7060.053.8410.0255.02420.如图4,已知椭圆C :x 2a 2+y 2b2=1()a >b >0的离心率为,其右顶点为A ,下顶点为B ,定点C ()0,2,ΔABC 的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于P ,Q 两点,直线BP ,BQ 分别与x 轴交于M ,N 两点.(1)求椭圆C 的方程;(2)试探究M ,N 的横坐标的乘积是否为定值,说明理由.图421.已知函数f ()x =-a ln x +x +4-2ax.(1)当a ≥4时,求函数f ()x 的单调区间;(2)设g ()x =e x +mx 2-6,当a =e 2+2时,对任意x 1∈[)2,+∞,存在x 2∈[)1,+∞,使得f ()x 1+2e 2≥g ()x 2,求实数m 的取值范围.(二)选考题22.已知曲线C 的参数方程为ìíîx =3cos θ,y =sin θ,(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换ìíîïïx ',y '=y ,得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.设A 点的极坐标为æèöø32,π.(1)求曲线C '的极坐标方程;(2)若过点A 且倾斜角为π6的直线l 与曲线C '交于M ,N 两点,求||AM ∙||AN 的值.23.已知实数正数x ,y 满足x +y =1.(1)解关于x的不等式||x +2y +||x -y ≤52;(2)证明:æèçöø÷1x 2-1æèçöø÷1y 2-1≥9.图253参考答案与解析一、选择题1-12BDBCA CBADB CC 二、填空题13.-1;14.3-22;15.21;16.60.三、解答题(一)必考题17.解:(1)f ()x =4tan x sin æèöøπ2-x cos æèπ3=sin 2x -3cos 2x =2sin æèöø2x -π3,由f ()B =3得sin æèöø2B -π3,∵B 为锐角,∴2B -π3∈æèöø-π3,2π3,∴2B -π3=π3∴B =π3;(2)由余弦定理得b 2=a 2+c 2-2ac cos B ∵b =3,a =2c ,B =π3,∴9=()2c 2+c 2-4c 2cos π3,∴c 2,∴S ΔABC =12ac sin B =c 2sin B 18.解:(1)如图5,取PB 的中点M ,连过C 点作CN ⊥AB ,垂足为N ,∵CN ⊥AB ,DA ⊥AB ,∴CN //DA ,又∴四边形CDAN 为平行四边形,∴CN =AD =8,DC =AN =6,,在Rt△BC 2-CN 2=102-82=6∴AB =12,而E ,M 分别为PA ,PB 的中点,∴EM //AB 且EM =6,又DC //AB∴EM //CD 且EM =CD ,四边形CDEM 为平行四边形,∴DE //CM ,CM ⊂平面PBC ,DE ⊄∴DE //平面PBC .(2)由题意可得,DA ,DC ,DP 两两互相垂直,如图6,以DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8),假设AB 上存在一点F 使CF ⊥BD ,设F 坐标为(8,t ,0),则 CF =(8,t -6,0),DB =(8,12,0),由 DA =(1,0,0),得t =23,又平面DPC 的一个法向量为DA =(1,0,0),设平面FPC 的法向量为n=(8,12,9),又 PC =(0,6,-8), FC =(-8,163,0),由ìíî n · PC =0, n · FC =0,得ìíîïï6y -8z =0,-8x +163y =0,即ìíîïïz =34y ,x =23y ,不妨设y =12,有n =(8,12,9),则cos < n ,DA >=| n |·| DA | n || DA |=817,又由法向量方向知该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.19.解:(1)由题意可知,绝对贫困户有(0.25+0.50+0.75)×0.2×100=30(户),可得出如列联表:绝对贫困户相对贫困户总计受教育水平良好21820受教育水平不好285280总计3070100K 2=100×()18×28-2×52230×70×20×80≈4.762>3.841.故有95%的把握认为绝对贫困户数与受教育水平不好有关.(2)贫困指标在[)0,0.4的贫困户共有()0.25+0.5×0.2×100=15(户),“亟待帮助户”共有0.25×0.2×100=5(户),依题意X 的可能值为0,1,2,P ()X =0=C 210C 215=37,P ()X =1=C 110C 15C 215=1021,P ()X =2=C 25C 215=221,则X 的分布列为X P037110212221故EX =0×37+1×1021+2×221=23.20.解:(1)由已知,A ,B 的坐标分别是A ()a ,0,B ()0,-b 由于ΔABC 的面积为3,图5图54∴12∴(2)别为P (y 1+1x 1x -1直线N ∴x M +16kx +-16k 1+4k2∴x M21.f ′(x )由f ′当a 由f ′当a ∴当是(0,2)当a (2)当减,在(e 2,从而≤f ()x1+2f ()x +2e 2由e 2令h (∵h ′(当x 当x ∈[2,+∞)时,xe x +2()e 2-e x >xe x -2e x ≥0,h ′(x )<0.故h (x )在[1,+∞)上单调递减,从而h (x )max =h (1)=e 2-e ,从而m ≤e 2-e .22.解:(1)曲线C 的普通方程为:x 23+y 2=1,将曲线C 上的点按坐标变换ìíîïïx '=y '=y ,,得到ìíîx =3x ',y =y ',代入()x '2+()y '2=1得C '的方程为:x 2+y 2=1.则其极坐标方程为:ρ=1.(2)点A 在直角坐标的坐标为æèöø-32,0,因为直线l 过点A 且倾斜角为π6,设直线l 的参数方程为ìíîïïx =-32+,y =12t ,(t 为参数),代入C :x 2+y 2=1得:t 2-+54=0.设M ,N 两点对应的参数分别为t 1,t 2,则t 1+t 2=t 1t 2=54.所以||AM ∙||AN =||t 1t 2=54.23.解:(1)∵x +y =1,且x >0,y >0∴||x +2y +||x -y ≤52⇔ìíîïï0<x <1,||2-x +||2x -1≤52,⇔ìíîïï0<x <1,||2x -1≤12+x ,⇔ìíîïï0<x <1,-æèöø12+x ≤2x -1≤12+x ,解得16≤x <1,所以不等式的解集为éëöø16,1.(2)解法1:∵x +y =1,且x >0,y >0,∴æèçöø÷1x 2-1æèçöø÷1y 2-1=2x y +2y x +5≥+5=9,当且仅当x =y =12时,等号成立.解法2:∵x +y =1,且x >0,y >0,∴æèçöø÷1x 2-1æèçöø÷1y 2-1=1-x 2x 2∙1-y 2y 2=2xy +1≥2æèçöø÷x +y 22+1=9,当且仅当x =y =12时,等号成立.55。
2023高考数学模拟卷(一)(含答案解析)
9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
高考数学模拟卷选择题难度题(含答案)
高考模拟卷选择题荟萃(难题)1、若三角形ABC 的三条边长分别为2=a ,3=b ,4=c ,则=++C ab B ca A bc cos 2cos 2cos 2( A ) A .29 B .30 C .9 D .10.2、学校准备从5位报名同学中挑选3人,分别担任2011年世界大学生运动会田径、游泳和球类3个不同项目比赛的志愿者,已知其中同学甲不能担任游泳比赛的志愿者,则不同的安排方法共有 CA .24种B .36种C .48种D .60种3、已知{1,2,3,4},{1,2,3}a b ∈∈,则关于x 的不等式222(1)0x a x b --+≥的解集为R 的概率为344、△ABC 的AB 边在平面α内,C 在平面α外,AC 和BC 分别在与平面α成30o和45o的角,且平面ABC 与平面α成60o的二面角,那么sin ACB ∠的值为( D ) A .1B .13C .223D .1或135、在100,101,…,999这些数中,各位数字按严格递增或严格递减顺序排列的数的个数是 ( C ) A .120 B .168 C .204 D .2166、连续抛掷骰子,记下每次面朝上的点数,若出现三个不同的数就停止,问抛掷5次停止时,会出现不同的结果种数位 ( B ) A .420 B .840 C .720 D .640【来源:全,品…7、函数()()sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的最小正周期是π,若其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象( B )A .关于点,012π⎛⎫⎪⎝⎭对称 B .关于直线12x π=对称C .关于点)0,6(π对称 D .关于直线6π=x 对称8、设点(,a b )是区域4000x y x y +-≤⎧⎪>⎨⎪>⎩内的任意一点,则函数2()41f x ax bx =-+在区间[1,)+∞上是增函数的概率为( C )A .14B .23C .13D .129、如图,在棱长均为2的四棱锥P ABCD -中,点E 为 PC 的中点,则下列命题正确的是( D )A .BE ∥平面PAD ,且直线BE 到平面PAD 的距离为3B .BE ∥平面PAD ,且直线BE 到平面PAD 的距离为263C.BE 与平面PAD 不平行,且直线BE 与平面PAD 所成的角大于30o第8题图 D.BE 与平面PAD 不平行,且直线BE 与平面PAD 所成的角小于30o10、已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 有且只有三条的必要条件是( D )A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞11、F 为椭圆2215x y +=的右焦点,第一象限内的点M 在椭圆上,若MF x ⊥轴,直线MN 与圆221x y +=相切于第四象限内的点N ,则NF 等于 ( A )A. 213B. 5C. 214D. 512、已知函数=)(x f ⎩⎨⎧>+-≤-)0(,1)1()0(,12x x f x x ,把函数x x f x g -=)()(的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为( B ) A .2)1(-=n n a nB .1-=n a nC .)1(-=n n a nD .22-=nn a13、已知三个正态分布密度函数()()222i i x i x μσϕ--=(R ∈x ,1,2,3i =)的图象如图1所示,则( D ) A .321μμμ=<,321σσσ>=B .321μμμ=>,321σσσ<= C .321μμμ<=,321σσσ=< D .321μμμ=<,321σσσ<=14、已知函数()f x 的定义域为D ,如果存在实数M ,使对任意的x D ∈,都有()f x M ≤,则称函数()f x 为有界函数,下列函数:①()2,xf x x R -=∈ ②()()ln ,0,f x x x =∈+∞③()()()2,,00,1xf x x x =∈-∞+∞+U ; ④()()sin ,0,f x x x x =∈+∞ 为有界函数的是( C ) A.