综合题专项训练

合集下载

高中物理选修一综合测试题专项训练(带答案)

高中物理选修一综合测试题专项训练(带答案)

高中物理选修一综合测试题专项训练单选题1、如图所示为冲击摆实验装置,一飞行子弹射入沙箱后与沙箱合为一体,共同摆起一定的高度,则下面有关能量的转化的说法中正确的是( )A .子弹的动能转变成沙箱和子弹的内能B .子弹的动能转变成了沙箱和子弹的热能C .子弹的动能转变成了沙箱和子弹的动能D .子弹的动能一部分转变成沙箱和子弹的内能,另一部分转变成沙箱和子弹的机械能答案:D子弹在射入沙箱瞬间,要克服摩擦阻力做功,有一部分动能转变成沙箱和子弹的内能,然后共同摆起一定高度的过程中系统机械能守恒,子弹和沙箱的动能完全转化为系统的重力势能,所以全过程子弹的动能是一部分转变成沙箱和子弹的内能,另一部分转变成沙箱和子弹的机械能,故ABC 错误,D 正确。

故选D 。

2、2021年5月15日,中国自主研发的火星探测器“天问一号”成功着陆火星。

已知在火星表面一摆长为L 的单摆完成n 次全振动所用的时间为t 。

探测器在离开火星表面返回时,在离火星表面高度为h 的圆轨道以速度v 绕其运行一周所用时间为T 。

已知引力常量为G ,火星可视为匀质球体,则火星的密度为( )A .6n 2π2LGt 2(vT−2πℎ)B .3πGT 2C .6π2LGt 2(vT−2πℎ)D .6n 2π2LGTvt 2答案:A根据单摆的周期公式得t n =2π√Lg根据黄金代换式mg=G MmR2根据圆周运动得v=2π(R+ℎ)T根据密度公式M=ρ⋅43πR3解得ρ=6n2π2LGt2(vT−2πℎ)故选A。

3、固定的半圆形玻璃砖的横截面如图所示,O点为圆心,OO'为直径MN的垂线。

足够大的光屏盯紧靠在玻璃砖的左侧且垂直于MN。

一细束单色光沿半径方向射向圆心O点,入射光线与OO'夹角为θ。

已知半圆形玻璃砖半径R=20cm,该玻璃砖的折射率为n=√3。

刚开始θ角较小时,光屏EF上出现两个光斑(图中未画出)。

现逐渐增大θ角,当光屏EF上恰好仅剩一个光斑时,这个光斑与M点之间的距离为()A.10√2cmB.10√3cmC.20√2cmD.20√3cm答案:CA. 当θ较小时,由于反射和折射现象,所以EF屏上拙现两个光斑。

数学综合算式专项训练题夯实基础迈向高阶

数学综合算式专项训练题夯实基础迈向高阶

数学综合算式专项训练题夯实基础迈向高阶在学习数学的过程中,算式是一个不可或缺的基础内容。

通过解题练习,可以帮助我们夯实数学的基础,提高解题能力。

本文将为大家提供一些数学综合算式专项训练题,旨在帮助读者加深对数学算式的理解,并进行高阶思考。

一、整数运算1. 求解下列算式的结果:(1) 25 + (-17) - 8 =(2) (-72) - (-18) + 45 - (-29) =(3) 32 × (-4) + 15 ÷ (-3) × 5 =(4) 68 ÷ (-4) - 23 × (-6) ÷ 3 =二、分数运算1. 求解下列算式的结果:(1) 3/4 - 1/6 + 2/9 =(2) 2/5 × 3/8 - 1/4 × 1/2 =(3) 5/6 ÷ 2/3 × 3/4 =(4) 1/3 × (2/5 + 3/10) - 1/2 =三、小数运算1. 求解下列算式的结果:(1) 1.5 + 0.75 - 1.2 =(2) 3.12 × 2.5 - 0.48 × 1.2 =(3) 6.3 ÷ 2.1 × 0.3 =(4) 1.4 - (0.5 + 0.3) ÷ 0.2 =四、代数式运算1. 求解下列算式的结果:(1) 2x + 3y - 4x + 5y =(2) 3(x - y) + 2(x + y) =(3) 4(a + b) - 2(a - b) =(4) 5(x + y) - 2(x - y) - 3(x + y) =五、平方根计算1. 求解下列算式的结果:(1) √16 + √9 =(2) √25 - √4 =(3) √36 × √64 =(4) √81 ÷ √9 =六、综合运算1. 求解下列算式的结果:(1) 2 × (3 + 4) - 5 ÷ (6 - 2) =(2) 3 + 4 × (2 - 1) ÷ (6 - 3) =(3) 6 - 4 ÷ 2 + 3 × 2 =(4) (2 + 3) × (4 - 1) ÷ 5 =通过以上练习题目的训练,相信读者们已经对数学综合算式的解题方法和答案求解有了更深入的了解。

三年级列综合算式专项训练题

三年级列综合算式专项训练题

三年级列综合算式专项训练题在三年级的数学学习中,综合算式是一个重要的内容。

综合算式要求学生综合运用加法、减法、乘法和除法等数学运算符号,根据给定的条件来计算出结果。

通过练习综合算式,学生能够提高运算能力和逻辑思维能力。

下面是一些三年级综合算式的专项训练题。

1. 小明有15本书,他借给小红3本,又借给小华5本。

小明还剩下多少本书?解析:小明有15本书,借给小红3本,剩下15-3=12本书。

然后,又借给小华5本,剩下12-5=7本书。

小明还剩下7本书。

2. 一桶水有36升,小明用了10升,小华用了15升,小红用了8升,还剩下多少升水?解析:一桶水有36升,小明用了10升,剩下36-10=26升水。

然后,小华用了15升,剩下26-15=11升水。

最后,小红用了8升,剩下11-8=3升水。

3. 小明买了一袋糖果,里面有24颗。

他拿出了6颗糖果吃了,还剩下多少颗?解析:小明买了一袋糖果,里面有24颗,吃了6颗,剩下24-6=18颗糖果。

4. 一架飞机上有80名乘客,每个座位上有5个空位,还有多少个空位?解析:一架飞机上有80名乘客,每个座位上有5个空位,所以总共有80*5=400个座位。

飞机上还有400-80=320个空位。

5. 一只杯子里有200毫升的果汁,小明喝了一半,还剩下多少毫升?解析:一只杯子里有200毫升的果汁,小明喝了一半,所以剩下200/2=100毫升的果汁。

6. 小华有100元钱,她花了30元买了一本书,又花了40元买了一件衣服,还剩下多少钱?解析:小华有100元钱,买了一本书花了30元,剩下100-30=70元。

然后,又花了40元买了一件衣服,剩下70-40=30元。

通过以上练习题,学生可以巩固和应用所学的数学运算知识。

同时,综合算式的训练也能培养学生的逻辑思维能力和解决问题的能力。

在解答问题的过程中,学生需要分析问题、提取关键信息、运用适当的运算符号进行计算,并给出准确的答案。

为了更好地掌握综合算式,学生可以多进行类似的练习,并且注重理解问题的本质和意义。

六年级上册语文试题-专项习题:综合题 人教(部编版)(含解析)

六年级上册语文试题-专项习题:综合题 人教(部编版)(含解析)

六年级上册语文试题综合题一、综合题1.综合实践。

同学们,对于生活中的很多事情,大家可能会有不同的意见,这时需要协商才能解决。

那么遇到下面这样的情况,应该怎么办呢?请根据材料完成练习。

【交际材料】爆竹声声辞旧岁,银花朵朵贺新年。

噼里啪啦的爆竹、五彩缤纷的烟花,给人们带来浓浓的年味和喜庆气氛,但也在环保、安全等方面带来很多问题。

一些城市在燃放鞭炮方面的政策也在不断摇摆。

那么,春节到底该不该燃放烟花爆竹呢?(1)六(1)班分成几个小组进行讨论。

讨论时,如果听到不同的意见,要换位思考,积极沟通。

以下是几位同学关于“倾听”的想法,不恰当的是()。

A.王红:我认为对就是对,错就是错,不需要参与讨论,不需要倾听。

B.张明:认真倾听他人的话,站在别人的角度想一想,然后思考,表达清楚自己的观点。

C.李刚:尊重不同意见,倾听时要有耐心,不能心不在焉。

(2)【学习交际】从“普通市民、消防队员、环卫工人、鞭炮厂工人”中选择一个身份,来谈一谈春节到底该不该燃放烟花爆竹。

2.找出广告语中的错别字并改正,再说说你对这种用词现象的看法。

有痔之士,无后股之忧(某肛肠医院)改正:________我的看法:________3.阅读非连续性文本,完成后面的题目。

某校图书馆学生阅览室共有10万册图书,最近学校对图书损坏情况做了调查,并做了如下统计。

(1)从此表中,我知道了,这是关于________的调查。

(2)我发现损坏较重和严重损坏的一共有________册,占了全部图书的________。

(3)从此表中,我得出了一个结论________,看来要对同学们________。

4.附加题。

(1)《故乡的“水墨画”》是作家吴建写的一篇回忆故乡的文章。

古代诗人也有许多表达思乡之情的诗词,你知道的有哪些?请你选择两句写在下面的横线上。

(2)下列对联各咏的是谁?①一门父子三词客,千古文章四大家。

________②豪气压群雄,能使力士脱靴,贵妃捧砚;仙才媲美,不让参军俊逸,开府清新。

角度计算的综合大题专项训练(30道)(含答案)

角度计算的综合大题专项训练(30道)(含答案)

