人教版七年级上册数学《规律探索型问题》
新初一规律探索题参考答案
前言:七年级上册数学期中考试,主要考察书本前2章,想要考试取得好的成绩,首先应一般能力:①基本知识、基本技能;②计算能力;其次要想获得高分必须具备高分能力:①观察、猜想、推理、验证的能力;②数形结合思想的建立;③分类讨论思想的建立;④方程思想的建立;对于重点中学学生,尤为重要。
高分能力是今后学习领先的有力保障,需要大量练习、总结、体会,七年级涉及的仅仅是一部分。
一、规律探索类题型规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形等条件,要求学生通过:①读题②观察③分析④猜想⑤验证,来探索对象的规律。
它体现了“特殊到一般”、“数形结合”等数学思想方法,考察学生的分析、解决问题能力。
题型可涉及填空、选择或解答。
【题型分类】【1、数字问题】最好具备数列的有关知识(小学奥数有涉及),实际考察的是:经历探索事物间的数量关系,用字母表示数和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。
如:1、正整数规律1、2、3、4、5、、、、可以表示为n (其中n 为正整数)2、奇数规律1、3、5、7、9、、、、可以表示为21n -(其中n 为正整数)3、偶数规律2、4、6、8、10、、、、可以表示为2n (其中n 为正整数)4、正、负交替规律变化一组数,不看他们的绝对值,只看其性质,为正负交替(1)、-、+、-、+、-、+、-、+可以表示为(1)n -(2)、+、-、+、-、+、-、+、-可以表示为1(1)n +-5、平方数规律1、4、9、16、、、、可以表示为2n (其中n 为正整数),能看得出:上面的规律数+1、+2、-1、-26、等差数列常识按一定次序排列的一列数就叫数列。
例如:(1)1,2,3,4,5,6,…(2)1,2,4,8,16,32;A 、一个数列中从左至右的第n 个数,称为这个数列的第n 项。
部编数学七年级上册专题05整式中的两种规律探索问题(解析版)(人教版)含答案
专题05 整式中的两种规律探索问题类型一、数字类规律探索例.观察:(x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,据此规律,当(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0时,代数式x 2019﹣1的值为 _____.【答案】0或﹣2【详解】解:根据题意得∶ (x ﹣1)(x +1)=x 2﹣1,(x ﹣1)(x 2+x +1)=x 3﹣1,(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,……∴(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1∵(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=0,∴x 6﹣1=0,解得:x =1或x =﹣1,则x 2019﹣1=0或﹣2,故答案为:0或﹣2.【变式训练1】a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为1-11-2=,-1的差倒数为111(1)2=--,已知15a =,2a 是1a 差倒数,3a 是2a 差倒数,4a 是3a 差倒数,以此类推……,2021a 的值是()A .5B .14-C .43D .45【答案】B【解析】∵15a = , 2a 是1a 的差倒数,∴211154a ==--,∵3a 是2a 的差倒数,4a 是3a 的差倒数,∴314151-4a ==æö-ç÷èø,∴415415a ==-,根据规律可得n a 以5,1-4,45为周期进行循环,因为2021=673×3…2,所以202114a =-.故选B .【变式训练2】有2021个数排成一行,对于任意相邻的三个数,都有中间数等于前后两数的和,如果第一个数是0,第二个数是1, 那么前6个数的和是______, 这2021个数的和是______.【答案】0 1【解析】由题意得:第3个数是101-=,第4个数是110-=,第5个数是011-=-,第6个数是101--=-,则前6个数的和是()()0110110++++-+-=,第7个数是1(1)0---=,第8个数是0(1)1--=,归纳类推得:这2021个数是按0,1,1,0,1,1--循环往复的,202163365=´+Q ,且前6个数的和是0,\这2021个数的和与前5个数的和相等,即为()011011++++-=,故答案为:0,1.【变式训练3】有一列数11315,,,,228432---,…,那么第n 个数为______.