②④B.②③④C.①③D.①③④15、已知抛物线281x y =与双曲线)0(1222>=-a x a y 有共同的焦点F ,O 为坐标原点,P 在x 轴上方且在双曲线上,则OP FP ⋅u u u r u u u r的最小值为( A ). (A )323- (B )332- (C )47-(D )43【解析】抛物线22188y x x y =⇔=,焦点F 为(0,2),则双曲线2221y x a -=的2c =,则23a =,即双曲线方程为2213y x -=,设(,)P m n ,(n ≥,则2233n m -=22113m n ⇒=-,则(,)(,2)OP FP m n m n ⋅=⋅-u u u r u u u r 222212123m n n n n n =+-=-+-2437()344n =--, 因为3n ≥,故当3n =时取得最小值,最小值为323-,故选A .16、已知椭圆22221(0)x y a b a b +=>>的半焦距为(0)c c >,左焦点为F ,右顶点为A ,抛物线215()8y a c x =+与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率是( D )A.815 B. 415 C. 23 D. 12解析D :依题意,由四边形ABFC 是菱形得知,题中的抛物线与椭圆的交点B ,C 应位于线段AF 的垂直平分线x =a -c 2上.由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1y 2=158a +c x 即e =12,该椭圆的离心率是12,选D.17、定义区间[x 1,x 2]长度为x 2﹣x 1,(x 2>x 1),已知函数f (x )=(a ∈R ,a≠0)的定义域与值域都是[m ,n],则区间[m ,n]取最大长度时a 的值为( D ) A .B . a >1或a <﹣3C . a >1D . 3解答: 解:设[m ,n]是已知函数定义域的子集. x≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞), 故函数f (x )=﹣在[m ,n]上单调递增,则,故m ,n 是方程)=﹣=x 的同号的相异实数根,即a 2x 2﹣(a 2+a )x+1=0的同号的相异实数根 ∵mn=∴m ,n 同号,只需△=a 2(a+3)(a ﹣1)>0, ∴a >1或a <﹣3,n ﹣m==,n ﹣m 取最大值为.此时a=3,故选:D18、已知O 为坐标原点,双曲线22221x y a b-=(0,0)a b >>的右焦点F ,以OF 为直径作圆交双曲线 的渐近线于异于原点的两点A 、B ,若()0AO AF OF +⋅=u u u r u u u r u u u r,则双曲线的离心率e 为 ( C )A.2B.3C.2D.319、已知1a >,若函数()(),1121,13x a x f x f x a x ⎧-<≤⎪=⎨-+-<≤⎪⎩,则()0f f x a -=⎡⎤⎣⎦的 根的个数最多有( C A.1个 B.2个 C. 3个 D. 4个20、已知定义在R 上的函数()f x 满足:()[)[)()()222,0,1,22,1,0.x x f x f x f x x x ⎧+∈⎪=+=⎨-∈-⎪⎩,且,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( C )(A )4- (B )6- (C )7- (D )8-21、若实数,,,a b c d 满足222(3ln )(2)0b a a c d +-+-+=,则22()()a c b d -+-的最小值为( A )A .8B .22C .2 D. 222、对于三次函数)0()(23≠+++=a d cx bx ax x f ,给出定义:设'()f x 是函数)(x f y =的导数,''()f x 是'()f x 的导数,若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数)(x f y =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心。
2024年上海市高考高三数学模拟试卷试题及答案详解
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2025年新高考数学模拟试题一带解析
2025年新高考数学模拟试题(卷一)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.某车间有两条生产线分别生产5号和7号两种型号的电池,总产量为8000个.质检人员采用分层抽样的方法随机抽取了一个样本容量为60的样本进行质量检测,已知样本中5号电池有45个,则估计7号电池的产量为()A .6000个B .5000个C .3000个D .2000个2.如图所示,四边形ABCD 是正方形,,M N 分别BC ,DC 的中点,若,,AB AM AN λμλμ=+∈R,则2λμ-的值为()A .43B .52C .23-D .1033.已知n S 为等差数列{}n a 的前n 项和,4920224a a a ++=,则20S =()A .60B .120C .180D .2404.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题为假命题的是()A .若,m m n α⊥⊥,则n α或n ⊂αB .若,,⊥⊥⊥m n αβαβ,则m n ⊥C .若,,m l n αββγαγ⋂=⋂=⋂=,且n β,则//l mD .若,,m n m n αβ⊥⊂⊂,则αβ⊥5.第19届亚运会于2023年9月28日至10月8日在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”“莲莲”和“宸宸”,分别代表世界遗产良渚古城遗址、西湖和京杭大运河.某同学买了6个不同的吉祥物,其中“琮琮”“莲莲”和“宸宸”各2个,现将这6个吉祥物排成一排,且名称相同的两个吉祥物相邻,则排法种数共为()A .48B .24C .12D .66.已知函数1()e 2x f x x a x ⎛⎫=-+ ⎪⎝⎭恰有2个不同的零点,则实数a 的取值范围为()A .1,ee ⎛⎫⎪⎝⎭B .(4e,)⎛∞ ⎝U C .2e ⎫⎪⎭D .(2e,)⎛∞ ⎝U7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点()3,4A -的直线l 的一个法向量为()1,2-,则直线l 的点法式方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上做法,在空间直角坐标系中,经过点()1,2,3M 的平面的一个法向量为()1,4,2m =-,则该平面的方程为()A .4210x y z -++=B .4210x y z --+=C .4210x y z +-+=D .4210x y z +--=8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为12,F F ,过1F 的直线与双曲线C 分别在第一、二象限交于,A B 两点,2ABF △内切圆的半径为r ,若1||2BF a =,r =,则双曲线C 的离心率为()AB.2CD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()A .()f x 的最小正周期为πB .当π0,2⎡⎤∈⎢⎥⎣⎦x 时,()f x 的值域为11,22⎡⎤-⎢⎥⎣⎦C .将函数()f x 的图象向右平移π6个单位长度可得函数()sin 2g x x =的图象D .将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点5π,06⎛⎫⎪⎝⎭对称10.已知12,z z 是两个虚数,则下列结论中正确的是()A .若12z z =,则12z z +与12z z 均为实数B .若12z z +与12z z 均为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数11.已知函数()y f x =在R 上可导且(0)2f =-,其导函数()f x '满足:22()21()exf x f x x -=-',则下列结论正确的是()A .函数()f x 有且仅有两个零点B .函数2()()2e g x f x =+有且仅有三个零点C .当02x ≤≤时,不等式4()3e (2)f x x ≥-恒成立D .()f x 在[1,2]上的值域为22e ,0⎡⎤-⎣⎦第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为.13.已知M ,N 是抛物线()2:20C x py p =>上两点,焦点为F ,抛物线上一点(),1P t 到焦点F 的距离为32,下列说法正确的是.(把所有正确结论的编号都填上)①1p =;②若OM ON ⊥,则直线MN 恒过定点()0,1;③若MOF △的外接圆与抛物线C 的准线相切,则该圆的半径为12;④若2MF FN = ,则直线MN 的斜率为4.14.如图,在正方体1111ABCD A B C D -,中,M ,N 分别为线段11A D ,1BC 上的动点.给出下列四个结论:①存在点M ,存在点N ,满足MN ∥平面11ABB A ;②任意点M ,存在点N ,满足MN ∥平面11ABB A ;③任意点M ,存在点N ,满足1MN BC ⊥;④任意点N ,存在点M ,满足1MN BC ⊥.