专题11.7 角度计算的综合大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,渗透角度计算由一般到特殊的思想!1.(2021春•平顶山期末)如图,已知△ABC,AD平分∠BAC交BC于点D,AE⊥BC于点E,∠B<∠C.(1)若∠B=44°,∠C=72°,求∠DAE的度数;(2)若∠B=27°,当∠DAE=21度时,∠ADC=∠C.【解题思路】(1)利用三角形的内角和求出∠BAC,再利用内角与外角的关系先求出∠ADC,再求出∠DAE;(2)利用三角形的内角和定理及推论,用含∠C的代数式表示出∠BAC、∠ADC,根据∠C=∠ADC得到关于∠C的方程,先求出∠C,再求出∠DAE的度数.【解答过程】解:∵AD平分∠BAC交BC于点D,AE⊥BC于点E,∴∠BAD=∠CAD=12∠BAC,∠AED=90°.(1)∵∠B=44°,∠C=72°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣44°﹣72°=64°.∴∠BAD=12×64°=32°.∵∠ADC=∠B+∠BAD =44°+32°=76°,∴∠DAE=90°﹣∠ADC=90°﹣76°=24°.(2))∵∠B=27°,∠C=∠ADC,∴∠BAC=180°﹣∠B﹣∠C=180°﹣27°﹣∠C=153°﹣∠C.∴∠BAD=12×(153°﹣∠C)=76.5°−12∠C.∴∠ADC=∠B+∠BAD=27°+76.5°−12∠C=103.5°−12∠C.∵∠ADC=∠C,∴103.5°−12∠C=∠C.∴∠ADC=∠C=69°.∴∠DAE=∠AED﹣∠ADC=90°﹣69°=21°.故答案为:21.2.(2021春•长春期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,BC延长线交OM于点G.解决问题:(1)若∠OBA=80°,∠OAB=40°,则∠ACG=60°;(直接写出答案)(2)若∠MON=100°,求出∠ACG的度数.【解题思路】(1)由角平分线的定义可求出∠CBA和∠CAB的度数,再根据三角形外角的性质求出∠ACG的度数即可;(2)先根据三角形内角和定理求出∠OBA+∠OAB的度数,然后再根据角平分线的定义求出∠CBA+∠CAB的度数,最后根据三角形外角的性质求出结果即可.【解答过程】解:(1)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∵∠OBA=80°,∠OAB=40°,∴∠CBA=40°,∠CAB=20°,∴∠ACG=∠CBA+∠CAB=60°.故答案为:60°.(2)∵∠MON=100°,∴∠BAO+∠ABO=180°﹣100°=80°,∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠CBA=12∠ABO,∠CAB=12∠BAO,∴∠CBA+∠CAB=12(∠ABO+∠BAO)=12×80°=40°,∴∠ACG=∠CBA+∠CAB=40°.3.(2021春•兴化市期末)如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.【解题思路】(1)根据直角三角形的性质得到∠DCB+∠B=90°,∠CAB+∠B=90°,进而得到∠CAB =∠DCB,根据角平分线的定义计算即可;(2)根据角平分线的定义得到∠BAE=∠CAE,根据直角三角形的性质得到∠CEF=∠AFD,根据对顶角相等证明结论.【解答过程】(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=12∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.4.(2021春•海陵区期末)如图,CD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=70°,求∠CED的度数;(2)若∠A﹣∠ACD=34°,∠EDB=97°,求∠A的度数.【解题思路】(1)利用三角形内角和定理求出∠ACB,再求出∠ECD,∠EDC,可得结论.(2)设∠A=x,则∠ACD=x﹣34°,根据∠EDB=∠A+∠AED,构建方程求解即可.【解答过程】解:(1)∵∠CDB=∠A+∠ACD,∴∠ACD=70°﹣45°=25°,∵CD平分∠ACB,∴∠DCB=∠ACB=25°,∵DE∥CB,∴∠EDC=∠BCD=25°,∴∠DEC=180°﹣25°﹣25°=130°.(2)设∠A=x,则∠ACD=x﹣34°,∵CD平分∠ACB,∴∠ACB=2x﹣68°,∵DE∥CB,∴∠AED=∠ACB=2x+68°,∵∠EDB=∠A+∠AED,∴97°=x+2x﹣68°,∴x=55°,∴∠A=55°.5.(2021春•宽城区期末)如图,在△ABC中,点E是边AC上一点,∠AEB=∠ABC.(1)如图1,作∠BAC的平分线交CB、BE于D、F两点.求证:∠EFD=∠ADC.(2)如图2,作△ABC的外角∠BAG的平分线,交CB的延长线于点D,延长BE、DA交于点F,试探究(1)中的结论是否成立?请说明理由.【解题思路】(1)首先根据角平分线的性质可得∠BAD=∠DAC,再根据内角与外角的性质可得∠EFD =∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,进而得到∠EFD=∠ADC;(2)首先根据角平分线的性质可得∠BAD=∠DAG,再根据等量代换可得∠F AE=∠BAD,然后再根据内角与外角的性质可得∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,进而得∠EFD=∠ADC.【解答过程】解:(1)∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠EFD=∠DAC+∠AEB,∠ADC=∠ABC+∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC;(2)探究(1)中结论仍成立;理由:∵AD平分∠BAG,∴∠BAD=∠GAD,∵∠F AE=∠GAD,∴∠F AE=∠BAD,∵∠EFD=∠AEB﹣∠F AE,∠ADC=∠ABC﹣∠BAD,又∵∠AEB=∠ABC,∴∠EFD=∠ADC.6.(2021春•镇江期中)如图,将一张三角形纸片ABC的一角折叠,使得点A落在四边形BCDE的外部A'的位置,且A'与点C在直线AB的异侧,折痕为DE,已知∠C=90°,∠A=30°.(1)求∠1﹣∠2的度数;(2)若保持△A′DE的一边与BC平行,求∠ADE的度数.【解题思路】(1)先求出∠B的度数,在根据四边形内角和求出∠1+∠BFD的度数,由∠BFD=∠A′FE和∠A’的度数可求出答案.(2)分EA'∥BC和DA'∥BC两种情况讨论.当DA'∥BC时,先求出∠A′DA=90°,再根据折叠可得出∠ADE=45°;当EA'∥BC时,根据平行线的性质求出∠2=∠ABC=60°,由(1)得出∠1=120°,再根据折叠可求出∠ADE的度数.【解答过程】解:(1)由折叠可知,∠A′=∠A=30°,在△A′EF中,∠A′+∠2+∠A′FE=180°,∴∠2=180°﹣∠A′﹣∠A′FE=150°﹣∠A′FE,在△ABC中,∠B=180°﹣∠C﹣∠A=60°,在四边形BCDF中,∠1+∠C+∠B+∠BFD=360°,∴∠1=360°﹣∠C﹣∠B﹣∠BFD=210°﹣∠BFD,∵∠BFD=∠A′FE,∴∠1﹣∠2=210°﹣150°=60°;(2)当DA'∥BC时,如图,∠A′DA=∠ACB=90°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=45°,当EA'∥BC时,如图,∠2=∠ABC=60°.由(1)知,∠1﹣∠2=60°,∴∠1=∠2+60°=120°,∵△ADE沿DE折叠到△A′DE,∴∠ADE=∠A′DE=12∠ADA′=(180°﹣∠1)=30°.综上所述∠ADE的度数为:45°或30°.7.(2021春•常熟市期中)已知△ABC中,AD⊥BC于点D,AE平分∠BAC,过点A作直线GH∥BC,且∠GAB=60°,∠C=40°.(1)求△ABC的外角∠CAF的度数;(2)求∠DAE的度数.【解题思路】(1)根据平行线的性质、对顶角相等计算即可;(2)根据角平分线的定义得到∠BAE=40°,根据平行线的性质求出∠GAD=90°,结合图形计算,得到答案.【解答过程】解:(1)∵GH∥BC,∠C=40°,∴∠HAC=∠C=40°,∵∠F AH=∠GAB=60°,∴∠CAF=∠HAC+∠F AH=100°;(2)∵∠HAC=40°,∠GAB=60°,∴∠BAC=80°,∵AE平分∠BAC,∴∠BAE=40°,∵GH∥BC,AD⊥BC,∴∠GAD=90°,∴∠BAD=90°﹣60°=30°,∴∠DAE=∠BAE﹣∠BAD=10°.8.(2020秋•红桥区期末)如图,在△ABC中,AD是高,角平分线AE,BF相交于点O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的大小.【解题思路】根据三角形高线可得∠ADC=90°,利用三角形的内角和定理可求解∠DAC的度数;由三角形的内角和可求解∠B的度数,再根据角平分线的定义可求出∠BAO和∠ABO的度数,再利用三角形的内角和定理可求解.【解答过程】解:∵AD是△ABC的高线,∴∠ADC=90°,∵∠ADC+∠C+∠CAD=180°,∠C=70°,∴∠CAD=180°﹣90°﹣70°=20°;∵∠ABC+∠C+∠CAB=180°,∠C=70°,∠BAC=50°,∴∠ABC=180°﹣70°﹣50°=60°,∵AE,BF分别平分∠BAC,∠ABC,AE,BF相交于点O,∴∠BAO=12∠BAC=25°,∠ABO=12∠ABC=30°,∵∠ABO+∠BAO+∠AOB=180°,∴∠AOB=180°﹣25°﹣30°=125°.9.(2020秋•涪城区期末)如图,在△ABC中,∠1=∠2=∠3.(1)证明:∠BAC=∠DEF;(2)∠BAC=70°,∠DFE=50°,求∠ABC的度数.【解题思路】(1)利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质解决问题即可.【解答过程】(1)证明:∵∠BAC=∠1+∠CAE,∠DEF=∠3+∠CAE,∠1=∠3,∴∠BAC=∠DEF.(2)∵∠ABC=∠2+∠ABD,∠1=∠2,∴∠ABC=∠1+∠ABD=∠EDF,由(1)可知∠DEF=∠BAC=70°,∴∠ABC=∠1+∠ABD=∠EDF=180°﹣∠DEF﹣∠DFE=180°﹣70°﹣50°=60°,∴∠ABC=60°.10.(2021春•苏州期末)如图,△ABC中,D为BC上一点,∠C=∠BAD,△ABC的角平分线BE交AD 于点F.(1)求证:∠AEF=∠AFE;(2)G为BC上一点,当FE平分∠AFG且∠C=30°时,求∠CGF的度数.【解题思路】(1)由角平分线定义得∠ABE=∠CBE,再根据三角形的外角性质得∠AEF=∠AFE;(2)由角平分线定义得∠AFE=∠GFE,进而得∠AEF=∠GFE,由平行线的判定得FG∥AC,再根据平行线的性质求得结果.【解答过程】解:(1)证明:∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABF+∠BAD=∠CBE+∠C,∵∠AFE=∠ABF+∠BAD,∠AEF=∠CBE+∠C,∴∠AEF=∠AFE;(2)∵FE平分∠AFG,∴∠AFE=∠GFE,∵∠AEF=∠AFE,∴∠AEF=∠GFE,∴FG∥AC,∵∠C=30°,∴∠CGF=180°﹣∠C=150°.11.(2020秋•恩施市期末)已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1)试说明:∠ABC=∠BFD;(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【解题思路】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【解答过程】解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH﹣∠BEG=55°.12.