【答案】()12n nn-【详解】解:()11122-=-´,()221221242==-´,()3333182-=-´,()4414414162==-´,()55551322-=-´,……由此发现:第n 个数为()12n n n -.故答案为:()12n nn-【变式训练4】杨辉三角又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则()7a b +的展开式中从左起第三项为______.()1a b a b +=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++LL【答案】5221a b 【详解】解:根据题意,()7a b +=7652433425677213535217a a b a b a b a b a b ab b +++++++,∴()7a b +的展开式中从左起第三项为5221a b ,故答案为:5221a b .类型二、图形类规律探索例.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n 条直线相交最多有______个交点.【答案】 6 (1)2n n -【详解】解: 如图,两条直线相交最多有1个交点,即()22112´-=;三条直线相交最多有3个交点,即()33132´-=;四条直线相交最多有6个交点,即()44162´-=,五条直线相交最多有10个交点,即()551102´-=,……∴n 条直线两两相交,最多有(1)2n n -个交点(n 为正整数,且n ≥2).故答案为6;(1)2n n -.【变式训练1】如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第_____个图形共有45个小球.【答案】9【详解】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……n(1+n)个小球,照此规律,第n个图形有1+2+3+4+…+n=12n(1+n)=45,∴12解得n=9或-10(舍去),故答案为:9.【变式训练2】为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,则n的值为______.【答案】10【详解】解:由题可知:第n个图形有(6n+2)根火柴棒,第(n+1)个图形有(6n+8)根火柴棒,∵摆第n个“金鱼”和第(n+1)个“金鱼”需用火柴棒的根数为130根,∴6n+2+6n+8=130,解得n=10.故答案为:10.【变式训练3】如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第10层中含有正三角形个数为___个,第n层含有正三角形个数为___个.n-【答案】114 126【解析】根据题意分析可得:从里向外的第1层包括6个正三角形,第2层包括18个正三角形,此后,每层都比前一层多12个,依此递推,第10层中含有正三角形个数是6+12×9=114个,则第n层中含有正三角形个数是6+12×(n-1)=126n-个,故答案为:114,126n-.【变式训练4】观察下列图形:它们是按一定规律排列的,依照此规律,用6064个五角星摆出的图案应该是第_______个图形.【答案】2021【解析】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,⋯第n个图形五角星的个数是:1+3•n=1+3n,∵6064120213-=,∴用6064个五角星摆出的图案应该是第2021个图形,故答案为:2021.课后训练1.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n个图中有201张黑色正方形纸片,则n的值为( )A.99B.100C.101D.102【答案】B【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .2.如图,将若干颗棋子按箭头方向依次摆放,记第一颗棋子摆放的位置为第1列第1排,第二颗棋子摆放的位置为第2列第1排,第三颗棋子摆放的位置为第2列第2排……,按此规律摆放在第16列第8排的是第( )颗棋子.A .85B .86C .87D .88【答案】B 【详解】偶数列数与排数表:偶数列数排数22436485……n 12n +∴当n =16时,排数为:192n +=,∴前16列共有棋子:()9102123+-3=2-3=872´+++´…9(颗),∴第16列第8排的棋子位次是:87-1=86.故选B .3.将一正方形按如图方式分成n 个完全相同的长方形,上、下各横排三个,中间两行各竖排若干个,则n 的值为( )A .12B .16C .18D .20【答案】C 【详解】解:设长方形的长为a ,宽为b ,根据题意得,2a +2b =3a , 整理得,a =2b ,∴竖排的一行的长方形的个数为3a ÷b =(3×2b )÷b =6,∴n =3×2+6×2=6+12=18.