其中所有正确结论的序号是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数31()ln 222f x ax x x x=--+.(1)当1a =时,求()f x 的单调区间;(2)对[1,)x ∀∈+∞,()0f x ≥恒成立,求a 的取值范围.16.(15分)我国老龄化时代已经到来,老龄人口比例越来越大,出现很多社会问题.2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线总计愿生40y60不愿生x2240总计5842100(1)求x和y的值.(2)分析调查数据,是否有95%以上的把握认为“生育意愿与城市级别有关”?(3)在以上二孩生育意愿中按分层抽样的方法,抽取6名育龄妇女,再选取两名参加育儿知识讲座,求至少有一名来自一线城市的概率.参考公式:22()()()()()n ad bca b c d a c b dχ-=++++,()2P kχ≥0.0500.0100.001k 3.841 6.63510.82817.(15分)在直角梯形ABCD 中,//AD BC ,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BNBC的值;若不存在,说明理由.18.(17分)已知椭圆22:143x y C +=的左右焦点分别为12,F F ,点()00,P x y 为椭圆C 上异于顶点的一动点,12F PF ∠的角平分线分别交x 轴、y 轴于点M N 、.(1)若012x =,求1PF ;(2)求证:PM PN为定值;(3)当1F N P 面积取到最大值时,求点P 的横坐标0x .19.(17分)已知数列12:,,,n A a a a L 为有穷正整数数列.若数列A 满足如下两个性质,则称数列A 为m 的k 减数列:①12n a a a m +++= ;②对于1i j n ≤<≤,使得i j a a >的正整数对(,)i j 有k 个.(1)写出所有4的1减数列;(2)若存在m 的6减数列,证明:6m >;(3)若存在2024的k 减数列,求k 的最大值.2025年新高考数学模拟试题(卷一)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
2024_年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷
2024年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷李昌成(乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0094-10收稿日期:2023-11-05作者简介:李昌成ꎬ中学正高级教师ꎬ从事中学数学教学研究.㊀㊀一㊁单选题:本大题共8小题ꎬ共40.0分.在每小题列出的选项中ꎬ选出符合题目的一项.1.设集合U=RꎬA=x1<x<3{}ꎬB=xx<2{}ꎬ则图1中阴影部分表示的集合为(㊀㊀).㊀A.{x|xȡ2}㊀㊀㊀㊀B.{x|xɤ2}C.x1<xɤ2{}D.{x|2ɤx<3}图1㊀第1题图2.已知复数z满足2z-z=1+3iꎬ则zi=(㊀㊀).A.-1+i㊀B.1-i㊀C.1+i㊀D.-1-i3.正方形ABCD中ꎬMꎬN分别是BCꎬCD的中点ꎬ若ACң=λAMң+μBNңꎬ则λ+μ=(㊀㊀).A.65㊀㊀㊀B.85㊀㊀㊀C.2㊀㊀㊀D.834.已知三棱台ABC-A1B1C1中ꎬ三棱锥A-A1B1C1的体积为4ꎬ三棱锥A1-ABC的体积为8ꎬ则该三棱台的体积为(㊀㊀).A.12+33㊀㊀㊀B.12+42C.12+43D.12+475.从装有3个红球㊁2个白球的袋中任取2个球ꎬ则所取的2个球中至少有1个白球的概率是(㊀㊀).A.110㊀㊀㊀B.310㊀㊀㊀C.710㊀㊀㊀D.356.已知函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的部分图象如图2所示ꎬ则下列判断错误的是(㊀㊀).A.函数f(x)的最小正周期为2B.函数f(x)的值域为[-4ꎬ4]C.函数f(x)的图象关于点(103ꎬ0)中心对称D.函数f(x)的图象向左平移π3个单位长度后得到y=Asinωx的图象图2㊀第6题图497.若a>b>1ꎬ0<c<1ꎬ则下列结论正确的是(㊀㊀).A.ac<bc㊀㊀㊀㊀B.alogbc<blogacC.abc<bacD.logac<logbc8.某四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ该四棱锥内有一个半径为1的球ꎬ则该四棱锥的表面积的最小值是(㊀㊀).A.16㊀㊀B.8㊀㊀C.32㊀㊀D.24二㊁多选题:本大题共4小题ꎬ共20.0分.在每小题有多项符合题目要求.9.如图3ꎬ在棱长为1的正方体ABCD-A1B1C1D1中ꎬ点P是线段AD1上的动点ꎬ则下列命题正确的是(㊀㊀).A.异面直线C1P与CB1所成角的大小为定值B.三棱锥D-BPC1的体积是定值C.直线CP和平面ABC1D1所成的角的大小是定值D.若点Q是线段BD上动点ꎬ则直线PQ与A1C不可能平行图3㊀第9题图10.已知函数f(x)=x3-x+1ꎬg(x)=f(x)-ax(aɪR)ꎬ则(㊀㊀).A.f(x)有两个极值点B.f(x)的图象与x轴有三个交点C.点(0ꎬ1)是曲线y=f(x)的对称中心D.若g(x)存在单调递减区间ꎬ则aȡ-111.已知抛物线C:x2=2y的焦点为Fꎬ准线为lꎬAꎬB是C上的两点ꎬO为坐标原点ꎬ则(㊀㊀).A.l的方程为y=-1B.若AF=32ꎬ则әAOF的面积为24C.若OAң OBң=0ꎬ则OA OBȡ8D.若øAFB=120ʎꎬ过AB的中点D作DEʅl于点Eꎬ则ABȡ5DE12.设函数f(x)=xlnxꎬg(x)=12x2ꎬ给定下列命题ꎬ其中正确的是(㊀㊀).A.若方程f(x)=k有两个不同的实数根ꎬ则kɪ(-1eꎬ0)B.若方程kf(x)=x2恰好只有一个实数根ꎬ则k<0㊀C.若x1>x2>0ꎬ总有m[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ则mȡ1D.若函数F(x)=f(x)-2ag(x)有两个极值点ꎬ则实数aɪ(0ꎬ12)三㊁填空题:本大题共4小题ꎬ共20.0分13.(x2-x+2)5的展开式中x3的系数为.14.已知圆C:x2+y2-4x-2y+1=0ꎬ点P是直线y=4上的动点ꎬ过P作圆的两条切线ꎬ切点分别为AꎬBꎬ则AB的最小值为.15.已知函数f(x)=x3+mxꎬ若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则实数m的取值范围为.16.已知椭圆E:x24+y2=1ꎬ椭圆的左右焦点分别为F1ꎬF2ꎬ点A(mꎬn)为椭圆上一点且m>0ꎬn>0ꎬ过A作椭圆E的切线lꎬ分别交x=2ꎬx=-2于点CꎬD.连接CF1ꎬDF2ꎬCF1与DF2交于点Gꎬ并连接AG.若直线lꎬAG的斜率之和为32ꎬ则点A坐标为.四㊁解答题:本大题共6小题ꎬ共70.0分.解答应写出文字说明ꎬ证明过程或演算步骤.17.已知数列an{}满足a1=1ꎬan+1=an+2ꎬ数列bn{}的前n项和为Snꎬ且Sn=2-bn.(1)求数列an{}ꎬbn{}的通项公式ꎻ59(2)设cn=an+bnꎬ求数列cn{}的前n项和Tn.18.已知әABC中ꎬ角AꎬBꎬC所对的边分别为aꎬbꎬcꎬsinAcosC+cosAsinCc+b-a=sinC+sinAa-bꎬ且a=13.(1)求әABC外接圆的半径ꎻ(2)若c=3ꎬ求әABC的面积.19.如图4ꎬ直三棱柱ABC-A1B1C1中ꎬAA1=AB=AC=1ꎬEꎬF分别是CC1ꎬBC的中点ꎬAEʅA1B1ꎬD为棱A1B1上的点.图4㊀第19题图(1)证明:DFʅAEꎻ(2)是否存在一点Dꎬ使得平面DEF与平面ABC的夹角的余弦值为1414若存在ꎬ说明点D的位置ꎬ若不存在ꎬ说明理由.20.某剧场的座位数量是固定的ꎬ管理人员统计了最近在该剧场举办的五场表演的票价xi(单位:元)和上座率yi(上座人数与总座位数的比值)的数据ꎬ其中i=1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ并根据统计数据得到如图5的散点图:图5㊀第20题图(1)由散点图判断y=bx+a与y=clnx+d哪个模型能更好地对y与x的关系进行拟合(给出判断即可ꎬ不必说明理由)ꎬ并根据你的判断结果求回归方程ꎻ(2)根据(1)所求的回归方程ꎬ预测票价为多少时ꎬ剧场的门票收入最多.参考数据:x=240ꎬy=0.5ꎬð5i=1x2i=365000ꎬð5i=1xiyi=457.5ꎻ设zi=lnxiꎬ则ð5i=1ziʈ27ꎬð5i=1z2iʈ147.4ꎬð5i=1ziyiʈ12.7ꎻe5.2ʈ180ꎬe5.4ʈ220ꎬe6.4ʈ600.参考公式:对于一组数据(u1|v1)ꎬ(u2|v2)ꎬ ꎬ(un|vn)ꎬ其回归直线v︿=α︿+β︿u的斜率和截距的最小二乘估计分别为:β=ðni=1uivi-nuvðni=1u2i-nu=ðni=1(ui-u)(vi-v)ðni=1(ui-u)2ꎬα︿=v-β︿u.21.已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)经过点P(4ꎬ2)ꎬ双曲线C的右焦点F到其渐近线的距离为2.(1)求双曲线C的方程ꎻ(2)已知Q(0ꎬ-2)ꎬD为PQ的中点ꎬ作PQ的平行线l与双曲线C交于不同的两点AꎬBꎬ直线AQ与双曲线C交于另一点Mꎬ直线BQ与双曲线C交于另一点Nꎬ证明:MꎬNꎬD三点共线.22.已知函数f(x)=aln(x+1)-sinx.(1)若y=f(x)在[π4ꎬπ2]上单调递减ꎬ求a的取值范围ꎻ(2)证明:当a=1时ꎬf(x)在(π2ꎬ+ɕ)上有且仅有一个零点.参考答案1.由Venn图可知ꎬ阴影部分的元素由属于集合A但不属于集合B的元素构成ꎬ所以阴影部分表示的集合为Aɘ(∁UB).因为集合U=RꎬA={x|1<x<3}ꎬB={x|x<2}ꎬ所以∁UB={x|xȡ2}.所以Aɘ(∁UB)={x|2ɤx<3}.所以图中阴影部分表示69的集合为{x|2ɤx<3}.故选D.2.设z=a+bi(aꎬbɪR)ꎬ则2z-z-=2(a+bi)-(a-bi)=a+3bi=1+3i.所以a=1ꎬ3b=3ꎬ{即a=1ꎬb=1.所以z=1+i.所以zi=1+ii=(1+i)(-i)i(-i)=1-i.故选B.3.以ABꎬAD为坐标轴建立平面直角坐标系ꎬ如图6ꎬ设正方形边长为1ꎬMꎬN分别是BCꎬCD的中点ꎬ所以AMң=(1ꎬ12)ꎬBNң=(-12ꎬ1)ꎬACң=(1ꎬ1).图6㊀第3题解析图因为ACң=λAMң+μBNңꎬ所以λ-12μ=1ꎬ12λ+μ=1.ìîíïïïï所以λ=65ꎬμ=25.所以λ+μ=85.故选B.4.