(2020秋•白银期末)(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.【解题思路】(1)作射线OA,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【解答过程】解:(1)作射线OA,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠A+∠C+∠D+∠F=230°.13.(2021春•新蔡县期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB =50°,∠C=60°,求∠DAE和∠BOA的度数.【解题思路】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答过程】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.14.(2020春•香坊区校级月考)如图,在△ABC中,∠C=40°,AE、BF分别为△ABC的角平分线,它们相交于点O.(1)求∠EOF的度数.(2)AD是△ABC的高,∠AFB=80°时,求∠DAE的度数.【解题思路】(1)先根据三角形内角和定理得∠C=180°﹣(∠BAC+∠ABC)的度数,由角平分线的定义和三角形内角和定理可得结论;(2)先根据垂直的定义及三角形内角和可得到∠CAD的度数,再求出∠1的度数,最后根据三角形内角和即可求解.【解答过程】解:(1)∵∠CAB+∠ABC=180°﹣∠C,∵AE、BF是角平分线,∴∠EAB=12∠BAC,∠FBA=12∠ABC,∴∠EAB+∠FBA=12(∠BAC+∠ABC)=12(180°﹣∠C)=90°−12∠C,∴∠AOB=180°﹣(90°−12∠C)=90°+12∠C,∵∠C=40°,∴∠AOB=110°,∴∠EOF=∠AOB=110°.(2)∵AD⊥BC,∠C=40°,∴∠CAD=50°,∵∠AFB=80°,∴∠1=180°﹣50°﹣80°=50°,∴∠DAE=180°﹣∠1﹣∠AOB=180°﹣50°﹣110°=20°.15.(2021春•海陵区校级月考)如图1,△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)如图1,∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β(α<β),则∠CFE=12β−12α;(用α、β表示)(3)如图2,(2)中的结论还成立么?请说明理由.【解题思路】(1)求∠CFE的度数,求出∠DAE的度数即可,只要求出∠BAE﹣∠BAD的度数,由平分和垂直易得∠BAE和∠BAD的度数即可;(2)由(1)类推得出答案即可;(3)类比以上思路,把问题转换为∠CFE=90°﹣∠ECF即可解决问题.【解答过程】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∠B=α,∠ACB=β,∴∠CFE=∠DAE=20°;(2)∵∠BAE=90°﹣∠B,∠BAD=12∠BAC=12(180°﹣∠B﹣∠ACB),∵CF ∥AD ,∴∠CFE =∠DAE =∠BAE ﹣∠BAD =90°﹣∠B −12(180°﹣∠B ﹣∠BCA )=12(∠ACB ﹣∠B )=12β−12α, 故答案为:12β−12α; (3)(2)中的结论成立.∵∠B =α,∠ACB =β,∴∠BAC =180°﹣α﹣β,∵AD 平分∠BAC ,∴∠DAC =12∠BAC =90°−12α−12β,∵CF ∥AD ,∴∠ACF =∠DAC =90°−12α−12β,∴∠BCF =β+90°−12α−12β=90°−12α+12β,∴∠ECF =180°﹣∠BCF =90°+12α−12β,∵AE ⊥BC ,∴∠FEC =90°,∴∠CFE =90°﹣∠ECF =12β−12α.16.(2021春•市北区期末)阅读并填空将三角尺(△MPN ,∠MPN =90°)放置在△ABC 上(点P 在△ABC 内),如图1所示,三角尺的两边PM 、PN 恰好经过点B 和点C .我们来探究:∠ABP 与∠ACP 是否存在某种数量关系.(1)特例探索:若∠A =50°,则∠PBC +∠PCB = 90 度;∠ABP +∠ACP = 40 度;(2)类比探索:∠ABP、∠ACP、∠A的关系是∠ABP+∠ACP=90°﹣∠A;(3)变式探索:如图2所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是∠ACP﹣∠ABP=90°﹣∠A.【解题思路】(1)利用三角形内角和定理即可解决问题.(2)结论:∠ABP+∠ACP=90°﹣∠A.利用三角形内角和定理即可证明.(3)不成立;存在结论:∠ACP﹣∠ABP=90°﹣∠A.利用三角形内角和定理即可解决问题.【解答过程】解:(1)∵∠A=50°,∴∠ABC+∠ACB=130°,∵∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP+∠ACP=130°﹣90°=40°,故答案为:90,40;(2)结论:∠ABP+∠ACP=90°﹣∠A.证明:∵(∠PBC+∠PCB)+(∠ABP+∠ACP)+∠A=180°,∴90°+(∠ABP+∠ACP)+∠A=180°,∴∠ABP+∠ACP+∠A=90°,∴∠ABP+∠ACP=90°﹣∠A.故答案为:∠ABP+∠ACP=90°﹣∠A;(3)结论:∠ACP﹣∠ABP=90°﹣∠A,理由是:设AB交PC于O,如图2:∵∠AOC=∠POB,∴∠ACO+∠A=∠P+∠PBO,即∠ACP+∠A=90°+∠ABP,∴∠ACP﹣∠ABP=90°﹣∠A,故答案为:∠ACP﹣∠ABP=90°﹣∠A.17.(2021春•东海县期末)如图1.△ABC的外角平分线BF、CF交于点F.(1)若∠A=50°.则∠F的度数为65°;(2)如图2,过点F作直线MN∥BC,交AB,AC延长线于点M、N.若设∠MFB=α,∠NFC=β,则∠A与a+β满足的数量关系是α+β−12∠A=90°;(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间满足的数量关系,并说明理由;②当直线MN与线段BC有交点时,试问①中∠A与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请直接写出三者之间满足的数量关系.【解题思路】(1)根据三角形内角和定理以及角平分线的定义,即可得到∠F的度数;(2)根据三角形内角和定理以及角平分线的定义,即可得到∠BFC的度数,再根据平行线的性质,即可得到∠A与α+β的数量关系;(3)①根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系;②分两种情况进行讨论,根据(2)中的结论∠BFC=90°﹣∠A,以及平角的定义,即可得到∠A与α,β之间的数量关系.【解答过程】解:(1)如图1,∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠DBC﹣∠ECB=360°﹣130°=230°,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECD)=12×230°=115°,∴△BCF中∠F=180°﹣115°=65°,故答案为65°;(2)如图2,∵∠ABC+∠ACB=180°﹣∠A,∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,又∵△ABC的外角平分线交于点F,∴∠FBC+∠FCB=12(∠DBC+∠ECB)=12×(180°+∠A)=90°+12∠A,∴△BCF中,∠BFC=180°﹣(90°+12∠A)=90°−12∠A,又∵∠MFB=α,∠NFC=β,MN∥BC,∴∠FBC=α,∠FCB=β,∵△BCF中,∠FBC+∠FCB+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,故答案为:α+β−12∠A=90°;(3)①α+β−12∠A=90°,理由如下:如图3,由(2)可得,∠BFC=90°−12∠A,∵∠MFB+∠NFC+∠BFC=180°,∴α+β+90°−12∠A=180°,即α+β−12∠A=90°,②当直线MN与线段BC有交点时,①中∠A与α,β之间的数量关系不成立,分两种情况:如图4,当M在线段AB上,N在AC延长线上时,由(2)可得,∠BFC=90°−12∠A,∵∠BFC﹣∠MFB+∠NFC=180°,∴90°−12∠A﹣α+β=180°,即β﹣α−12∠A=90°;如图5,当M在AB的延长线上,N在线段AC上时,由(2)可得,∠BFC=90°−12∠A,∴∠BFC﹣∠NFC+∠MFB=180°,∴90°−12∠A﹣β+α=180°,即α﹣β−12∠A=90°;综上所述,∠A与α,β之间的数量关系为β﹣α−12∠A=90°或α﹣β−12∠A=90°.18.(2021春•宽城区期末)在△ABC中,∠ACB=90°,点D、E分别是边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)如图1,点P在斜边AB上运动.①若∠α=70°,则∠1+∠2=160度.②写出∠α、∠1、∠2之间的关系,并说明理由.(2)如图2,点P在斜边AB的延长线上运动(CE<CD),BE、PD交于点F,试说明∠1﹣∠2=90°+∠α.(3)如图3,点P在△ABC外运动(只需研究图③的情形),直接写出∠α、∠1、∠2之间的关系.【解题思路】(1)①求出∠CEP+∠CDP,可得结论.②结论:∠1+∠2=90°+∠α.连接PC,利用三角形的外角的性质解决问题即可.(2)利用三角形的外角的性质以及三角形内角和定理证明即可.(3)利用基本结论∠C+∠3=∠P+∠4,构建关系式,可得结论.【解答过程】解:(1)①∵∠C=90°,α=70°,∴∠CEP+∠CDP=360°﹣(90°+70°)=200°,∴∠1+∠2=360°﹣200°=160°,故答案为:160.②结论:∠1+∠2=90°+∠α.理由:如图1中,连结CP.∵∠1=∠DCP+∠CPD,∠2=∠ECP+∠CPE,∴∠1+∠2=∠DCP+∠CPD+∠ECP+∠CPE,∵∠DCP+∠ECP=∠ACB=90°,∠CPD+∠CPE=∠DPE=∠α,∴∠1+∠2=90°+∠α.(2)如图2中,∵∠1=∠ACB+∠CFD,∠CFD=∠2+∠α,∴∠1=∠ACB+∠2+∠α.∵∠ACB=90°,∴∠1=90°+∠2+∠α.∴∠1﹣∠2=90°+∠α.(3)结论:∠2﹣∠1=90°﹣∠α.理由:如图3中,∵∠C+∠3=∠P+∠4,∠C=90°,∠P=α,∴90°+(180°﹣∠2)=α+(180°﹣∠1),∴∠2﹣∠1=90°﹣∠α.19.(2021春•延庆区期末)在三角形ABC中,点D在线段AC上,ED∥BC交AB于点E,点F在线段AB上(点F不与点A,E,B重合),连接DF,过点F作FG⊥FD交射线CB于点G.(1)如图1,点F在线段BE上,用等式表示∠EDF与∠BGF的数量关系,并证明;(2)如图2,点F在线段BE上,求证:∠ABC+∠BFG﹣∠EDF=90°;(3)当点F在线段AE上时,依题意,在图3中补全图形,请直接用等式表示∠EDF与∠BGF的数量关系,不需证明.【解题思路】(1)结论:∠EDF+∠BGF=90°.如图1中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(2)如图2中,过点F作FH∥BC交AC于点H.利用平行线的性质求解即可.(3)作出图形,利用平行线的性质求解即可.【解答过程】(1)解:结论:∠EDF+∠BGF=90°.理由:如图1中,过点F作FH∥BC交AC于点H.∵ED∥BC,∴ED∥FH.∴∠EDF=∠1.∵FH∥BC,∴∠BGF=∠2.∵FG⊥FD,∴∠DFG=90°.∴∠1+∠2=90°.∴∠EDF+∠BGF=90°.