故选:C .4.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12【详解】解:设如图表所示:根据题意可得:x +6+20=22+z +y ,整理得:x -y =-4+z ,x +22+n =20+z +n ,20+y +m =x +z +m ,整理得:x =-2+z ,y =2z -22,∴x -y =-2+z -(2z -22)=-4+z ,解得:z =12,∴x +y =3z -24=12故选:D .5.如图,按此规律,第6行最后一个数字是_____,第_____行最后一个数是2020.【答案】16 674【详解】Q 每一行的最后一个数字分别是1,4,7,10 ,……,\第n 行的最后一个数字为:1+3(1)32n n -=-,\第6行最后一个数字为:36216´-=;322020n -=,解得:674n =,故答案为:16,674.6.如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M 的值为________.【详解】解:∵1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,∴右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),∴M =m (n +1),∴M =11×(12+1)=143.故答案为:143.7.为了求220211222+++¼+的值,可令220211222S =+++¼+,则220222222S =++¼+,因此2022221S S -=-,所以220212022122221+++¼+=-.按照以上推理计算出1220211333---+++¼+的值是______.【答案】2021332--【详解】解:令1220211333S ---=+++¼+,则1220212022133333S ----=++¼++,因此20221313S S --=-,则20222313S --=-,得:2021332S --=,所以20211220213313332-----+++¼+=.故答案为:2021332--.8.今年“10.1”黄金周,适逢祖国70大庆,广西柳州赛长桌宴,民族风情浓郁,吸引了大量游客如果长桌宴按下图方式就坐(其中□代表桌子,〇代表座位),则拼接n (n 为正整数)张桌子时,最多可就坐_____人.【答案】(6n +2)【详解】解:根据图示知,拼1张桌子,可以坐(2+6)人.拼2张桌子,可以坐[2+(6×2)]人.拼3张桌子,可以坐[2+(6×3)]人.…拼接n (n 为正整数)张桌子,可以坐(6n +2)人.故答案是:(6n +2).9.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7136147´-´=,172316247´-´=,不难发现,结果都是7.2012年8月日一二三四五六12345678910111213141516171819202122232425262728293031(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;(2)换一个月的月历试一下,是否有同样的规律?(3)请你利用整式的运算对以上的规律加以证明.【答案】(1)111710187´-´=,符合;(2)392107´-´=;(3)见解析【详解】解:(1)由题意得:111710187´-´=,符合;(2)392107´-´=;答:换一个月的月历试一下还是同样的规律;(3)设上边第一个数为x ,则其后的数为(x +1),第二行的两个数分别为(x +7),(x +8),根据题意,得22(1)(7)(8)8787x x x x x x x x ++-+=++--=.10.(1)你知道下面每一个图形中各有多少个小圆圈吗?第5个图形中应该有多少个小圆圈?为什么?(2)完成下表:边上的小圆圈数12345每个图中小圆圈的总数(3)如果用n 表示六边形边上的小圆圈数,m 表示这个六边形中小圆圈的总数,那么m 和n 的关系是什么?【答案】(1)第1个图形:1个;第2个图形:7个;第3个图形:19个;第4个图形:37个;第5个图形:61个,理由见解析;(2)1,7,19,37,61;(3)2331m n n =-+【详解】(1)观察每个图形的特点,就可以算出第1个图形的小圆圈有1个,第2个图形的小圆圈有2+3+2=7个,第3个图形的小圆圈有3+4+5+4+3=19个,第4个图形的小圆圈有4+5+6+7+6+5+4=37个,由此可推知第5个图形的小圆圈有5+6+7+8+9+8+7+6+5=61个;(2)将(1)算出的结果填入下列表格,如下表所示,边上的小圆圈数12345每个图中小圆圈的总数17193761(3)结合(1)(2)可知,m 与n 之间的函数关系为:()()()()()1...212...1m n n n n n n n n n n=+++++-++-++-++++首尾相加得()()21...