设SәABC=S1ꎬSәA1B1C1=S2ꎬ棱台的高为hꎬ由已知ꎬ得VA-A1B1C1=13S2h=4ꎬ得S2=12hꎬVA1-ABC=13S1h=8ꎬ则S1=24h.所以三棱台ABC-A1B1C1的体积V=13h(S1+S2+S1S2)=13h(12h+24h2+12ˑ24h2)=12+42.故选B.5.根据题意ꎬ首先分析从5个球中任取2个球ꎬ设3个红球为a1ꎬa2ꎬa3ꎬꎬ2个白球为b1ꎬb2ꎬ所以样本空间Ω={a1a2ꎬa1a3ꎬa1b1ꎬa1b2ꎬa2a3ꎬa2b1ꎬa2b2ꎬa3b1ꎬa3b2ꎬb1b2}ꎬ共10个等可能的样本点.设事件A= 所取的2个球中至少有1个白球 ꎬ则事件A=所取的2个球中没有白球 ꎬA={a1a2ꎬa1a3ꎬa2a3}ꎬ则P(A)=310ꎬP(A)=1-310=710.则所取的3个球中至少有1个白球的概率是710.故选C.6.根据题意可得ꎬ12T=43-13ꎬ解得T=2ꎬ故函数f(x)的最小正周期为2ꎬA正确.所以ω=2πT=π.又因为函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的图象过点(13ꎬ0)ꎬ所以Asin(π3+φ)=0ꎬ解得φ=kπ-π3ꎬkɪZ.又因为-π<φ<0ꎬ所以φ=-π3.而函数f(x)=Asin(ωx+φ)的图象过点(0ꎬ-23)ꎬ所以Asin(πˑ0-π3)=-23ꎬ解得A=4ꎬ即f(x)的值域为[-4ꎬ4]ꎬ故B正确.所以f(x)=4sin(πx-π3).令πx-π3=kπꎬ解得x=k+13ꎬkɪZꎬ其中一个对称中心为(103ꎬ0)ꎬC正确.所以f(x)的图象向左移13个单位长度后得到y=4sinπxꎬD错误.故选D.7.因为a>b>1ꎬ0<c<1ꎬ所以ac>bcꎬ故A错误.alogbc=alogcclogcb=alogcbꎬ79blogac=blogcclogca=blogcaꎬalogcb-blogca=logc(aa/bb)logca logcbꎬ因为a>b>1ꎬ0<c<1ꎬ所以aa>ba>bb.即aabb>1.所以logcaabb<0ꎬlogca<0ꎬlogcb<0.所以alogcb<blogca.即alogbc<blogacꎬ故B正确.abcbac=(ab)1-cꎬ因为a>b>1ꎬ0<c<1ꎬ所以ab>1ꎬ1-c>0.㊀所以(ab)1-c>(ab)0=1.所以abcbac>1.即abc>bacꎬ故C错误.因为a>b>1ꎬ0<c<1ꎬ所以logac>logbcꎬ故D错误.故选B.8.因为四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ所以该四棱锥是正四棱锥ꎬ设正四棱锥P-ABCDꎬ当半径为1的球是正四棱锥P-ABCD的内切球时ꎬ该四棱锥的表面积最小ꎬ设正方形ABCD的边长为2aꎬ设ACɘBD=Oꎬ连接POꎬ则POʅ面ABCDꎬ所以正四棱锥P-ABCD的高为POꎬ设PO=hꎬ正四棱锥P-ABCD的表面积为Sꎬ由V=13 SABCD PO=13(4SәPAB+S四边形ABCD)ˑ1=13Sꎬ即为13ˑ2aˑ2ah=13(4ˑ12ˑ2aˑa2+h2+2aˑ2a)ˑ1ꎬ整理可得:a(h-1)=a2+h2.所以a2(h-1)2=a2+h2ꎬ可得a2=h2h2-2h.所以正四棱锥P-ABCD体积为V=13ˑ4a2h.则S=3V=3ˑ13ˑ4a2ˑh=4a2h=4a3h2-2h=4h2h-2(h>2).设t=h-2>0ꎬ可得h=t+2.所以S=4(t+2)2t=4(t+4t+4)ȡ4(2t4t+4)=32ꎬ当且仅当t=4t即t=2ꎬh=4时ꎬ等号成立.该四棱锥的表面积最小值是32.故选C.9.因为CB1ʅBC1ꎬCB1ʅABꎬBC1ɘAB=Bꎬ所以CB1ʅ平面ABC1D1.又C1P⊂平面ABC1D1ꎬ得CB1ʅC1Pꎬ所以异面直线C1P与CB1垂直ꎬ选项A正确.三棱锥D-BPC1以BDC1为底面ꎬ因为AD1ʊ平面BDC1ꎬ所以点P到平面BDC1的距离为定值ꎬ故三棱锥D-BPC1的体积是定值ꎬ选项B正确.点C在平面ABC1D1的射影是定点(BC1与B1C的交点)ꎬ线段CP长度显然随位置变化而变化ꎬ故直线CP和平面ABC1D1所成的角的正弦在变化ꎬ角的大小不是定值ꎬ选项C错误.以点D为原点ꎬDAꎬDCꎬDD1所在的直线分别为xꎬyꎬz轴ꎬ建立如图7所示空间直角坐标系ꎬ则CA1ң=(1ꎬ-1ꎬ1)ꎬ点P坐标取(23ꎬ0ꎬ13)ꎬ点Q坐标取(13ꎬ13ꎬ0)时ꎬPQң=(-13ꎬ13ꎬ-13)ꎬPQ//A1C成立ꎬ选项D错误.故选AB.图7㊀第9题解析图8910.已知f(x)=x3-x+1ꎬ则fᶄ(x)=3x2-1.由fᶄ(x)>0ꎬ得x<-33或x>33ꎻ由fᶄ(x)<0ꎬ得-33<x<33ꎬ所以函数f(x)在(-ɕꎬ-33)ꎬ(33ꎬ+ɕ)上单调递增ꎬ在(-33ꎬ33)上单调递减.则当x=-33时ꎬ函数f(x)取得极大值ꎬ当x=33时ꎬ函数f(x)取得极小值ꎬ故A项正确.而f(-33)=1+239>0ꎬf(33)=1-239>0ꎬ得函数f(x)的图象与x轴有一个交点ꎬ故B项错误.㊀令fᶄ(x)=3x2-1=h(x)ꎬ得hᶄ(x)=6x=0ꎬ得x=0ꎬ此时f(0)=1ꎬ得曲线y=f(x)的对称中心为(0ꎬ1)ꎬ故C项正确.由g(x)=f(x)-axꎬ得gᶄ(x)=fᶄ(x)-a=3x2-1-aꎬ若g(x)存在单调递减区间ꎬ即gᶄ(x)<0有解ꎬ得a>3x2-1有解ꎬ等价于a>(3x2-1)minꎬ则a>-1ꎬ故D项错误.故选AC.11.A选项:l的方程为y=-12ꎬ错误ꎻB选项:因为|AF|=32ꎬ可得yA=1ꎬ|xA|=2ꎬSәAOF=12|OF| |xA|=24ꎬ正确ꎻC选项:设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ则OAң OBң=x1x2+y1y2=0ꎬ即x1x2=-y1y2ꎬ而y1y2=(x1x22)2=-x1x2ꎬ解得x1x2=-4ꎬy1y2=4ꎬ(|OA| |OB|)2=(x21+y21)(x22+y22)=32+x21y22+x22y21ȡ32+2|x1x2| |y1y2|=64ꎬ所以|OA| |OB|ȡ8ꎬ正确ꎻD选项:如图8ꎬ过点A作AA1ʅl于点A1ꎬ过点B作BB1ʅl于点B1ꎬ设|AF|=aꎬ|BF|=bꎬ所以|DE|=12(a+b).因为|AB|2=a2+b2-2ab cosøAFB=a2+b2+ab=(a+b)2-abȡ(a+b)2-(a+b2)2=3 (a+b2)2=3|DE|2ꎬ所以|AB|ȡ3|DE|ꎬ错误.故选BC.图8㊀第11题解析图12.对于Aꎬf(x)的定义域为(0ꎬ+ɕ)ꎬfᶄ(x)=lnx+1ꎬ令fᶄ(x)>0ꎬ得到x>1eꎬ令fᶄ(x)<0ꎬ得到0<x<1e.所以f(x)在(0ꎬ1e)上单调递减ꎬ在(1eꎬ+ɕ)上单调递增.所以[f(x)]min=f(1e)=-1eꎬ且当xң0时ꎬf(x)ң0.又f(1)=0ꎬ从而要使方程f(x)=k有两个不同的实根ꎬ即y=f(x)与y=k有两个不同的交点ꎬ所以kɪ(-1eꎬ0)ꎬ故A正确.对于Bꎬ易知x=1不是该方程的根ꎬ当xʂ1时ꎬf(x)ʂ0ꎬ方程kf(x)=x2有且只有一个实数根ꎬ等价于y=k和y=xlnx只有一个交点ꎬyᶄ=lnx-1(lnx)2ꎬ又x>0且xʂ1ꎬ令yᶄ>0ꎬ有x>eꎬ令yᶄ<0ꎬ有0<x<1或1<x<eꎬ所以函数y=xlnx在(0ꎬ1)和(1ꎬe)单调递减ꎬ在(eꎬ+ɕ)单调递增ꎬx=1是一条渐近线ꎬ极小值为e.由y=xlnx的大致图象(如图9)可知k<990或k=eꎬ故B错.图9㊀第12题解析图对于Cꎬ当x1>x2>0时ꎬm[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ等价于mg(x1)-f(x1)>mg(x2)-f(x2)恒成立ꎬ即函数y=mg(x)-f(x)在(0ꎬ+ɕ)上单调递增ꎬ所以yᶄ=mgᶄ(x)-fᶄ(x)=mx-lnx-1ȡ0恒成立ꎬ即mȡlnx+1x在(0ꎬ+ɕ)上恒成立.令r(x)=lnx+1xꎬ则rᶄ(x)=-lnxx2.令rᶄ(x)>0得0<x<1ꎬ令rᶄ(x)<0得x>1ꎬ从而r(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ则r(x)max=r(1)=1ꎬ于是mȡ1ꎬ故C正确.对于Dꎬ函数F(x)=f(x)-2ag(x)有两个极值点ꎬ即F(x)=xlnx-ax2(x>0)有两个不同极值点ꎬ等价于Fᶄ(x)=lnx+1-2ax=0有两个不同的正根ꎬ即方程2a=lnx+1x有两个不同的正根ꎬ由C可知ꎬ0<2a<1ꎬ即0<a<12ꎬ则D正确.故选ACD.13.式子(x2-x+2)5=[(x2-x)+2]5的展开式的通项公式为Tr+1=Cr5 (x2-x)5-r 2rꎬ对于(x2-x)5-rꎬ它的通项公式为Trᶄ+1=(-1)rᶄ Crᶄ5-rx10-2r-rᶄꎬ其中ꎬ0ɤrᶄɤ5-rꎬ0ɤrɤ5ꎬrꎬrᶄ都是自然数.令10-2r-rᶄ=3ꎬ可得r=2ꎬrᶄ=3{或r=3ꎬrᶄ=1.{故x3项的系数为C2522(-C33)+C3523(-C12)=-200ꎬ故答案为-200.14.圆C:x2+y2-4x-2y+1=0ꎬ即(x-2)2+(y-1)2=4.图10㊀第14题解析图如图10ꎬ由于PAꎬPB分别切圆C于点AꎬBꎬ则PA=PBꎬCAʅPAꎬCBʅPBꎬ所以S四边形APBC=2SәACP=CA PA.因为CA=CB=r=2ꎬ所以S四边形APBC=2PA.又PCʅABꎬ所以S四边形APBC=12AB CP.所以PA=14AB CP.即AB=4PACP=41-4CP2.所以AB最短时ꎬCP最短ꎬ点C到直线y=4的距离即为CP的最小值ꎬ所以CPmin=3.所以AB的最小值为41-49=453.故答案为453.15.令y=ex-(x+1)ꎬ所以yᶄ=ex-1.显然当x>0时ꎬyᶄ>0ꎬ则y在(0ꎬ+ɕ)上单调递增ꎻ当x<0时ꎬyᶄ<0ꎬ则y在(-ɕꎬ0)上单调递减.即x=0时取得最小值ymin=0ꎬ故exȡx+1恒成立.若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则f(x)在R上单调递增ꎬ则fᶄ(x)ȡ0恒成立ꎬfᶄ(x)=3x2+mȡ0ꎬmȡ-3x2ꎬ又(-3x2)max=0ꎬ故mȡ0.故答案为[0ꎬ+ɕ).16.设直线l的方程y=kx+bꎬ由y=kx+bꎬx24+y2=1{得001(1+4k2)x2+8kbx+4b2-4=0.如图11ꎬ因为直线l与椭圆E相切ꎬ所以ә=(8kb)2-4(4k2+1)(4b2-4)=0ꎬ解得4k2=b2-1.因为m=-4kb1+4k2ꎬn=km+bꎬ所以n=b1+4k2.所以mn=-4kꎬ即k=-m4nꎬb=1n.所以直线l的方程为mx4+ny=1.图11㊀第16题解析图分别令x=2和x=-2ꎬ得C(2ꎬ1n(1-m2))ꎬD(-2ꎬ1n(1+m2))ꎬ所以直线DF2方程为y=-(1/n)(1+m/2)2+3(x-3)ꎬ直线CF1方程为y=(1/n)(1-m/2)2+3(x+3).