(2)证明:如图2中,过点F作FH∥BC交AC于点H.∴∠ABC=∠AFH.∴∠ABC=∠1+∠3.∴∠3=∠ABC﹣∠1.∵∠EDF=∠1,∴∠3=∠ABC﹣∠EDF.∵FG⊥FD,∴∠DFG=90°.∴∠BFG+∠3=90°.∴∠3=90°﹣∠BFG.∴90°﹣∠BFG=∠ABC﹣∠EDF.∴∠ABC+∠BFG﹣∠EDF=90°.(3)解:结论:∠BGF﹣∠EDF=90°.理由:设DE 交FG 于J .∵DE ∥BC ,∴∠BGF =∠FJE ,∵∠FJE =∠DEJ +∠EDF ,∠DEJ =90°,∴∠BGF ﹣∠EDF =90°20.(2021春•中山市期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC 的平分线与∠EGC 的平分线相交于点Q ,求∠FQG 的大小;(3)如图3,点P 是线段AD 上的动点(不与A ,D 重合),连接PF 、PG ,∠DFP+∠FPG ∠EGP 的值是否变化?如果不变,请求出比值;如果变化,请说明理由.【解题思路】(1)如图1,延长AM 交EG 于M .由题意知:DF ∥EG ,∠ACB =90°,故∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.进而推断出∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°,得∠1=∠GNC ,∠CGN +∠GNC =90°,故∠1+∠CGN =90°.因为∠DFC 的平分线与∠EGC 的平分线相交于点Q ,所以∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1,∠GQC =90°−12∠CGN .那么,∠FQG =360°﹣∠QFC ﹣∠QGC﹣∠ACB =135°.(3)由题意知:DF ∥EG ,得∠FOG =∠EGO ,故∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1.【解答过程】解:(1)如图1,延长AM 交EG 于M .∠β+∠α=90°,理由如下:由题意知:DF ∥EG ,∠ACB =90°.∴∠α=∠GMC ,∠ACB =∠GMC +∠CGM =90°.∵∠EGB 和∠CGM 是 对顶角,∴∠β=∠CGM .∴∠β+∠α=90°.(2)如图2,延长AC 交EG 于N .由题意知:DF ∥EN ,∠ACB =90°.∴∠1=∠GNC ,∠CGN +∠GNC =90°.∴∠1+∠CGN =90°.∵QF 平分∠DFC ,∴∠QFC =12∠DFC =12(180°−∠1)=90°−12∠1.同理可得:∠GQC =90°−12∠CGN .∵四边形QFCG 的内角和等于360°.∴∠FQG =360°﹣∠QFC ﹣∠QGC ﹣∠ACB =360°﹣(90°−12∠1)﹣(90°−12∠CGN )﹣90°. ∴∠FQG =135°.(3)如图3,由题意知:DF ∥EG .∴∠FOG =∠EGO .∴∠DFP+∠FPG ∠EGP =∠GOF ∠EGP =1. ∴∠DFP+∠FPG ∠EGP 的值不变.21.(2021春•禅城区期末)△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,求∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 与∠B 、∠C 的数量关系;(3)拓展:如图3,四边形ABDC 中,AE 是∠BAC 的角平分线,DA 是∠BDC 的角平分线,猜想:∠DAE 与∠B 、∠C 的数量关系是否改变.说明理由.【解题思路】(1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据角平分线的定义得到∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),求得∠MAD=∠ADN,根据角的和差即可得到结论.【解答过程】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE=12∠BAC﹣(90°﹣∠C)=12(180°﹣∠B﹣∠C)﹣90°+∠C=12∠C−12∠B,即∠DAE=12∠C−12∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM=12(∠ACB﹣∠ABC),同理,∠ADN=12(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN=12(∠ACB﹣∠ABC)+12(∠BCD﹣∠CBD)=12(∠ACD﹣∠ABD).22.(2021春•侯马市期末)(1)已知:如图①的图形我们把它称为“8字形”,试说明:∠A+∠B=∠C+∠D.(2)如图②,AP,CP分别平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=90°+12(∠B+∠D);(4)如图(4),直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是∠P=180°−12(∠B+∠D).【解题思路】(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;(3)表示出∠P AD和∠PCD,再根据(1)的结论列出等式并整理即可得解;(4)根据四边形的内角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解.【解答过程】解:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)∵AP,CP分别平分∠BAD,∠BCD,∴∠BAP=∠P AD,∠BCP=∠PCD,由(1)的结论得,∠P+∠BCP=∠ABC+∠BAP,①,∠P+∠P AD=∠ADC+∠PCD②,①+②得,2∠P+∠BCP+∠P AD=∠BAP+∠PCD+∠ABC+∠ADC,∴2∠P=∠ABC+∠ADC,∵∠ABC=36°,∠ADC=16°,∴∠P=26°.(3)∵直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠P AB=∠P AD,∠PCB=∠PCE,∴2∠P AB+∠B=180°﹣2∠PCB+∠D,∴180°﹣2(∠P AB+∠PCB)+∠D=∠B,∵∠P+∠P AD=∠PCB+∠AOC=∠PCB+∠B+2∠P AD,∴∠P=∠P AD+∠B+∠PCB=∠P AB+∠B+∠PCB,∴∠P AB+∠PCB=∠P﹣∠B,∴180°﹣2(∠P﹣∠B)+∠D=∠B,即∠P=90°+12(∠B+∠D).故答案为:∠P=90°+12(∠B+∠D).(4)∵直线AP平分∠BAD的外角∠F AD,CP平分∠BCD的外角∠BCE,∴∠F AP=∠P AO,∠PCE=∠PCB,在四边形APCB中,(180°﹣∠F AP)+∠P+∠PCB+∠B=360°①,在四边形APCD中,∠P AD+∠P+(180°﹣∠PCE)+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,∴∠P=180°−12(∠B+∠D).故答案为:∠P=180°−12(∠B+∠D).23.(2020春•西城区校级期末)在△ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN⊥BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2=20°,∠3﹣∠1=55°;(2)如图2,猜想∠3﹣∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3﹣∠1的度数.(直接写出结果即可)解:(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.(3)∠3﹣∠1=α+β3−30°.【解题思路】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠BEC﹣∠A,再根据角平分线的定义可得∠2=∠ACE;根据角平分线的定义求出∠ACB,再根据三角形的内角和定理求出∠ABC,然后求出∠1,根据直角三角形两锐角互余求出∠3,然后相减即可得解;(2)根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,再根据直角三角形两锐角互余表示出∠3,然后表示出∠3﹣∠1=90°−12∠ACB−12∠ABC,再根据三角形的内角和定理可得∠ACB+∠ABC=180°﹣∠A,然后代入整理即可得解;(3)在△BCE和△BCD中,根据三角形内角和定理列式整理得到∠1+∠2,再根据三角形的内角和定理和角平分线的定义用∠A表示出∠1+∠2,然后根据∠3﹣∠1=12∠A整理即可得解.【解答过程】(1)解:在△ACE中,∠ACE=∠BEC﹣∠A=130°﹣110°=20°,∵CE平分∠ACE,∴∠2=∠ACE=20°,∴∠ACB=2∠2=2×20°=40°,在△ABC中,∠ABC=180°﹣∠A﹣∠ACB=180°﹣110°﹣40°=30°,∵BD平分∠ABC,∴∠1=12∠ABC=12×30°=15°,∵MN⊥BC,∴∠3=90°﹣∠2=90°﹣20°=70°,∴∠3﹣∠1=70°﹣15°=55°,故答案为:20,55;(2)∠3﹣∠1与∠A的数量关系是:∠3﹣∠1=12∠A.证明:在△ABC中,BD,CE是它的两条角平分线,∴∠1=12∠ABC,∠2=12∠ACB,∵MN⊥BC于点N,∴∠MNC=90°,在△MNC中,∠3=90°﹣∠2,∴∠3﹣∠1=90°﹣∠2﹣∠1,=90°−12∠ACB−12∠ABC,=90°−12(∠ACB+∠ABC),∵在△ABC中,∠ACB+∠ABC=180°﹣∠A,∴∠3﹣∠1=90°−12(180°﹣∠A)=12∠A;故答案为:∠3﹣∠1=12∠A ;(3)∵BD ,CE 是△ABC 的两条角平分线, ∴∠ABC =2∠1,∠ACB =2∠2,在△BCE 和△BCD 中,∠1+2∠2+β=180°, ∠2+2∠1+α=180°, ∴∠1+∠2=120°−α+β3,∵∠1+∠2=12(∠ACB +∠ABC )=12(180°﹣∠A ), ∴120°−α+β3=12(180°﹣∠A ), 整理得,12∠A =α+β3−30°,∴∠3﹣∠1=α+β3−30°. 故答案为:α+β3−30°.24.(2020春•福山区期中)直线在同一平面内有平行和相交两种位置关系,线段首尾连接可以变换出很多不同的图形,这些不同的角又有很多不同关系,今天我们就来探究一下这些奇妙的图形吧! 【问题探究】(1)如图1,请直接写出∠A +∠B +∠C +∠D +∠E = 180° ;(2)将图1变形为图2,∠A +∠DBE +∠C +∠D +∠E 的结果如何?请写出证明过程; (3)将图1变形为图3,则∠A +∠B +∠C +∠D +∠E 的结果如何?请写出证明过程. 【变式拓展】(4)将图3变形为图4,已知∠BGF =160°,那么∠A +∠B +∠C +∠D +∠E +∠F 的度数是 320° .【解题思路】(1)根据三角形外角的性质,得到∠2=∠C+∠E,∠1=∠A+∠2,根据三角形内角和等于180°即可求解.(2)根据三角形外角的性质,得到∠ABE=∠C+∠E,∠DBC=∠A+∠D,即可证明此结论.(3)根据三角形外角的性质,得到∠DFG=∠B+∠E,∠FGD=∠A+∠C,即可证明此结论;(4)根据三角形外角的性质,得到∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∠BGF=∠1+∠E=160°,∠1=∠A+∠C,即可得到结论.