(2)1m n n n n n n =+++++-++-éùëû()()21322213312n n n n n --=+-=-+2331m n n =-+.11.对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“筋斗数”.例如:m =5321,满足1+2=3,2×2+1=5,所以5321是“筋斗数”.例如:m =8523,满足2+3=5,但2×2+3=7≠8,所以8523不是“筋斗数”.(1)判断9633和2642是不是“筋斗数”,并说明理由;(2)若m 是“筋斗数”,且m 与13的和能被11整除,求满足条件的所有“筋斗数”m .【答案】(1)9633是“筋斗数”;2642不是“筋斗数”; 理由见解析(2)m 的值为9909或2110或6422【解析】(1)解:9633是“筋斗数”,2642不是“筋斗数”,理由如下:∵6=3+3,9=2×3+3,∴9633是“筋斗数”;∵6=4+2,28+2¹,∴2642不是“筋斗数”;(2)设m 的个位数为a ,0≤a ≤9,十位数为0<b ≤9,且a 、b 为整数∵m 是“筋斗数”,∴m 的百位数为a +b ,千位数为2b +a ;∴m =1000(2b +a )+100(a +b )+10b +a =1100a +110b +2000b +a∵m 与13的和能被11整除,∴1100a +110b +2000b +a +13能被11整除,∵2b +a ≤9且a 、b 为整数,∴b ≤4.5∵1100a +110b 能被11整除,∴2000b +a +13能被11整除,∴b =0,a =9或b =1,a =0或b =2,a =2或b =3,a =4,或b =4,a =6,∴a +b =9,2b +a =9或a +b =1,2b +a =2或a +b =4,2b +a =6或a +b =7,2b +a =10(舍去)或a +b =10,2b +a =14(舍去),∴m 的值为9909或2110或642212.看图填空:如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的长方形,再把面积为14的长方形等分成面积为18的长方形,如此进行下去……(1)试利用图形揭示的规律计算:1111111112481632641282562n ++++++++L =_______.并使用代数方法证明你的结论.(2)请给利用图(2),再设计一个能求:2341111122222n +++++L 的值的几何图形.【答案】(1)112n - ,证明见解析;(2)见解析【解析】(1)解:①由题意可知当最后一个小长方形的面积为12n时 ,1111111112481632641282562n ++++++++L 的值为正方形面积减去最后一个小长方形面积,即:112n - ,1111111111124816326412825622n n \++++++++=-L ;②设1111111112481632641282562n s =++++++++L ,111111111212481632641282n s -=++++++++L ,1212n s s \-=-,即112ns =-,1111111111124816326412825622n n \++++++++=-L ;(2)如图所示,将面积为1的正方形等分成两个面积为12的三角形,接着把面积为12的三角形等分成两个面积为14的三角形,再把面积为14的三角形等分成面积为18的三角形,如此进行下去,则2341111122222n +++++L 的值即为正方形面积减去最后一个小三角形面积:112n -。
七年级规律探索题答案解析
前言:七年级上册数学期中考试,主要考察书本前2章,想要考试取得好的成绩,首先应一般能力:①基本知识、基本技能;②计算能力;其次要想获得高分必须具备高分能力:①观察、猜想、推理、验证的能力;②数形结合思想的建立;③分类讨论思想的建立;④方程思想的建立;对于重点中学学生,尤为重要。
高分能力是今后学习领先的有力保障,需要大量练习、总结、体会,七年级涉及的仅仅是一部分。
一、规律探索类题型规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形等条件,要求学生通过:①读题 ②观察 ③分析 ④猜想 ⑤验证,来探索对象的规律。
它体现了“特殊到一般”、“数形结合”等数学思想方法,考察学生的分析、解决问题能力。
题型可涉及填空、选择或解答。