联立得DF2与CF1交点G(32mꎬ(23-3)n).因为kAE=(23-4)n3m/2-m=4nmꎬ所以kAG kl=4nm.(-m4n)=-1.所以由kAG kl=-1ꎬkAG+kl=32ꎬ得kl=-m4n=-12ꎬkAG=2.即m=2n.又m24+n2=1ꎬ则m=2ꎬn=22ꎬ即A(2ꎬ22).17.(1)由题知ꎬa1=1ꎬan+1-an=2ꎬ所以数列{an}是首项为1ꎬ公差为2的等差数列.所以an=1+(n-1)ˑ2=2n-1.当n=1时ꎬb1=S1=2-b1ꎬ所以b1=1.当nȡ2时ꎬSn=2-bnꎬ①Sn-1=2-bn-1.②由①-②ꎬ得bn=-bn+bn-1.即bnbn-1=12(nȡ2).所以数列{bn}是首项为1ꎬ公比为12的等比数列ꎬ故bn=(12)n-1.(2)由(1)知ꎬcn=an+bn=2n-1+(12)n-1.利用分组求和可得ꎬTn=n(1+2n-1)2+1-(1/2)n1-1/2=n2+2-(12)n-1.18.(1)依题意sin(A+C)sinC+sinA=c+b-aa-b.即bc+a=c+b-aa-b=ca-b-1.整理ꎬ得b2+c2-a2=-bc.所以cosA=b2+c2-a22bc=-12.因为0<A<πꎬ所以A=2π3.故所求外接圆半径r=a2sinA=133=393.(2)因为a=13ꎬc=3ꎬA=2π3ꎬ所以由余弦定理ꎬ得13=b2+9-2ˑ3ˑbˑcos2π3.解得b=1或b=-4(舍).则SәABC=12bcsinA=12ˑ1ˑ3ˑ32=334.19.(1)因为AEʅA1B1ꎬA1B1ʊABꎬ101所以AEʅAB.又因为AA1ʅ平面ABCꎬAB⊂平面ABCꎬ所以AA1ʅAB.又AA1ɘAE=AꎬAA1ꎬAE⊂平面A1ACC1ꎬ所以ABʅ平面A1ACC1.图12㊀第19题解析图又因为AC⊂平面A1ACC1ꎬ所以ABʅAC.所以ABꎬACꎬAA1两两垂直.以A为原点建立如图12所示的空间直角坐标系A-xyzꎬ则有A(0ꎬ0ꎬ0)ꎬE(0ꎬ1ꎬ12)ꎬF(12ꎬ12ꎬ0)ꎬA1(0ꎬ0ꎬ1)ꎬB1(1ꎬ0ꎬ1)ꎬ设D(xꎬyꎬz)ꎬA1Dң=λA1B1ңꎬ且λɪ[0ꎬ1]ꎬ即(xꎬyꎬz-1)=λ(1ꎬ0ꎬ0).则D(λꎬ0ꎬ1)ꎬDFң=(12-λꎬ12ꎬ-1).因为AEң=(0ꎬ1ꎬ12)ꎬ所以DFң AEң=0.所以DFʅAE.(2)存在一点D且D为A1B1的中点ꎬ使平面DEF与平面ABC夹角的余弦值为1414.理由如下:由题可知面ABC的法向量m=(0ꎬ0ꎬ1)ꎬ设面DEF的法向量为n=(xꎬyꎬz)ꎬ则n FEң=0ꎬn DFң=0.{则-x+y+z=0ꎬ(1-2λ)x+y-2z=0.{令x=3ꎬ则y=1+2λꎬz=2(1-λ).则n=(3ꎬ1+2λꎬ2(1-λ)).因为平面DEF与平面ABC夹角的余弦值为1414ꎬ所以|cos<mꎬn>|=|m n|m| |n||=1414.即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414.解得λ=12或λ=74(舍).所以当D为A1B1中点时满足要求.20.(1)y=clnx+d能更好地对y与x的关系进行拟合.设z=lnxꎬ先求y关于z的线性回归方程.由已知得z=15ð5i=1ziʈ275=5.4ꎬ所以c=ð5i=1ziyi-5zyð5i=1z2i-5z2ʈ12.7-5ˑ5.4ˑ0.5147.4-5ˑ5.42=12.7-13.5147.4-145.8=-0.81.6=-0.5ꎬd=y-cz=0.5-(-0.5)ˑ5.4=3.2ꎬ所以y关于z的线性回归方程为y=-0.5z+3.2.所以y关于x的回归方程为y=-0.5lnx+3.2.(2)设该剧场的总座位数为Mꎬ由题意得门票收入为M(-0.5xlnx+3.2x)ꎬ设函数f(x)=-0.5xlnx+3.2xꎬ则fᶄ(x)=-0.5lnx+2.7ꎬ当fᶄ(x)<0ꎬ即x>e5.4时ꎬ函数单调递减ꎬ当fᶄ(x)>0ꎬ即0<x<e5.4时ꎬ函数单调递增ꎬ所以f(x)在x=e5.4ʈ220处取最大值.故预测票价为220元时ꎬ剧场的门票收入最多.21.(1)因为双曲线C的渐近线方程为y=ʃbaxꎬ所以双曲线C的右焦点F到其渐近线的距离为bca2+b2=b=2.因为双曲线C经过点P(4ꎬ2)ꎬ所以16a2-422=1ꎬ解得a2=8.故双曲线C的方程为x28-y24=1.(2)因为P(4ꎬ2)ꎬQ(0ꎬ-2)ꎬD为PQ的中点ꎬ所以D(2ꎬ0)ꎬkPQ=1.设直线l的方程为y=x+mꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬM(xMꎬyM)ꎬN(xNꎬyN)ꎬ201所以kAQ=y1+2x1ꎬkBQ=y2+2x2.直线AQ的方程为y=y1+2x1x-2ꎬ直线BQ的方程为y=y2+2x2x-2.联立y=y1+2x1x-2ꎬx28-y24=1ꎬìîíïïïï可得[1-2(y1+2)2x21]x2+8(y1+2)x1x-16=0.所以x1+xM=-8(y1+2)/x11-2(y1+2)2/x21=-8x1(y1+2)x12-2(y1+2)2.又因为x218-y214=1ꎬ所以x1+xM=x1+2x1y1.则xM=2x1y1ꎬyM=y1+2x1xM-2=4y1.同理可得xN=2x2y2ꎬyN=4y2.kMN=4/y1-4/y22x1/y1-2x2/y2=2ˑy2-y1x1y2-x2y1=2ˑx2-x1x1(x2+m)-x2(x1+m)=-2mꎬkMD=4/y1-02x1/y1-2=2x1-y1=-2mꎬ所以kMN=kMD.故MꎬNꎬD三点共线.22.(1)由题意得:函数定义域为(-1ꎬ+ɕ).fᶄ(x)=ax+1-cosx.若f(x)在[π4ꎬπ2]上单调递减ꎬ则fᶄ(x)ɤ0在[π4ꎬπ2]上恒成立.所以aɤ(x+1)cosx在[π4ꎬπ2]上恒成立.令g(x)=(x+1)cosxꎬ则gᶄ(x)=cosx-(x+1)sinx.当xɪ[π4ꎬπ2)时ꎬgᶄ(x)=cosx[1-(x+1) tanx].因为当xɪ[π4ꎬπ2)时ꎬcosx>0ꎬx+1>1ꎬtanx>1ꎬ所以gᶄ(x)<0.所以g(x)在[π4ꎬπ2)上单调递减ꎬ所以当xɪ[π4ꎬπ2]时ꎬg(x)ȡg(π2)=(π2+1)cosπ2=0.所以aɤ[g(x)]min=0.即a的取值范围为(-ɕꎬ0].(2)当a=1时ꎬf(x)=ln(x+1)-sinxꎬ则fᶄ(x)=1x+1-cosx.当x>e-1时ꎬln(x+1)>lne=1ȡsinxꎬ所以f(x)>0在(e-1ꎬ+ɕ)上恒成立.所以只需证f(x)在(π2ꎬe-1]上有且仅有一个零点.因为e-1<πꎬ所以当xɪ(π2ꎬe-1]时ꎬcosx<0ꎬ1x+1>0.所以fᶄ(x)>0在(π2ꎬe-1]上恒成立.所以f(x)在(π2ꎬe-1]上单调递增.又f(π2)=ln(π2+1)-sinπ2=ln(π2+1)-1<0ꎬf(e-1)=1-sin(e-1)>0ꎬ所以f(x)在(π2ꎬe-1]上有且仅有一个零点.即f(x)在(π2ꎬ+ɕ)上有且仅有一个零点.[责任编辑:李㊀璟]301。
(完整word版)高考数学模拟试题及答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
2023-2024学年河北高考考前冲刺数学模拟试题(一模)含解析
2023-2024学年河北高考考前冲刺数学模拟试题(一模)一、单选题1.设集合U =R ,集合{|24}A x x =-<<,集合{}2|7100B x x x =-+<,则U A B =I ð()A .{|22}x x -<<B .{|22}x x -<≤C .{|25}x x <<D .{|25}x x <≤【正确答案】B【分析】化简集合B ,根据集合的补集和交集的运算性质求U A B ð即可.【详解】不等式27100x x -+<的解集为{|25}x x <<,所以{|25}B x x =<<,故{|2U B x x =≤ð或5}x ³,又{|24}A x x =-<<,所以{|22}U A B x x =-<≤ ð,故选:B .2.已知复数z 满足12i 1z=-,则z 的共轭复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】根据复数运算即可求得复数z ,再得共轭复数z ,根据复数的几何意义即可得答案.【详解】111i 2i 2z -==- ,11i 2z ∴=+,11i 2z ∴=-,故z 在复平面内对应的点11,2⎛⎫- ⎪⎝⎭位于第四象限.故选:D .3.若函数()af x x x=+()R a ∈在点(2,(2))f 处的切线为直线1:2l y x b =+,若直线l 与圆222:(0)C x y r r +=>相切,则r 的值为()A B C D .3【正确答案】A【分析】结合导数的几何意义列方程求a ,由切点坐标与切线的关系求b ,根据直线与圆的位置关系列方程求r .【详解】函数()af x x x =+的导函数2()1a f x x'=-,因为函数()f x 在点(2,(2))f 处的切线为直线1:2l y x b =+,所以1(2)142a f '=-=,解得2a =,2()f x x x∴=+,故(2)3f =,切点(2,3)在直线l 上,1322b ∴=⨯+,解得2b =,直线1:22l y x =+与圆222:(0)C x y r r +=>相切,∴圆心(0,0)到直线lr =,故选:A .4.已知向量(2,6)a = ,(1,)b λ=- .若//a b r r,则λ=()A .3B .3-C .13D .13-【正确答案】B【分析】根据向量平行的坐标表示,列式即可求得答案.【详解】因为向量(2,6)a = ,(1,)b λ=- ,//a b r r,所以26λ=-,解得3λ=-,故选:B .5.已知数列{}n a 的首项11a =,0n a >,前n 项和n S 满足2211120n n n n n n S S S S S S ----+--=,则数列{}n a 的前n 项和n S 为()A .(1)2n n +B .12n -C .221n -D .21n -【正确答案】A【分析】由题可得22n n n S a a =+,进而可得2211n n n n a a a a ++-=+,然后可得11n n a a +-=,利用等差数列的定义及求和公式即得.