【解答过程】(1)解:如图1,∵∠2=∠C+∠E,∠1=∠A+∠2,∴∠A+∠B+∠C+∠D+∠E=∠1+∠B+∠D=180°,故答案为:180°;(2)证明:∵∠ABE=∠C+∠E,∠DBC=∠A+∠D,∠ABE+∠DBE+∠DBC=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°∴将图①变形成图②∠A+∠DBE+∠C+∠D+∠E仍然为180°;(3)证明:∵在△FGD中,∠DFG+∠FGD+∠D=180°,∠DFG=∠B+∠E,∠FGD=∠A+∠C,∴∠A+∠B+∠C+∠D+∠E=180°,∴将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°;(4)解:∵∠BGF=∠B+∠2=160°,∠2=∠D+∠F,∴∠B+∠D+∠F=160°,∵∠BGF=∠1+∠E=160°,∠1=∠A+∠C,∴∠A+∠C+∠E=160°,∴∠A+∠B+∠C+∠D+∠E+∠F=320°,故答案为:320°.25.(2020春•蓬溪县期末)某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=122°;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC 与∠A的数量关系,并说明理由.(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC=119°,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R=29°.【解题思路】(1)根据三角形的内角和角平分线的定义;(2)由角平分线得出∠ECB=12∠ACB,∠EBD=12∠ABD.由三角形外角的性质知∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,根据∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB可得答案;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠QBC与∠QCB,然后再根据三角形的内角和定理列式整理即可得解;(4)结合(1)(2)(3)的解析即可求得.【解答过程】解:(1)∵PB、PC分别平分∠ABC和∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB(角平分线的定义),∵∠BPC+∠PBC+∠PCB=180°(三角形内角和定理),∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°−12(∠ABC+∠ACB)=180°−12(180°﹣∠A)=180°﹣90°+12∠A=90°+12∠A=90°+12×64°=122°.故答案为:122°;(2)∵BE是∠ABD的平分线,CE是∠ACB的平分线,∴∠ECB=12∠ACB,∠EBD=12∠ABD.∵∠ABD是△ABC的外角,∠EBD是△BCE的外角,∴∠ABD=∠A+∠ACB,∠EBD=∠ECB+∠BEC,∴∠EBD=12∠ABD=12(∠A+∠ACB)=∠BEC+∠ECB,即12∠A+∠ECB=∠ECB+∠BEC,∴∠BEC=12∠A=12α;(3)结论:∠BQC=90°−12∠A.理由如下:∵∠CBM与∠BCN是△ABC的外角,∴∠CBM=∠A+∠ACB,∠BCN=∠A+∠ABC,∵BQ,CQ分别是∠ABC与∠ACB外角的平分线,∴∠QBC=12(∠A+∠ACB),∠QCB=12(∠A+∠ABC).∵∠QBC+∠QCB+∠BQC=180°,∴∠BQC=180°﹣∠QBC﹣∠QCB,=180°−12(∠A+∠ACB)−12(∠A+∠ABC),=180°−12∠A−12(∠A+∠ABC+∠ACB),=180°−12∠A﹣90°=90°−12∠A;(4)由(3)可知,∠BQC=90°−12∠A=90°−12×64°=58°,由(1)可知∠BPC=90°+12∠BQC=90°+12×58°=119°;由(2)可知,∠R=12∠BQC=29°故答案为119,29.26.(2021春•鄂州期末)探究知:任何一个三角形都满足三角形三内角和等于180°,我们把这个结论称之为三角形三内角和定理.如图1,AB∥CD,且∠BED+∠CDE=120°,请根据题目条件,结合三角形三内角和定理,探究下列问题:(1)如图2,在图1基础上作:∠BEF=12∠DEF,∠CDE=3∠CDF,EF与DF交于点F,求∠EFD的度数;(2)如图3,在图1基础上作:过B作BG⊥AB,交CD于点F,且∠CDG=34∠CDE,求∠G∠E的值.【解题思路】(1)设∠BEF=α,∠CDF=β,根据角之间的比例关系可得∠DEF=2α,∠DEB=3α,∠CDE=3β,∠EDF=2β,进而可得∠DEF+∠EDF=80°,所以可得答案;(2)根据垂直可得∠CDG =90°﹣∠G ,再根据∠E +∠CDE =120°经过整理得3∠E =4∠G ,进而可得答案.【解答过程】解:(1)∵∠BEF =12∠DEF , ∴∠DEF =2∠BEF , 又∵∠CDE =3∠CDF , ∴设∠BEF =α,∠CDF =β,∴∠DEF =2α,∠DEB =3α,∠CDE =3β,∠EDF =2β, ∵∠BED +∠CDE =120°, ∴3α+3β=120°, ∴α+β=40°, ∴2α+2β=80°,∴∠EFD =180°﹣∠DEF ﹣∠EDF =180°﹣(2α+2β)=180°﹣80°=100°, 答:∠EFD 的度数为100°; (2)∵BF ⊥AB , ∴∠ABG =90°, ∵AB ∥CD ,∴∠ABG +∠BFC =180°, ∴∠BFC =∠GFD =90°,在△GFD 中,∠GFD +∠CDG +∠G =180°, ∴∠CDG =90°﹣∠G ,∵∠E +∠CDE =120°,∠CDG =34∠CDE ,∴∠E +43∠CDG =120°,∠E +43(90°﹣∠G )=120°, 整理得:3∠E =4∠G , ∴∠G ∠E=34.27.(2020秋•南昌期中)【问题探究】将三角形ABC 纸片沿DE 折叠,使点A 落在点A ′处(1)如图1,当点A 落在四边形BCDE 的边CD 上时,直接写出∠A 与∠1之间的数量关系; (2)如图2,当点A 落在四边形BCDE 的内部时,求证:∠1+∠2=2∠A ;(3)如图3,当点A落在四边形BCDE的外部时,探索∠1,∠2,∠A之间的数量关系,并加以证明;【拓展延伸】(4)如图4,若把四边形ABCD纸片沿EF折叠,使点A、D落在四边形BCFE的内部点A′、D′的位置,请你探索此时∠1,∠2,∠A,∠D之间的数量关系,写出你发现的结论,并说明理由.【解题思路】(1)运用折叠原理及三角形的外角性质即可解决问题;(2)运用折叠原理及四边形的内角和定理即可解决问题;(3)运用三角形的外角性质即可解决问题;(4)根据三角形的内角和和四边形的内角和即可得到结论.【解答过程】解:(1)如图1,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A;(2)如图2,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2;(3)如图3,∠1﹣∠2=2∠A,理由:∵∠1+2∠AED=180°,2∠ADE﹣∠2=180°,∴∠1﹣∠2+2∠AED+2∠AED=360°,∵∠A+∠AED+∠ADE=180°,∴2∠A+2∠AED+2∠ADE=360°,∴∠1﹣∠2=2∠A;(4)∠1+∠2=2(∠A+∠D)﹣360°,理由:∵∠1+2∠AEF=180°,∠2+2∠DFE=180°,∴∠1+∠2+2∠AEF+2∠DFE=360°,∵∠A+∠D+∠AEF+∠DFE=360°,∴2∠A+2∠D+2∠AEF+2∠DFE=720°,∴∠1+∠2=2(∠A+∠D)﹣360°.28.(2021春•桥西区期末)请认真思考,完成下面的探究过程.已知在△ABC中,AE是∠BAC的角平分线,∠B=60°,∠C=40°.【解决问题】如图1,若AD⊥BC于点D,求∠DAE的度数;【变式探究】如图2,若F为AE上一个动点(F不与E重合),且FD⊥BC于点D时,则∠DFE=10°;【拓展延伸】如图2,△ABC中,∠B=x°,∠C=y°,(且∠B>∠C),若F为线段AE上一个动点(F不与E重合),且FD⊥BC于点D时,试用x,y表示∠DFE的度数,并说明理由.【解题思路】(1)由∠B=60°,∠C=40°,得∠BAC=180°﹣∠B﹣∠C=80°.由角平分线的定义,得∠EAC=40°.根据三角形外角的性质,得∠FED=80°.由FD⊥BC,根据三角形内角和定理,故可求得∠DFE.(2)与(1)同理.(3)与(1)同理.【解答过程】解:(1)解决问题:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=80°.又∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=40°.∴∠AED=∠C+∠EAC=40°+40°=80°.∵AD⊥BC,∴∠ADE=90°.∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣90°﹣80°=10°.(2)变式探究:由(1)知:∠AED=80°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣80°=10°.故答案为:10°.(3)拓展延伸:∠DFE=12x°−12y°,理由如下:∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°.又∵AE是∠BAC的角平分线,∴∠CAE=12∠BAC=12(180°−x°−y°)=90°−12x°−12y°.∴∠AED=∠C+∠CAE=y°+90°−12x°−12y°=90°−12x°+12y°.∵FD⊥BC,∴∠FDE=90°.∴∠DFE=180°﹣∠FDE﹣∠FED=180°﹣90°﹣(90°−12x°+12y°)=12x°−12y°.29.(2021春•庐江县期末)如图1,AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,则∠F的度数是45°(直接写出答案即可);(3)如图3,EH平分∠CED,EH的反向延长线交∠BAE的平分线AF于点G.求证:EG⊥AF.(提示:三角形内角和等于180°)【解题思路】(1)根据垂直得到直角三角形,由直角三角形两锐角互余利用等量代换证明结论;(2)通过作FM∥AB∥CD可证∠DF A=∠CDF+∠BAF,因为∠CDE+∠BAE=90°和角平分线的定义可得∠F=12(∠CDE+∠BAE),继而得到答案;(3)根据角平分线的定义得∠CEH=∠DEH=∠GEB=∠BAG=∠EAF,由于∠B=90°,∠BAE+∠BEA =90°,在△AEG中,可证得∠EAG+∠AEG=90°,从而证得结论.【解答过程】(1)证明:∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠CED=90°,∴∠BAE=∠CED.(2)解:答案为45°;过点F作FM∥AB,如图,∵AB⊥BC,CD⊥BC,∴∠B=∠C=90°,∴AB∥CD,∵∠C=90°,∴∠CED+∠CDE=90°,∵∠BAE=∠CED,∴∠BAE+∠CDE=90°,∵AF、DF分别平分∠BAE和∠CDE,∴∠CDF=12∠CDE,∠BAF=12∠BAE,∴∠CDF+∠BAF=12(∠BAE+∠CDE)=45°,∵FM∥AB∥CD,∴∠CDF=∠DFM,∠BAF=∠AFM,∴∠AFD=∠CDF+∠BAF=45°.(3)∵EH平分∠CED,∴∠CEH=12∠CED,∴∠BEG=12∠CED,∵AF平分∠BAE,∴∠BAG=12∠BAE,∵∠BAE=∠CED,∴∠BAG=∠BEG,∵∠BAE+∠BEA=90°,∴∠BAG+∠GAE+∠AEB=90°,即∠GAE+∠AEB+∠BEG=90°,∴∠AGE=90°,∴EG⊥AF.30.(2021春•崇川区期末)在△ABC中,BD是△ABC的角平分线,E为边AC上一点,EF⊥BC,垂足为F,EG平分∠AEF交BC于点G.(1)如图1,若∠BAC=90°,延长AB、EG交于点M,∠M=α.①用含α的式子表示∠AEF为180°﹣2α;②求证:BD∥ME;(2)如图2,∠BAC<90°,延长DB,EG交于点N,请用等式表示∠A与∠N的数量关系,并证明.。