【题型分类】 【1、数字问题】最好具备数列的有关知识(小学奥数有涉及),实际考察的是:经历探索事物间的数量关系,用字母表示数和代数式表示的过程,建立初步的符号感,发展抽象思维,进一步使学生体会到代数式是刻画现实世界的有效数学模型。
如: 1、正整数规律1、2、3、4、5、、、、可以表示为n (其中n 为正整数) 2、奇数规律1、3、5、7、9、、、、可以表示为21n -(其中n 为正整数) 3、偶数规律2、4、6、8、10、、、、可以表示为2n (其中n 为正整数) 4、正、负交替规律变化一组数,不看他们的绝对值,只看其性质,为正负交替 (1)、-、+、-、+、-、+、-、+可以表示为(1)n- (2)、+、-、+、-、+、-、+、-可以表示为1(1)n +-5、平方数规律1、4、9、16、、、、可以表示为2n (其中n 为正整数),能看得出:上面的规律数+1、+2、-1、-26、等差数列常识按一定次序排列的一列数就叫数列。
例如:(1) 1,2,3,4,5,6,… (2) 1,2,4,8,16,32;A 、一个数列中从左至右的第n 个数,称为这个数列的第n 项。
人教版七年级上册数学《规律探索型问题》
规律探索型问题题型一第1题一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为( )A.8B.9C.13D.15第2题一组数,,,,…按一定的规律排列,根据排列规律,推测这组数的第10个数应为( )A. B. C. D.题型二数式变化规律型数式规律型,通常给定一些代数式、等式或者不等式,通过探究其变化过程中的规律,归纳或猜想出一般性的结论,主要考查探索规律的能力,理解给出的解题思路与方法,并能灵活应用是解决问题的关键.第3题如图3-7-1,是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及其系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有________项,第二项的系数是________,(a+b)n的展开式共有________项,各项的系数和是________.图3-7-1第4题阅读下列材料:1×2=×(1×2×3-0×1×2),2×3=×(2×3×4-1×2×3),3×4=×(3×4×5-2×3×4),以上三个等式左右两边分别相加,可得1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)= .题型三图形变化规律型图形规律型主要是观察图形的组合、拆分及图形自身的特点,分析相邻两个图形之间的关系及每个图形和项数之间的关系,并将以图形为载体的变化规律用含有项数的代数式(等式)表示出来,利用此规律、特点解决问题.第5题如图3-7-2,将正方形进行如下操作:第1次:在图①中,分别连接各边中点,如图②,得到5个正方形;第2次:将图②中左上角的正方形按上述方法再分割,如图③,得到9个正方形,……,以此类推,根据以上操作,若要得到2 013个正方形,则需要操作的次数是( )图3-7-2A.502B.503C.504D.505第6题如图3-7-3,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;……;△ABC的三个顶点和它内部的点P1,P2,P3,…,Pn,把△ABC分成________个互不重叠的小三角形.图3-7-3题型四数形结合变化规律型这类问题往往从图形、式子两个角度寻找规律.解决这类问题,既可以直接分析图形的特点,找到变化规律,也可以单单借助于式子来分析其中的特点.当然,把图形和对应的式子结合起来,更容易发现规律.第7题如图3-7-4,是蜘蛛结网过程示意图,一只蜘蛛先以O为起点结六条射线OA,OB,OC,OD,OE,OF后,再从射线OA上某点开始按逆时针方向依次在OA,OB,OC,OD,OE,OF,OA,OB,…上结网,若将各线上的结点依次记为1,2,3,4,5,6,7,8,…,那么第2 016个结点在( )图3-7-4A.射线OA上B.射线OB上C.射线OC上D.射线OF上规律探索型问题习题第1题观察下列等式:71=7,72=49,73=343,74=2401,75=16 807,76=117649,……,那么71+72+73+…+72016的末位数字是( )A.9B.7C.6D.0第2题观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….