【详解】由2211120n n n n n n S S S S S S ----+--=得2211122n n n n n n n S S S S S S S ---=-++-,即()()2112n n n n n S S S S S --=-+-,所以22n n n S a a =+,所以21112n n n S a a +++=+,两式作差,得()221112n n n n n a a a a a +++=+-+,即2211n n n n a a a a ++-=+,所以()()1110n n n n a a a a ++--+=,所以11n n a a +-=或10n n a a ++=,又0n a >,故11n n a a +-=,所以数列{}n a 是以1为首项,1为公差的等差数列,所以数列{}n a 的前n 项和(1)(1)22n n n n n S n -+=+=.故选:A.6.如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB ,的夹角为3π,2AB =,则棱1AA ,1CC 的夹角为()A .3πB .4πC .23πD .2π【正确答案】D【分析】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,从而可得2PA PC ==,从而可求出答案.【详解】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为3π,2AB =,所以△PAB 是边长为2的等边三角形,所以2PA PC ==.又在正方形ABCD 中,2AB =,则AC =所以222AC PA PC =+,所以PA PC ⊥,所以棱1AA ,1CC 的夹角为2π,7.已知定点(3,0)B ,点A 在圆22(1)4x y ++=上运动,则线段AB 的中点M 的轨迹方程是()A .22(1)1x y ++=B .22(2)4x y -+=C .22(1)1x y -+=D .22(2)4x y ++=【正确答案】C【分析】设(,)M x y 再表达出A 的坐标代入圆方程22(1)4x y ++=化简即可.【详解】设(,)M x y ,则(),A A A x y 满足3,(,)22A A x y x y +⎛⎫= ⎪⎝⎭.故232A Ax x y y =-⎧⎨=⎩.故23(2),A x y -.又点A 在圆22(1)4x y ++=上.故2222(231)(2)4(1)1x y x y -++=⇒-+=.故选:C本题主要考查了轨迹方程的求法,属于基础题型.8.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为()A .0.78B .0.8C .0.82D .0.84【正确答案】C【分析】设事件A 表示甲正点到达目的地,事件B 表示甲乘火车到达目的地,事件C 表示甲乘汽车到达目的地,由全概率公式求解即可.【详解】设事件A 表示甲正点到达目的地,事件B 表示甲乘动车到达目的地,事件C 表示甲乘汽车到达目的地,由题意知()0.6,()0.4,(|)0.9,(|)0.7P B P C P A B P A C ====.由全概率公式得()()(|)()(|)0.60.90.40.7P A P B P A B P C P A C =+=⨯+⨯0.280.540.82=+=。
2024年新高考数学模拟卷A卷(解析版)
2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。
2024年高考数学模拟试题及答案
2024年高考数学模拟试题及答案2024年高考数学模拟试题及答案一、选择题1、下列函数中,既是偶函数又在区间(0, ∞)上单调递增的是()。
A. y = |x|B. y = x^3C. y = log2xD. y = sinx2、已知平面向量a,b满足|a|=1,|b|=2,且a与b的夹角为120°,则(2a-b)·(a+3b)=()。
A. -7 B. -5 C. 1 D. 93、已知函数f(x)=ax^7+bx^5+cx^3+dx+5,且f(-5)=3,则f(5)=()。
A. -7 B. -3 C. 3 D. 7二、填空题1、若等差数列{an}的前n项和为Sn,且a1=4,S4=28,则{an}的通项公式为。
2、已知球O的半径为4,则球O的内接正方体的棱长为。
3、若函数f(x)=log2x,则f(4)的值是。
三、解答题1、已知向量a=(1,2),b=(cosθ,sinθ),设向量ma+b与向量a-mb平行,求tanθ的值。
2、已知函数f(x)=|x-1|+|x-2|+|x-3|+…+|x-9|,当且仅当x=5时取得最小值,求最小的m和最大的n,使得当x∈[m, n]时,函数f(x)取得最小值。
3、已知正四棱柱ABCD-A1B1C1D1的侧棱长为3,底面边长为2,E为BC中点。
求点B1到平面BDE的距离。
四、选做题1、选修4-1:几何证明选讲在△ABC中,D是BC的中点,E是AD上一点。
求证:EB=EC。
2、选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为圆心、半径为r的圆与直线x=π/2相切。
求圆上点到直线x=π的距离的最大值和最小值。
3、选修4-5:不等式选讲已知a、b、c均为正数,且a+b+c=1。
求证:(1/a)+(1/b)+(1/c)≥9。
五、附加题1、某中学共有学生2000人,其中高一年级共有学生900人,男生500人,女生400人。
高二年级共有学生1100人,男生600人,女生500人。
高考数学模拟试题(五)
图1一、单项选择题1.已知集合A ={}x |-1≤x ≤2,B ={}0,2,4,则A ⋂B =().A.{}0,2,4 B.{}0,2C.{}x |0≤x ≤4 D.{}x |-1≤x ≤2或x =42.设i 是虚数单位,z ()1+i =i ,则||z =().A.12B.1C. D.23.在平面直角坐标系中,O为坐标原点,A ()4,3,B ()-1,3,则∠AOB 的余弦值为().A. B.C. D.4.已知a ,b 为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是().A.若α//β,a ⊂α,b ⊂β,则a //bB.若a ⊂α,b ⊂β,a //b ,则α//βC.若α⋂β=a ,b ⊂β,b ⊥a ,则α⊥βD.若α⋂β=l ,α⊥β,a ⊂α,a ⊥l ,a //b ,则b ⊥β5.在五边形ABCDE 中 EB =a ,AD =b,M ,N 分别为AE ,BD 的中点,则MN =().A.32a +12b B.23a+13b C.12a +12b D.34a+14b 6.命题p :关于x 的不等式ax 2+ax -x -1<0的解集为()-∞,-1⋃æèöø1a ,+∞的一个充分不必要条件是().A.a ≤-1B.a >0C.-2<a <0D.a <-27.清明节前夕,某校团委决定举办“缅怀革命先烈,致敬时代英雄”主题演讲比赛,经过初赛,共10人进入决赛,其中高一年级2人,高二年级3人,高三年级5人,现采取抽签方式决定演讲顺序,则在高二年级3人相邻的前提下,高一年级2人不相邻的概率为().A.112B.13C.12 D.348.若不等式m cos x -cos 3x -18≤0对任意x ∈æèöø0,π2恒成立,则实数m 的取值范围是().A.æèùû-∞,-94 B.(]-∞,-2C.æèùû-∞,94 D.æèùû-∞,98二、多选题9.已知0<log 12a <log 12b <1,则下列说法正确的是().A.1>a 2>b 2>14B.2>1a >1b >1C.a b -1>b a -1D.1e>e -b >1e 10.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图1所示,则下列结论正确的是().A.f (x )的最小正周期为2B.把y =f (x )图象上所有点向右平移π12个单位长度后得到函数g (x )=2cos 2x 的图象C.f (x )在区间[π2,11π12]上单调递减D.(π6,0)是y =f (x )图象的一个对称中心11.提丢斯·波得定律是关于太阳系中行星轨道的一个简单的几何学规则,它是在1766年由德国的一位中学老师戴维斯·提丢斯发现的,后来被柏林天文台的台长波得归纳成一条定律,即数列{}a n :0.4,0.7,1.6,2.8,5.2,10,19.6,…,表示的是太阳系第n 颗行星与太阳的平均距离(以天文单位A .U .为单位).现将数列{}a n 的各项乘以10后再减4,得到数列{}b n ,可以发现数列{}b n 从第3项起,每项是前一项的2倍,则下列说法正确的是().A.数列{}b n 的通项公式为b n =3×2n -2B.数列{}a n 的第2021项为0.3×22020+0.4C.数列{}a n 的前n 项和S n =0.4n +0.3×2n -1-0.3D.数列{}nb n 的前n 项和T n =3()n -1∙2n -112.在一张纸上有一圆C :()x +22+y 2=r 2()r >0与点M ()m ,0()m ≠-2,折叠纸片,使圆C 上某一点M ′好与点M 重合,这样的折法每次都会留下一条直线折世世世世世世世世世世世世世世世世世53高考链接痕PQ ,设折痕PQ 与直线M ′C 的交点为T ,则下列说法正确的是().A.当-2-r <m <-2+r 时,点T 的轨迹为椭圆B.当r =1,m =2时,点T 的轨迹方程为x 2-y 23=1C.当m =2,1≤r ≤2时,点T 的轨迹对应曲线的离心率取值范围为[]2,4D.当r =22,m =2时,在T 的轨迹上任取一点S ,过S 作直线y =x 的垂线,垂足为N ,则△SON (O 为坐标原点)的面积为定值三、填空题13.正态分布在概率和统计中占有重要地位,它广泛存在于自然现象、生产和生活实践中,在现实生活中,很多随机变量都服从或近似服从正态分布.在某次大型联考中,所有学生的数学成绩X ~N ()100,225.若成绩低于m +10的同学人数和高于2m -20的同学人数相同,则整数m 的值为_______.14.已知抛物线x 2=4y ,其准线与y 轴交于点P ,则过点P 的抛物线的切线方程为_______.15.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,其中A =π3,b +c =4,M 为线段BC 的中点,则||AM 的最小值为_______.16.已知四棱锥P -ABCD 的底面为正方形,PA =PB =PC =PD ,AB =2,若四棱锥P -ABCD 的体积为43,则以点P 为球心,以2为半径的球的表面与四棱锥侧面PAB 交线的长度约为_______,该四棱锥P -ABCD 外接球的体积为_______.(参考数据tan 35°≈).四、解答题17.在①S 8=72,②S 5=6a 2,③S 6=S 4+a 5这三个条件中任选一个,补充在下面问题中,并完成解答.问题:已知等差数列{a n }的前n 项和为S n ,a 3=6,________.