四年级上册语文试题-专项习题:综合题 人教(部编版)(含解析)

四年级上册语文试题-专项习题:综合题 人教(部编版)(含解析)

四年级上册语文试题 综合题一、综合题1.综合·性学习。

班里准备开一个历史人物故事会。

请你根据下面的材料完成信息卡片,以帮助你在故事会上发挥出最好的水平。

祭七星坛借东风三国时,孙刘联盟对抗曹操,周瑜为火攻没有东南风而病倒在床上。

诸葛亮给周瑜开了个“药方”,上面写着:“万事俱备,只欠东风。

”说他能借来东风。

诸葛亮让周瑜为他搭起高九尺的七星坛,然后自己在坛上作法。

当夜,果然刮起了东南风。

故事名称:________ 主人公:________故事起因:________故事经过:________故事结果:________2.综合实践。

我们班开展了“走进红色岁月,珍惜幸福生活”的综合性学习活动。

(1)下面是各小组设计的几种方案,与本次主题无关的一项是( )。

A.讲革命故事,继承先烈遗志B.唱爱国歌曲,颂扬伟大祖国C.游革命基地,弘扬革命精神D.赛花样跳绳,增强师生体质(2)经过讨论,班里决定组织参观革命传统教育基地。

每人推荐一个地方,可以推荐本地的革命基地,也可以推荐延安等传统革命基地。

我推荐________,因为________。

(3)周末,老师带领同学们一起参观革命基地。

在游览期问,我发现同学阳阳在建筑物上乱涂乱画。

于是,我提醒他说:“________”3.按要求完成练习。

①海棠②茉莉③花圃④花蕊⑤玫瑰⑥花卉⑦牡丹⑧花蕾 (1)词语“花圃.、花卉.、花蕾.、花蕊.”中加点字的读音,完全正确的一项是( )。

A.pǔ huì léi ruǐB.pǔ huì lěi ruǐC.bǔ huí lěi ruìD.bǔ huí léi ruì(2)上面词语中表示花的部位的有:________。

(填序号)(3)看图片选出花名。

(填序号)(4)我知道的花名还有:________、________、________。

4.[写法训练]按要求完成练习,体会观察日记的写法。

中考地理专题复习:综合题专项训练(七年级上册)【附解析】

中考地理专题复习:综合题专项训练(七年级上册)【附解析】

中考地理专题复习:综合题专项训练七年级上册1.读东西半球图,回答下列问题。

(1)写出数码代表的大洲:①________;③________。

(2)左图为________半球,中国位于________洲,全部位于北半球的大洋是________(填字母)。

(3)跨经度最广的大洲是________。

黑色人种主要分布在________。

(4)巴拿马运河是________洲和________洲的分界线,苏伊士运河是________洲和________洲的分界线。

(填代号)2.读“板块运动示意图”,回答下列问题。

(1)板块学说认为,由岩石组成的地球表层并不是整体一块,而是分为六大板块。

写出图中板块的名称:A、__________D、______________(2)喜马拉雅山是________板块和_________板块碰撞挤压而成的。

(3)根据板块运动方向来推断,地中海会不断________(缩小或扩大)。

3.读东、西半球示意图,按要求完成下列问题。

(1)A图表示________半球。

(2)①处为________洋。

③处为________洲,与⑧大洲陆地相接,以________运河为界。

(3)④处为______洲,它与⑤所在的大洲之间的陆上分界线是____________山脉、乌拉尔河、大高加索山脉、_______________海峡。

(4)赤道横穿_________大陆中部和_________大洲北部。

(5)七大洲、四大洋中,跨经度最广的大洋是________洋,跨纬度最大的大洲是________洲。

(6)全部位于南半球的大洲有________(填名称)。

四大洋中,全部位于东半球的大洋是________洋。

4.《海底两万里》是法国小说家儒勒·凡尔纳的代表作之一,他带领读者登上鹦鹉螺号,随着尼摩船长和他的“客人们”饱览变幻无穷的海底世界。

结合“鹦鹉螺号航行路线图”,回答下列各题。

(1)鹦鹉螺号航行证明地球表面海陆分布特点是___。

专题30 四边形的判定与性质综合大题专项训练(30道)

专题30 四边形的判定与性质综合大题专项训练(30道)