按照上述规律,第2015个单项式是( )A.2015x2015B.4029x2014C.4029x2015D.4031x2015第3题一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中的y表示的数为( )A.8B.9C.13D.15第4题观察图3-8-1中正方形四个顶点所标的数字规律,可知,数2 016应标在( )图3-8-1A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角第5题从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…,其中每一个数加上自己的个位上的数,成为下一个数,上述一列数中小于100的数的个数为( )A.21B.22C.23D.99第6题图3-8-2中的图形都是由几个黑色和白色的正方形按一定规律组成的,①中有2个黑色正方形,②中有5个黑色正方形,③中有8个黑色正方形,④中有11个黑色正方形,……,按此规律,⑩中黑色正方形的个数是( )图3-8-2A.32B.29C.28D.26第7题观察图3-8-3中的一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,……,按此规律,图形⑧中星星的颗数是( )图3-8-3A.43B.45C.51D.53第8题观察下列数据:-2,,-,,-,…,它们是按一定规律排列的,依照此规律,第11个数据是________.第9题将连续正整数按如下规律排列:第1列第2列第3列第4列第5列第1行 1 2 3 4第2行8 7 6 5第3行9 10 11 12第4行16 15 14 13第5行17 18 19 20………………若正整数565位于第a行第b列,则a+b=________.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律.若把第一个三角数记为a1,第二个三角数记为a2,……,第n个三角数记为an,计算a 1+a2,a2+a3,a3+a4,……,由此推算a399+a400=________.第11题图3-8-4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,……,则第n个图案中有______根小棒.图3-8-4第12题图3-8-5是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n个图案中有________个涂有阴影的小正方形(用含有n的代数式表示).图3-8-5第13题研究下列算式:1=12,1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,……(1)按照这样的规律写出第5行及第6行的算式;(2)用代数式表示此规律.阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a 1,……依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为__________,第4项是____________;(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,……,=q.所以a2=a1·q,a3=a2·q=(a1·q)·q=a1·q2,a 4=a3·q=(a1·q2)·q=a1·q3,……由此可得:an =______________(用含a1和q的代数式表示);(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.。
人教版七年级数学上册微专题7规律探索数、式、图规律问题的探索发现之路课件
5.(2024·河源和平期末)用木棒按如图所示的规律摆放图形,第100个图形需要木棒根 数是( ) A.501 B.502 C.503 D.504
【解析】选A.因为第1个图形需要的木棒根数为:6, 第2个图形需要的木棒根数为:11=6+5=6+5×1, 第3个图形需要的木棒根数为:16=6+5+5=6+5×2,…, 所以第n个图形需要的木棒根数为:6+5(n-1)=5n+1, 第100个图形需要的木棒根数为:5×100+1=501.
12.(2023·岳阳中考)观察下列式子: 12-1=1×0;22-2=2×1;32-3=3×2;42-4=4×3;52-5=5×4;…, 按此规律,则第n(n为正整数)个等式是___________.
【解析】12-1=1×0;22-2=2×1; 32-3=3×2;42-4=4×3; 52-5=5×4;…;按此规律,则第n(n为正整数)个等式是n2-n=n(n-1). 答案:n2-n=n(n-1)
4.(2024·义乌期中)如图,敲击三根管时依次发出“1”“3”“5”的音,两只音锤同时从“1”开
始,以相同的节拍往复敲击,不同的是:甲锤每拍移动一位(左中右中左中右……),乙锤
则在两端各有一拍不移位(左中右右中左左中右……),在第2 024拍时,你听到的是
()
A.同样的音“1”
B.同样的音“3”