若数列{b n }满足b n =2a n ,求数列{a n +b n }的前n 项和T n .18.已知等差数列{}a n 的前n 项和为S n ,且S 4=S 5=-20.(1)求数列{}a n 的通项公式;(2)已知数列{}b n 是以4为首项,4为公比的等比数列,若数列{}a n 与{}b n 的公共项为a m ,记m 由小到大构成数列{}c n ,求{}c n 的前n 项和T n .19.如图2,已知圆台O 1O 的下底面半径为2,上底面半径为1,母线与底面所成的角为π3,AA 1,BB 1为母线,平面AA 1O 1O ⊥平面BB 1O 1O ,M 为BB 1的中点,P 为AM 上的任意一点.(1)证明:BB 1⊥OP ;(2)当点P 为线段AM 的中点时,求平面OPB 与平面OAM 所成锐二面角的余弦值.图220.机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让行人”.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让行人”行为统计数据:月份违章驾驶员人数112021053100495580(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程y =b x +a ;(2)预测该路口9月份的不“礼让行人”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查70人,调查驾驶员不“礼让行人”行为与驾龄的关系,得到下表:驾龄不超过1年驾龄1年以上不礼让行人2416礼让行人1614能否据此判断有97.5%的把握认为“礼让行人”行为与驾龄有关?参考公式和数据:k 2=n (ad -bc )2(a +b )(c +d )(b +d )(其中n =a +b +c +d ).P (k 2≥k 0)k 00.152.0720.102.7060.053.8410.0255.0240.0106.63521.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为12,过椭圆的左、右焦点F 1,F 2分别作倾斜角为π3的两条直线,且这两条直线之间的距离为3.54高考链接(1)求椭圆E 的标准方程;(2)如图3,过F 2与坐标轴不垂直的直线l 与椭圆交于A ,B 两点.过点A 作与x 轴垂直的直线与椭圆交于点Q ,求证:直线QB 过定点.图322.已知函数f (x )=e x-1,g (x )=a sin x ,a ∈R .(1)若a =-1,证明:当x ≥0时,f (x )≥g (x );(2)讨论φ(x )=f (x )-g (x )在x ∈[0,π]上零点的个数.参考答案及解析一、单项选择题1-8BCCDC DDA二、多项选择题9.ACD ;10.CD ;11.CD ;12.ACD.三、填空题;14.x -y -1=0,或x +y +1=0;15.3;16.;9π2.四、解答题17.解:选择①,设公差为d ,因为S 8=72,a 3=6,所以ìíî8a 1+28d =72,a 1+2d =6,解得ìíîa 1=2,d =2,所以a n =2n .因为b n =2a n ,所以b n =22n =4n ,a n +b n =2n +4n ,T n =2(1+2+...+n )+41+42+ (4)=n (n +1)+4(1-4n )1-4=43(4n -1)+n (n +1)=4n +13+n 2+n -43.选择②,设公差为d ,因为S 5=6a 2,所以5a 3=6a 2.因为a 3=6,所以a 2=5,所以d =1,所以a n =n +3.因为b n =2a n ,所以b n =2n +3=8×2n ,所以a n +b n =8×2n +n +3,T n =8(21+22+…+2n )+(1+2+…+n )+3n=8×2(1-2n )1-2+n (n +1)2+3n=16(2n -1)+n (n +1)2+3n =2n +4+12n 2+72n -16.选择③,设公差为d ,因为S 6=S 4+a 5,可得S 6-S 4=a 5,即a 6+a 5=a 5,所以a 6=0.因为a 3=6,所以d =-2,所以a n =-2n +12.因为b n =2a n ,所以b n =2-2n +12=212×2-2n ,T n =-2(1+2+…+n )+12n +212×(4-1+4-2+…+4-n )=-n (n +1)+12n +212×(14+142+…+14n )=2123[1-(14)n]-n 2+11n .18.解:(1)设等差数列{}a n 的公差为d ,因为S 4=S 5=-20,所以a 5=S 5-S 4=0.因为S 5=5a 3=-20,所以a 3=-4,所以d =a 5-a35-3=2,所以a n =a 5+()n -5d =2n -10.(2)由题意知b n =4×4n -1=4n .因为a m =2m -10,所以2m -10=4n ,m =4n+102.因此c n =4n +102=4n2+5.所以T n =42+5+422+5+432+5+⋯+4n 2+5=23×4n +5n -23.19.(1)证明:过点B 1作平面AOB 的垂线,垂足为C ,如图4,则C 是OB 的中点,所以BC =1.又∠OBB 1=π3,所以BB 1=2.连接OB 1,因为BB 1=OB =2,所以△OBB 1为等边三角形.因为点M 为BB 1的中点,所以BB 1⊥OM .因为平面AA 1O 1O ⊥平面BB 1O 1O ,平面AA 1O 1O ⋂平面BB 1O 1O =OO 1,且AO ⊥OO 1,AO ⊂平面AA 1O 1O ,所以AO ⊥平面BB 1O 1O .因为BB 1⊂平面BB 1O 1O ,所以AO ⊥BB 1.又因为AO ⋂OM =O ,AO ⊂平面OMA ,OM ⊂平面OMA ,所以BB 1⊥平面OMA .因为OP ⊂平面OMA ,所以BB 1⊥OP .图4(2)解:以O 为坐标原点,OA ,OB ,OO 1所在直55线分别为x 轴、y 轴、z 轴,建立如图4所示的空间直角坐标系A ()2,0,0,B ()0,2,0,B 1()0,1,3,M æèçç0,32,ø,P æèçø1,34, OP =æèçø1,34,,OB =()0,2,0设平面OPB 的一个法向量为n =()x ,y ,z ,则{OP ∙n =0, OB ∙n =0,即ìíîïïx +34y +=0,2y =0,取z =43,得x =-3,y =0,所以n=()-3,0,43,因为BB 1⊥平面OAM ,所以平面OAM 的一个法向量为BB 1=()0,-1,3,所以cos < BB 1,n >=BB 1∙n || BB 1||n 所以平面OAM 与平面OPB 所成锐二面角的余弦值为.20.解:(1)由表中数据知x ˉ=3,y ˉ=100,所以b =1410-150055-45=-9,所以a =y ˉ-b x ˉ=127,故所求回归直线方程为y =-9x +127.(2)由(1)知,令x =9,则y =-9×9+127=46人.(3)假设H 0:“礼让行人”行为与驾龄无关,由表中数据得k 2=70×(24×14-16×16)240×30×40×30=1445≈0.311<2.706,所以没有97.5%的把握认为“礼让行人”行为与驾龄有关.21.(1)解:因为过椭圆E 的左、右焦点倾斜角为π3的两条直线间的距离为3,所以sin π3所以c =1.因为椭圆的离心率为12,所以a =2,所以b =3,故椭圆E 的标准方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),直线l :x =my +1,则Q (x 1,-y 1).因为直线l 与坐标轴不垂直,所以直线QB :y +y 1=y 1+y 2x 2-x 1(x -x 1),所以y =y 1+y 2x 2-x 1x -x 2y 1+x 1y 2x 2-x 1=y 1+y 2m (y 2-y 1)x -2my 1y 2+y 1+y 2m (y 2-y 1),由得ìíîïïx 24+y 23=1,x =my +1,得(3m 2+4)y 2+6my -9=0,所以y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以y =-6m(3m 2+4)(y 2-y 1)(x -4),所以直线QB 恒过定点(4,0).22.(1)证明:令F (x )=f (x )-g (x )=e x -1+sin x ,所以F ′(x )=e x +cos x .当x ∈(0,+∞)时,e x >1,cos x ≤1,所以F ′(x )>0.所以F (x )在[0,+∞)上单调递增.又x ∈[0,+∞),所以F (x )≥F (0)=0,所以f (x )≥g (x )在x ∈[0,+∞)上恒成立.(2)解:因为φ(x )=e x -1-a sin x (a ∈R ),所以φ′(x )=e x -a cos x .设h (x )=φ′(x ),h ′(x )=e x +a sin x ,①当a ≤0时,因为x ∈[0,π],所以-a sin x ≥0,而e x -1≥0,所以e x -1-a sin x ≥0,即φ(x )≥0恒成立,所以φ(x )零点个数为1个.②当0<a ≤1时,h ′(x )=e x +a sin x ≥0,所以φ′(x )在[0,π]上单调递增,而φ′(0)=1-a ≥0,所以φ′(x )≥φ′(0)=0,所以φ(x )在[0,π]上单调递增.因为φ(0)=0,所以x =0是唯一零点,此时φ(x )零点个数为1个.③当a >1时,h ′(x )=e x +a sin x ≥0,所以φ′(x )在[0,π]上单调递增,而φ′(0)=1-a <0,φ′(π2)=e π2>0,所以存在x 0∈[0,π],使φ′(x 0)=0,所以当0<x <x 0时,φ(x )单调递减,当x 0<x <π时,φ(x )单调递增,所以当x =x 0时,φ(x )取得最小值φ(x 0).而φ(x 0)<φ(0)=0,φ(π)=e π-1>0,又φ(x )图象是连续不间断的,由零点存在性定理知,φ(x )在(x 0,π)上有唯一零点.因为x =0也是零点,所以φ(x )在[0,π]上有2个零点.综上:当a ≤1时,φ(x )在[0,π]上有1个零点;当a >1时,φ(x )在[0,π]上有2个零点.高考链接56。
高考数学模拟试题含答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
2024年高考数学全真模拟试题