专题5.4 四边形的判定与性质综合大题专项训练(30道)【浙教版】1.(2021秋•九江期末)如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF =GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.2.(2021秋•崂山区期末)如图,在▱ABCD中,AC⊥CD.(1)延长DC到E,使CE=CD,连接BE,求证:四边形ABEC是矩形;(2)若点F,G分别是BC,AD的中点,连接AFCG,试判断四边形AFCG是什么特殊的四边形?并证明你的结论.3.(2021秋•渝中区校级期末)如图,平行四边形ABCD的对角线AC,BD相交于O点,DE⊥AC于E点,BF⊥AC于F.(1)求证:四边形DEBF为平行四边形;(2)若AB=20,AD=13,AC=21,求△DOE的面积.4.(2021秋•沙坪坝区校级期末)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.5.(2021秋•莱芜区期末)点E是▱ABCD的边CD上的一点,连接EA并延长,使EA=AM,连接EB并延长,使EB=BN,连接MN,F为MN的中点,连接CF,DM.(1)求证:四边形DMFC是平行四边形;(2)连接EF,交AB于点O,若OF=2,求EF的长.6.(2021秋•市南区期末)已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?7.(2021秋•砚山县期末)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE ⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F,∠ECA=60°.(1)求证:四边形CEHF是菱形;(2)已知四边形CEHF的周长为16cm,求菱形ABCD的面积.8.(2021秋•寿光市期末)如图,点E是平行四边形ABCD对角线AC上一点,点F在BE延长线上,且EF=BE,EF与CD交于点G.(I)求证:DF∥AC;(2)连接DE、CF,若2AB=BF,G恰好是CD的中点,求证:四边形CFDE是矩形.9.(2021秋•成都期末)如图,在四边形ABCD中AD∥CB,O为对角线AC的中点,过点O作直线分别与四边形ABCD的边AD,BC交于M,N两点,连接CM,AN.(1)求证;四边形ANCM为平行四边形;(2)当MN平分∠AMC时,①求证;四边形ANCM为菱形;②当四边形ABCD是矩形时,若AD=8,AC=4√5,求DM的长.10.(2021秋•南岗区期末)已知:在▱ABCD中,对角线AC与BD交于点O,过点O作EF⊥BD,分别交AB,DC于点E,F,连接BF,DE.(1)如图1,求证:四边形DEBF是菱形;(2)如图2,AD∥EF,且AD=AE,在不添加任何辅助线的条件下,请直接写出图2中四个度数为30°的角.11.(2021秋•和平县期末)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:CF=AE;(2)当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.12.(2021秋•太平区期末)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)13.(2021秋•法库县期末)如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF 的值.14.(2021秋•兰州期末)如图,在正方形ABCD中,点E、F分别为边BC、CD上两点,∠EAF=45°,过点A 作∠GAB=∠F AD,且点G为边CB延长线上一点.①△GAB≌△F AD吗?说明理由.②若线段DF=4,BE=8,求线段EF的长度.③若DF=4,CF=8.求线段EF的长度.15.(2020秋•安丘市期末)如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC 的中点,延长BM至点E,使EM=BM,连接DE.(1)求证:△AMB≌△CND;(2)若BD=2AB,且AM=3,DN=4,求四边形DEMN的面积.16.(2020秋•市南区期末)已知:如图,在平行四边形ABCD中,E、F分别为AB、CD的中点,G、H分别为DE、BF的中点.(1)试判断四边形EHFG的形状,并证明;(2)若∠ABC=90°,试判断四边形EHFG的形状并加以证明.17.(2020秋•沈北新区校级期末)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12AC,连接AE、CE.(1)求证:四边形OCED为矩形;(2)若菱形ABCD的边长为8,∠BCD=60°,则AE=.18.(2021春•冠县期末)如图,在△ABC中,O是AC边上一点,过点O作BC的平行线,交∠BCA的平分线于点E,交外角∠ACD的平分线于点F.(1)求证:EO=OF;(2)连接AE,AF,当点O沿AC移动时,四边形AECF是否能成为一个矩形?此时,点O在什么位置?说明理由19.(2021•长兴县模拟)如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=12∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD 的面积.20.(2021春•富平县期末)在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.21.(2021春•临沧期末)如图,菱形ABCD的对角线AC、BD相交于点O,过点B作BE∥AC,且BE=12AC,连接EC.(1)求证:四边形BECO是矩形;(2)连接ED交AC于点F,连接BF,若AC=6,AB=5,求BF的长.22.(2021春•淮阳区校级期末)如图,在平行四边形ABCD中,M,N是对角线BD上的点,且BM=DN,DE平分∠ADB交AB于点E,BF平分∠DBC交CD于点F.(1)求证:四边形EMFN是平行四边形;(2)当四边形EMFN是菱形时,求证:四边形BEDF是菱形.23.(2021春•肥东县期末)如图1,在平行四边形ABCD中,AB=8,AD=14,∠BAD的平分线交BC于点E交DC的延长线于F,以EC,CF为邻边作▱ECFG.(1)求EC的长;24.(2021春•大连期末)如图,四边形ABCD和CEFG都是正方形,点E在BC的延长线上,且CE<BC,连接BG并延长交DE于H.(1)写出BH与DE的位置关系,并证明;(2)求证:∠BHC=45°.25.(2021春•法库县期末)如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,点F在CD上,BF交CG于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√5,求EF的长度;(2)求证:△BCG≌△EAG;(3)直接写出三条线段CD,CE,BE之间的数量关系.26.(2021春•迁安市期末)已知:如图,在▱ABCD中,对角线AC、BD相交于点O,点G、H分别是AD、BC 的中点,点E、O、F分别是对角线BD上的四等分点,顺次连接G、E、H、F.(1)求证:四边形GEHF是平行四边形;(2)若四边形GEHF是菱形.①线段AB和BD有何位置关系?请说明理由.②若AB=2,BD=2AB时,求四边形GEHF的面积.27.(2021春•上城区校级期末)如图,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交△ABC的外角∠ACD的平分线于点F.(1)探究线段OE与OF的数量关系并说明理由.(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?请说明理由.(3)当点O在边AC上运动时,四边形BCFE是菱形(填“可能”或“不可能”).请说明理由.28.(2021春•酒泉期末)(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H.请直接写出线段AE与BF的数量关系和位置关系.(2)如图2,在正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD 于点G,试判断线段BF与GE的数量关系,并证明你的结论.29.(2021春•鞍山期末)如图,在正方形ABCD中,边长为3.点M,N是边AB,BC上两点,且BM=CN=1,连接CM,DN;(1)则DN与CM的数量关系是,位置关系是.(2)若点E,F分别是DN与CM的中点,计算EF的长;(3)延长CM至P,连接BP,若∠BPC=45°,试求PM的长.30.(2021春•修水县期末)如图,在▱ABCD中,对角线AC,BD相交于点O,OA=5cm,E,F为直线BD上的两个动点(点E,F始终在▱ABCD的外面),连接AE,CE,CF,AF.(1)若DE=12OD,BF=12OB,①求证:四边形AFCE为平行四边形;②若CA平分∠BCD,∠AEC=60°,求四边形AFCE的周长.(2)若DE=13OD,BF=13OB,四边形AFCE还是平行四边形吗?请写出结论并说明理由.若DE=1n OD,BF=1n OB呢?请直接写出结论.。

平面直角坐标系综合解答题专项训练

平面直角坐标系综合解答题专项训练

平面直角坐标系综合解答题专项训练1.已知,对于平面直角坐标系中的点P(a,b),若点P'(a﹣kb,b﹣ka)(其中k为常数,且k≠0,则称点P′为点P的“k系好点”.例如:P(1,2)的“2系好点”为P'(1﹣2×2,2﹣2×1),即P'(﹣3,0).(1)求点P(﹣2,1)的“﹣2系好点”P′的坐标;(2)若点P在x轴的正半轴上,点P的“k系好点”为点P′,PP'=2OP,求k的值;(3)已知点A(x,y)在第二象限,且满足xy=﹣9,点A为点B(m,n)的“1系好点”,求m﹣n的值.2.如图,△ABC在平面直角坐标系中,已知点A(0,4),B(0,﹣2),若点C在第一象限,且BC=AC=5,求点C的坐标.3.如图是某片区平面示意图,超市的坐标是(﹣2,4),市场的坐标是(1,3).(1)画出相应的平面直角坐标系;(2)分别写出体育场、火车站和文化宫的坐标;(3)若在(﹣3,﹣2)处建汽车站,在(2,﹣1)处建花坛,请在平面示意图中标出汽车站和花坛的位置.4.已知点A(2a,3a+1)是平面直角坐标系中的点.(1)若点A在第二象限的角平分线上,求a的值;(2)若点A在第三象限,且到两坐标轴的距离和为9,请确定点A的坐标.5.一个四边形的形状和尺寸如图所示.建立适当的直角坐标系,在坐标系中作出这个四边形,并标出各顶点的坐标.6.已知平面直角坐标系中有一点A(m﹣1,2m+3).(1)点A在二、四象限的角平分线上,求点A的坐标;(2)点A到y轴的距离为2时,求点A的坐标.7.在平面直角坐标系中,点A1从原点O出发,沿x轴正方向按折线不断向前运动,其移动路线如图所示.这时点A1,A2,A3,A4的坐标分别为A1(0,0),A2(0,1),A3(1,1),A4(1,0),…按照这个规律解决下列问题:(1)写出点A5,A6,A7,A8的坐标;(2)点A100和点A2022的位置分别在,.(填x轴上方、x轴下方或x轴上)8.如图,某小区绿化区的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中.已知小正方形的边长为1,A1的坐标为(2,2),A2的坐标为(5,2).(1)A3的坐标为,A n的坐标为用含n的代数式表示;(2)若护栏长为2020,则需要小正方形个,大正方形个.9.如图,在平面直角坐标系中,点A1的坐标为(1,0)、点A2的坐标为(2,0)、点A3的坐标为(3,0)、…,过点A1、A2、A3、…分别作x轴垂线,交直线y=x于点B1、B2、B3、…,△OA1B1覆盖的整点(横、纵坐标均为整数的点)的个数记为P1,面积的值记为S1;△OA2B2覆盖的整点的个数记为P2,面积的值记为S2;△OA3B3覆盖的整点的个数记为P3,面积的值记为S3;…(1)由题意可知:P1=3、S1=12;P2=6、S2=2;P3=10、S3=92;则P4=、S4=;(2)P7﹣S7=;(3)P n﹣S n的值是否会等于2022?若能,请求出n的值,若不能,请说明理由.【注:连续x个正整数和的计算公式:1+2+3+…+x﹣1+x=x(x+1)2】10.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.11.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式P1P2=√(x2−x1)2+(y2−y1)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.12.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=√(x1−x2)2+(y1−y2)2,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.13.认真阅读下列材料:在平面直角坐标系xOy中,对于点P(x,y),我们把点p(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…A n.(1)若点A的坐标为(3,1),则点A3的坐标为,点A2021的坐标为;(2)若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件是什么?14.在坐标平面内,以x轴上的1个单位长为底边按一定规律向上画矩形条现已知其中几个矩形条的位置如图,其相应信息如表:矩形条底位置…﹣3~﹣2﹣2~﹣1﹣1~00~11~22~33~4…矩形条高…1…… 3.5…… 1.5…若所有矩形条的左上顶点都在我们已学的某类函数图象上.(1)根据所给信息,直接写出这个函数图象上的三个点的坐标.(2)求这个函数解析式;(3)若在坐标平面内画出所有这样依次排列的矩形条,求这些矩形条中面积最小矩形条的面积.15.对于平面内的图形G1和图形G2,记平面内一点P到图形G1上各点的最短距离为d1,点P到图形G2上各点的最短距离为d2,若d1=d2,就称点P是图形G1和图形G2的一个“等距点”.在平面直角坐标系xOy中,已知点A(6,0),B(0,2√3).(1)在C(4,0),D(2,0),E(1,3)三点中,点A和点B的等距点是;(2)已知直线y=2.①若点A和直线y=2的等距点在x轴上,则该等距点的坐标为;②若直线y=b上存在点A和直线y=2的等距点,求实数b的取值范围;(3)记直线AB为直线l1,直线l2:y=−√33x,以原点O为圆心作半径为r的⊙O.若⊙O 上有m个直线l1和直线l2的等距点,以及n个直线l1和y轴的等距点(m≠0,n≠0),当m≠n时,求r的取值范围.16.如图(1),是边长为1的正方形OBB1C,以对角线OB1为一边作第2个正方形OB1B2C1,再以对角线OB2为一边作第3个正方形OB2B3C2,…依次下去,则:(1)第2个正方形的边长=,第10个正方形的边长=,第n个正方形的边长为.(2)如图(2)所示,若以O为坐标原点,OC所在直线为x轴,OB所在直线为y轴,则点B3的坐标是,点B5的坐标是,点B2014的坐标是.17.已知△ABC中,点A(﹣1,2),B(﹣3,﹣2),C(3,﹣3)①在直角坐标系中,画出△ABC;②求△ABC的面积.18.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A1的坐标为(2,2)、A2的坐标为(5,2)(1)A3的坐标为,A n的坐标(用n的代数式表示)为.(2)2020米长的护栏,需要两种正方形各多少个?19.每个小方格都是边长为1的正方形,在平面直角坐标系中.(1)写出图中从原点O出发,按箭头所指方向先后经过的A、B、C、D、E这几个点的坐标;(2)按图中所示规律,找到下一个点F的位置并写出它的坐标.20.如图,在直角坐标系的坐标轴上按如下规律取点:A1在x轴正半轴上,A2在y轴正半轴上,A3在x轴负半轴上,A4在y轴负半轴上,A5在x轴正半轴上,…,且OA1+1=OA2,OA2+1=OA3,OA3+1=OA4…,设A1,A2,A3,A4…,有坐标分别为(a1,0),(0,a2),(a3,0),(0,a4)…,s n=a1+a2+a3+…+a n.(1)当a1=1时,求a5的值;(2)若s7=1,求a1的值;(3)当a1=1时,直接写出用含k(k为正整数)的式子表示x轴负半轴上所取点坐标.。