【解析】由题知,当n=2时,s=3,则s=2×3-3;当n=3时,s=6,则s=3×3-3; 当n=4时,s=9,则s=4×3-3;…,所以s与n之间的关系式为:s=3n-3. 将n=2 023代入得,s=3×2 023-3=6 066.即当三角形的边上有2 023枚棋子时,该三角形 棋子总数为6 066. 答案:6 066
数学人教版七年级上册探索规律课后反思
数学活动《探索规律》课后反思大石中学 林其英《探索规律》是本章的数学活动课,本课是在学生会根据实际情景列出代数式、会合并同类项的基础上,对学生学习数学符号语言应用的升华,本节课作为研学后教的区公开课,虽能顺利完成教学任务,但课后细想这节课还是有不少值得思考的地方。
本课的亮点1、 本节课根据该班学生的实际情况出发,注重培养学生的自学能力,初一的学生阅读理解能力比较弱,本课首先让学生在自学指导的引导下,带着问题地进行自学,并在阅读中独立思考问题,想办法解决问题。
在自学之后,有部分问题学生以自身之力是无法解决,这时就由学生的自学转到了小组合作的互学了,在小组讨论中,每个学生都能敢于提出自己的想法,并把自己的想法与同学们分享。
由导学----自学-----互学这三学中,不仅培养了学生的小组合作意识,而且提高了学生的自信心。
2、 本课由教师引导,学生探索解决问题的方法和途径,为了能让学生自己发现规律,我让学生在自学之后,自己动手利用牙签来构建模型,在动手操作的过程中,边思考,边观察并通过小组合作让学生顺利地完成了第一个三角形规律的探索,而且学生们还发现了2n+1=3+2(n-1)。
对于学生这个发现我及时引导学生用所学的去括号的知识来验证自己的猜想,当学生验证到自己的猜想是正确的时,哪种喜悦是不可言语的。
3、 第二个规律的探索,正方形递增的规律探索,为了引导学生,我特意设计了一个表格,让学生在顺利完成表格的填写过程中发现规律。
同学们通过自己观察探究,提出一些有价值的问题,形成一些猜想,从不同角度出发解决问题,发现了12)1(22+=-+n n n ,但这个猜想的验证方法学生所学的知识还不能解决,故我把此验证作为后续教学的内容做了适当的铺垫。
这大大激发学生学习数学的兴趣,也让他们认识到现实生活中蕴含着大量的数学信息、数学有着广泛的应用。
而在这个学习过程中学生的观察逐渐具有深度,培养了学生的思维深刻性。
通过此课我体会到在问题情境的创设中要注意二个方面:一是问题情境要贴近学生的生活,为学生所喜闻乐见,容易理解并能迅速进入探究角色,激发学习潜能;二是资料或教材上现成的数学问题情景要根据自己学生的水平进行改编,尽量使探究活动有层次、多梯度,能让每个学生都积极参与,每个学生都能获得一定的成功,在数学上获得不同的发展。
数学人教版七年级上册探索规律课件
思考: (1)如果将方框改为十 字形框,你能发现哪些规 律? (2)如果改为H形 框呢?
二.探索规律
(3)你还能设计其他形状的包含数字规律的数框吗?
日 一 二 1 6 13 20 27 7 14 21 28 8 15 22 29 三 2 9 16 23 30 四 3 10 17 24 31 五 4 11 18 25 六 5 12 19 26
5 探索与表达规律
授课人;吴寅辰
教学目标:
1.经历由特殊到一般和一般到特殊的过程,体会代数推理的特 点 和作用.
2.能用代数式表示并借助代数式运算验证所探究规律的一般性. 3.指导学生代数式的运算解释具体问题中蕴含的一般性规律. 重点:指导学生观察,运算,发现规律以及验证规律的一般性. 难点:指导学生代数式的运算解释具体问题中蕴含的一般性规 律.
一.课题引入
……………………….
X个正方形
4+3×(x-1)根火柴棒
搭x个正方形需要:
X+x+x+1根火柴 棒 4x-(x-1)根火柴 棒
二.探索规律
(1)日历图的套色方框 中的9个数之和是多少? (2)日历图的套色方框 中的9个数之和与该方框 正中间的数有什么关系?
二.探索规律
(3)这个关系对其他这 样的方框成立吗?
(4)如果方框的正中间 数是a,猜想方框中的9 9a 个数之和是__. (5)你能验证你的结论 吗?
二.探索规+6 a+7 a+8
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) 9a = ______
七年级数学上册《规律的探索》
培养逻辑思维
探索规律有助于培养学生的逻 辑思维和推理能力,使他们能 够更好地理解和分析问题。
发现新知识
通过探索规律,学生可以发现 新的数学概念和定理,进一步
丰富数学知识体系。
解决实际问题
探索规律有助于学生解决实际 问题,如预测未来趋势、优化
资源配置等。
提高创新能力
探索规律有助于培养学生的创 新思维和创造力,为未来的科 技发展和社会进步做出贡献。
在科学实验中的应用
生物学实验
01
在生物学实验中,科学家经常使用周期性实验来研究生物的生
长和繁殖规律,如植物的光合作用、动物的繁殖周期等。
物理学实验
02
在物理学中,很多物理量都有一定的规律变化,如温度、压力、