2024年高考数学全真模拟试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x | x² 3x + 2 = 0},B ={1, 2},则A ∩ B =()A {1}B {2}C {1, 2}D ∅2、复数 z =(1 + i)(2 i),则|z| =()A 2B 5C 10D 2 23、已知向量 a =(1,2),b =(2,-1),则 a·b =()A 0B 3C 4D 54、函数 f(x) = sin(2x +π/3)的最小正周期为()A πB 2πC π/2D 4π5、若直线 l₁:x + 2y 3 = 0 与直线 l₂:2x my + 1 = 0 平行,则 m =()A -4B -1C 1D 46、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 1,d = 2,则S₅=()A 25B 20C 15D 107、从 5 名男生和 3 名女生中选出 3 人参加某项活动,至少有 1 名女生的选法有()A 80 种B 70 种C 65 种D 60 种8、抛物线 y²= 8x 的焦点到准线的距离为()A 2B 4C 8D 169、已知函数 f(x) = x³ 3x + 1,则函数 f(x) 的单调递增区间是()A (∞,-1)和(1,+∞)B (-1,1)C (∞,-1)D (1,+∞)10、若函数 f(x) =logₐx(a > 0 且a ≠ 1)在区间2,4上的最大值与最小值之差为 1,则 a =()A 2B 4C 1/2D 1/411、若圆 C:x²+ y² 2x 4y + 1 = 0 关于直线 l:ax + by 1 = 0(a > 0,b > 0)对称,则 1/a + 2/b 的最小值为()A 4B 6C 8D 1012、已知函数 f(x) =2sin(ωx +φ)(ω > 0,|φ| <π/2)的图象过点(0,1),且在区间(π/12,5π/12)上单调递减,则ω 的最大值为()A 11B 9C 7D 5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线 y = x³ 3x²+ 1 在点(1,-1)处的切线方程为________。
2025届黑龙江省示范性高中高考考前模拟数学试题含解析
2025届黑龙江省示范性高中高考考前模拟数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. “11x y -≤+≤且11x y -≤-≤”是“221x y +≤”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件2.在ABC ∆中,点D 是线段BC 上任意一点,2AM AD =,BM AB AC λμ=+,则λμ+=( ) A .12-B .-2C .12D .23.设集合A ={y |y =2x ﹣1,x ∈R },B ={x |﹣2≤x ≤3,x ∈Z },则A ∩B =( ) A .(﹣1,3]B .[﹣1,3]C .{0,1,2,3}D .{﹣1,0,1,2,3}4.已知集合{}2|2150A x x x =-->,{}|07B x x =<<,则()R A B 等于( )A .[)5,7-B .[)3,7-C .()3,7-D .()5,7-5.已知P 为圆C :22(5)36x y -+=上任意一点,(5,0)A -,若线段PA 的垂直平分线交直线PC 于点Q ,则Q 点的轨迹方程为( )A .221916x y +=B .221916x y -=C .221916x y -=(0x <)D .221916x y -=(0x >)6.已知函22()(sin cos )2cos f x x x x =++,,44x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的最小值为( ) A .22-B .1C .0D .2-7.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+,则y x -的值为( )A .12-B .23-C .13-D .1-8.过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上顶点B ,且与椭圆C 相交于另一点A ,点A 在y 轴上的射影为A ',若34FO AA =',O 是坐标原点,则椭圆C 的离心率为( ) A.2 B.3C .12D.29.用一个平面去截正方体,则截面不可能是( ) A .正三角形B .正方形C .正五边形D .正六边形10.已知i 为虚数单位,复数z 满足()1z i i ⋅-=,则复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知{}n a 为等比数列,583a a +=-,4918a a =-,则211a a +=( ) A .9B .-9C .212D .214-12.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( )A .0B .2-C .52-D .3-二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学模拟试题
(第一卷)
一、选择题:(每小题5分,满分60分)
1、已知集合A={x|x 2+2ax+1=0}的真子集只有一个,则a 值的集合是
A .(﹣1,1);
B .(﹣∞,﹣1)∪[1,+∞];
C .{﹣1,1};
D .{0}
2、若函数y=f(x)的反函数y=f -1(x)满足f -1(3)=0,则函数y=f(x+1)的图象必过点:
A .(0,3);
B .(-1,3);
C .(3,-1);
D .(1,3)
3、已知复数z 1,z 2分别满足| z 1+i|=2,|z 2-3-3i|=3则| z 1-z 2|的最大值为:
A .5;
B .10;
C .5+13;
D .13
4、数列
,4
3211,3211,211++++++ ……的前n 项和为: A .12+n n ; B .1+n n ; C .222++n n ; D .2+n n ; 5、极坐标方程ρsin θ=sin2θ表示的曲线是:
A .圆;
B .直线;
C .两线直线
D .一条直线和一个圆。
6、已知一个复数的立方恰好等于它的共轭复数,则这样的复数共有:
A .3个;
B .4个;
C .5个;
D .6个。
7、如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 是异面直
线AC ,A 1D 的公垂线,则EF 和ED 1的关系是:
A . 异面;
B .平行;
C .垂直;
D .相交。
8、设(2-X)5=a 0+a 1x+a 2x+…+a 5x 5, 则a 1+a 3+a 5的值为:
A .-120;
B .-121;
C .-122;
D .-243。
9、要从一块斜边长为定值a 的直角三角形纸片剪出一块圆形纸片,圆形纸片的最大面积为:
A .2
πa 2; B .24223a π-; C .2πa 2; D .2)223(a π- 10、过点(1,4)的直线在x,y 轴上的截距分别为a 和b(a,b ∈R +),则a+b 的最小值是:
A .9;
B .8;
C .7;
D .6;
11、三人互相传球,由甲开始发球并作为第一次传球。
经过5次传球后,球仍回到甲手中,则不同的传球方式共有:
A .6种;
B .8种;
C .10种;
D .16种。
12、定义在R 上的偶函数f(x)满足f(x+2)=f(x -2),若f(x)在[﹣2,0]上递增,则
A .f(1)>f(5.5) ;
B .f(1)<f(5.5)
C .f(1)=f(5.5)
D .以上都不对。
(第二卷)
二、填空题:(每小题4分,满分16分)
13、(理):arg(-1+3i)=___________________________________
(文):arg(-1+3i)=_________________________________
14、等边圆柱的内切球和以此等边圆柱的下底面为底面,上底面圆心为顶点的圆锥的体积之
比为:_____________________________________
15、(1-tg46°)(1-tg89°)的值为_______________________
16、对双曲线C 1和C 2有以下四个命题:(1)有相同的渐近线;(2)有相同的渐近线和离心率;(3)有相同的渐近线且四个焦点共圆;(4)四个焦点共圆且离心率相等;则能使C 1和C 2是共轭双曲线的命题的序号是________________________
三、解答题:
17、复数z 1=cos2a+i2sina, a ∈R, 且| z 1|=2, (1) 求复数z 1,及其辐角主值arg z 1;
(2) 若复数z 满足:|z -z 1|+|z -1z |=22,在复平面内将z 对应的点集绕原点逆时针旋
转2
π,求旋转过程中该点集所扫过的图形的面积;(满分12分)
18、如图三棱锥P -ABC 中,PA ⊥底面ABC ,PA=AB ,∠ABC=90°,2BC=AC ,D 为PB 中点。
(1) 求异面直线AD 与PC 所成角的大小;
(2) 求二面角A -PC -B 的正弦值。
(满分12分)
19、已知等差数列{a n }的首项为1,公差为d ,前n 项和为A n ;等比数列{b n }的首项为1,公比为q ,(|q|<1),前n 项和为B n ,设S n =B 1+B 2+…+B n ,
(1) 用n 和q 表示S n ;
(2) 若 lim )(
n n S n
A -=1,求数列{a n },{b n }的通项公式;(满分12分)
n →∞
20、某市要给面积为2640万亩的一片荒地绿化造林,若从2003年初开始绿化造林,第一年造林150万亩,以后每年比前一年多绿化75万亩,但每年的成活率仅为80%。
(1) 问:到哪一年底可将这片荒地全都绿化?
(2) 若每万亩绿化造林所植成活树苗的木材量为0.1万立方米,每年树木木材量的自然
生长率为20%,那么当这片荒地全部绿化完的那一年底,一共有木材多少万立方米?(保留1位小数,1.29=5.16, 1.28=4.30)(满分12分)
21、已知直线λx+1=0,动圆P 与直线λ相切并与定圆(x -2)2+y 2=4相外切。
(1) 求动圆圆心P 的轨迹C 的方程;
(2) 若过原点的直线与曲线C 交于A ,B 两点,问:是否存在以AB 为直径的圆与直线λ
相切?若存在,求出直线AB 的方程;若不存在,说明理由。
(满分12分)
22、已知二次函数f(x)=ax 2+bx+c(a>0, b ≠0)
(1) 若|f(0)|=|f(1)|=|f(﹣1)|=1,求f(x)的解析式;
(2) 若|b|≤a, |f(0)|≤1,|f(1)|≤1,|f(﹣1)|≤1。
求证:当|x|≤1时,|f(x)|≤
4
5。
(满分14分)。