电流等,科学家通过实验来研究这些规律。
环境监测
03
环境监测中需要定期采集数据,如空气质量、水质等,通过这
02
数的规律探索
数的排列规律
总结词
数的排列规律是指按照一定的顺序排列数字,形成特定的模 式或序列。
详细描述
在数的排列规律中,我们通常关注数字的顺序,以及它们如 何按照特定的模式或序列进行排列。例如,1、2、3、4、5 是一个递增的排列规律,而3、2、1则是一个递减的排列规 律。
数的增减规律
总结词
函数关系式
用函数关系式来表示规律,如 $f(x) = x^2$ 表示二次函数的规律。
方程式
方程式也可以用来表示规律,如 $x^2 - y^2 = (x + y)(x - y)$ 表 示差平方的规律。
用表格表示规律
01
表格可以清晰地展示数据和规律 ,通过表格可以直观地观察到数 据的变化趋势和规律。
人教版七年级数学上册第二章数学活动课规律的探索优秀教学设计
1.培养学生对数学的兴趣和热爱,激发学生学习数学的内在动机。
2.培养学生的合作意识和团队精神,让学生在合作中学会尊重、倾听、交流、互助。
3.培养学生勇于探索、敢于创新的精神,使学生体验到数学探究的乐趣。
4.培养学生严谨、认真的学习态度,养成良好的学习习惯。
5.培养学生正确的价值观,使学生认识到数学在现实生活中的重要作用,增强学生学以致用的意识。
(二)过程与方法
1.通过自主探究、小组合作、师生互动等多种学习方式,让学生在活动中体验数学探究的过程,培养探究精神。
2.引导学生运用观察、实验、猜想、验证等方法,发现数学对象的规律,掌握数学研究的方法。
3.引导学生运用所学的数学知识和方法,解决实际问题,提高学生运用数学知识解决实际问题的能力。
4.培养学生良好的思维品质,如逻辑思维、创新思维等。
教学设想:
1.创设情境,激发兴趣:结合学生的生活实际,设计富有情境性的问题,引导学生积极参与到规律的探索中来,激发学生的学习兴趣。
2.自主探究,合作交流:在教学过程中,给予学生充足的自主探究时间,鼓励学生发表自己的观点,开展小组合作交流,培养学生的合作意识和团队精神。
3.分层指导,关注个体差异:针对学生的不同认知水平,实施分层指导,使每位学生都能在原有基础上得到提高。
3.学生在小组内部分工合作,运用所学方法,展开讨论,共同寻找解决问题的策略。
4.教师巡回指导,关注学生的讨论过程,及时解答学生的疑问,引导他们深入思考。
(四)课堂练习
在课堂练习环节,我将设计以下类型的题目:
1.基础题:旨在巩固学生对规律探索方法的掌握,提高解题速度和准确性。
2.提高题:旨在培养学生的创新思维和发散思维,提高解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索型问题
题型一
第1题
一组数1,1,2,x,5,y,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数为( )
A.8
B.9
C.13
D.15
第2题
一组数,,,,…按一定的规律排列,根据排列规律,推测这组数的第10个数应为( )
A. B. C. D.
题型二数式变化规律型
数式规律型,通常给定一些代数式、等式或者不等式,通过探究其变化过程中的规律,归纳或猜想出一般性的结论,主要考查探索规律的能力,理解给出的解题思路与方法,并能灵活应用是解决问题的关键.
第3题
如图3-7-1,是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及其系数的有关规律.请你观察,并根据此规律写出:(a+b)7的展开式共有________项,第二项的系数是________,(a+b)n的展开式共有________项,各项的系数和是________.
图3-7-1
第4题
阅读下列材料:
1×2=×(1×2×3-0×1×2),
2×3=×(2×3×4-1×2×3),
3×4=×(3×4×5-2×3×4),
以上三个等式左右两边分别相加,可得
1×2+2×3+3×4=×3×4×5=20.
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程);
(2)1×2+2×3+3×4+…+n×(n+1)= .
题型三图形变化规律型
图形规律型主要是观察图形的组合、拆分及图形自身的特点,分析相邻两个图形之间的关系及每个图形和项数之间的关系,并将以图形为载体的变化规律用含有项数的代数式(等式)表示出来,利用此规律、特点解决问题.
第5题
如图3-7-2,将正方形进行如下操作:第1次:在图①中,分别连接各边中点,如图②,得到5个正方形;第2次:将图②中左上角的正方形按上述方法再分割,如图③,得到9个正方形,……,以此类推,根据以上操作,若要得到2 013个正方形,则需要操作的次数是( )
图3-7-2
A.502
B.503
C.504
D.505
第6题。