四年级列综合算式专项训练题

四年级列综合算式专项训练题

四年级列综合算式专项训练题1. 12 加上24 的和,再除以6,商是多少?-先算12 加上24 的和:12 + 24 = 36。

-再除以6:36÷6 = 6。

-综合算式:(12 + 24)÷6 = 36÷6 = 6。

2. 36 减去18 的差,乘以4,积是多少?-先算36 减去18 的差:36 - 18 = 18。

-再乘以4:18×4 = 72。

-综合算式:(36 - 18)×4 = 18×4 = 72。

3. 45 除以5 的商,加上15,和是多少?-先算45 除以5 的商:45÷5 = 9。

-再加上15:9 + 15 = 24。

-综合算式:45÷5 + 15 = 9 + 15 = 24。

4. 28 乘以3 的积,减去42,差是多少?-先算28 乘以3 的积:28×3 = 84。

-再减去42:84 - 42 = 42。

-综合算式:28×3 - 42 = 84 - 42 = 42。

5. 56 除以8 的商,再乘以7,结果是多少?-先算56 除以8 的商:56÷8 = 7。

-再乘以7:7×7 = 49。

-综合算式:56÷8×7 = 7×7 = 49。

6. 32 加上48 的和,除以8,商是多少?-先算32 加上48 的和:32 + 48 = 80。

-再除以8:80÷8 = 10。

-综合算式:(32 + 48)÷8 = 80÷8 = 10。

7. 63 减去45 的差,除以6,商是多少?-先算63 减去45 的差:63 - 45 = 18。

-再除以6:18÷6 = 3。

-综合算式:(63 - 45)÷6 = 18÷6 = 3。

8. 42 除以6 的商,乘以5,积是多少?-先算42 除以6 的商:42÷6 = 7。

初中中考语文仿写综合题训练试题整理及解析

初中中考语文仿写综合题训练试题整理及解析

初中中考语文仿写综合题训练试题整理及解析一、中考语文专项练习:仿写综合题1.根据题目,回答问题。

(1)如图是一幅楷书“永字八法”示意图,请根据图示,仿照示例写出其他六法(侧、勒、弩、掠、啄、磔)中某一笔画的形象特点和技法要求。

示例一:趯:钩画,好像人踢脚,全神贯注在脚尖;要求运笔短促有力。

示例二:策:挑画,好像用马鞭策(驱)马;要求仰笔铺毫,轻抬而进。

(2)对“永”字八法的观察,你有什么启示或感悟?【答案】(1)侧:点画,好像鸟儿翻然侧下;要求铺毫行笔,势足收笔。

勒:横画,好像用缰绳勒马;要求逆锋落纸,缓去急回。

弩:竖画,好像用力挽弓;要求直中见曲势,不应呆板僵直。

(2)“永字八法”,是古代书法家在长期书法艺术创作实践中,总结出来的以“永”字笔画造型为例,概括说明楷书笔画用笔的方法。

即把“永”字拆成八笔,作为基本笔画,对于初学书法的人而言,了解“永字八法”,掌握这八种笔画的写法,进而领悟其他笔画的写法,是很有益处的。

【解析】【分析】(1)仿写是综合读写中出现频率较高的一种题型。

作答时,一定要认真分析例句,分析其句度,分析其格式,分析其修辞,所仿写的句子一定要与例句句义相关,格式相同,修辞相同。

结合自己积累的书法知识拟写即可。

(2)本题考查图文转换。

作答本题时,可围绕永字八法的历史,对初学书法的人有帮助来进行表述。

语意要清晰连贯。

答案:(1)侧:点画,好像鸟儿翻然侧下;要求铺毫行笔,势足收笔。

勒:横画,好像用缰绳勒马;要求逆锋落纸,缓去急回。

弩:竖画,好像用力挽弓;要求直中见曲势,不应呆板僵直。

(2)“永字八法”,是古代书法家在长期书法艺术创作实践中,总结出来的以“永”字笔画造型为例,概括说明楷书笔画用笔的方法。

即把“永”字拆成八笔,作为基本笔画,对于初学书法的人而言,了解“永字八法”,掌握这八种笔画的写法,进而领悟其他笔画的写法,是很有益处的。

【点评】第一小题考查仿写。

第二小题考查图文转换。

综合读写即给出一段材料(材料不仅仅是课本中大家熟悉的),考查学生的审题能力、组织能力以及发挥能力和语言表达能力,皆在培养学生综合读写、独立思考和创新能力。

等边三角形典型问题综合专项训练(含解析)完美打印版

等边三角形典型问题综合专项训练(含解析)完美打印版

等边三角形典型问题综合专项训练(含解析)一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.47.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的平分线互相重合.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是(请写出正确结论的序号).三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=.若不存在,请说明理由.等边三角形典型问题综合训练参考答案与试题解析一.选择题(共8小题)1.下列关于等边三角形的说法正确的有()①等边三角形的三个角相等,并且每一个角都是60°;②三边相等的三角形是等边三角形;③三角相等的三角形是等边三角形;④有一个角是60°的等腰三角形是等边三角形.A.①②③B.①②④C.②③④D.①②③④【分析】根据等边三角形的判定和性质对各个选项逐一分析即可.【解答】解:根据等边三角形的每个角都是60°;故①正确.根据等边三角形的概念:三边相等的三角形是等边三角形.故②正确;根据等边对等角;故③正确;根据等边三角形的判定;故④正确.故选D.2.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故选C3.如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,连接DE.下面给出的四个结论,其中正确的个数是()①BD⊥AC;②BD平分∠ABC;③BD=DE;④∠BDE=120°.A.1个B.2个C.3个D.4个【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有,AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【解答】解:∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°,所以这四项都是正确的.故选:D.4.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【分析】由等边三角形的性质和平角的定义以及三角形内角和定理即可得出结果.【解答】解:∵△ABC、△DEF和△GMN都是等边三角形,∴∠GMN=∠MGN=∠DEF=60°,∵∠1+∠GMN+∠GME=180°,∠2+∠MGN+∠EGM=180°,∠3+∠DEF+∠MEG=180°,∴∠1+∠GMN+∠GME+∠2+∠MGN+∠EGM+∠3+∠DEF+∠MEG=3×180°,∵∠GME+∠EGM+∠MEG=180°,∴∠1+∠2+∠3=3×180°﹣180°﹣3×60°=180°;故选:D.5.如图所示,△ABC中,AB=BC=AC,∠B=∠C=60°,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.75°D.60°【分析】易证△ABD≌△BCE,可得∠BAD=∠CBE,根据∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°即可求得∠APE=∠ABC,即可解题.【解答】解:在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABE+∠BAD,∠ABE+∠CBE=60°,∴∠APE=∠ABC=60°.故选D.6.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1 B.3 C.2 D.4【分析】利用等边三角形的特殊角求出OE与OF的和,可得出其与三角形的高相等,进而可得出结论.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,故选C.7.如图,一个足够大的五边形,它的一个内角是120°,将120°角的顶点绕一个小正三角形的中心O旋转,则重叠部分的面积为正三角形面积的()A.B.C.D.不断变化【分析】本题考查了等边三角形的性质.这类选择题可以取特殊情况进行分析解答,即使五边形继续转动到B点位于OD上、C点位于OG上时,得出答案.【解答】解:设OD交AB于P,OG交BC于Q.过O点作AB、BC的垂线,垂足分别为M、N,则三角形OMP全等于三角形ONQ.所以无论如何旋转,阴影部分面积始终等于四边形OMBN的面积.则使五边形继续转动,使B点位于OD上、C点位于OG上,则∠BOC=120°根据等边三角形的性质,即:阴影部分面积是等边三角形的.故选C.8.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数()A.1个B.2个C.3个D.4个【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS判定△BCD ≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,得到△CFG是等边三角形,易得③④正确.【解答】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)同理:△DFC≌△EGC(ASA),∴CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)所以结论①②③④正确,故选:D.二.填空题(共7小题)9.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.【分析】(1)根据等边三角形性质中内角度数进而填空得出;(2)利用轴对称图形的性质得出即可;(3)根据等腰三角形性质三线合一的性质可得出.【解答】解:(1)等边三角形的三个内角都相等,并且每一个角都等于60°;(2)等边三角形是轴对称图形,它有三条对称轴;(3)等边三角形每边上的中线、高线和该边所对内角的平分线互相重合.故答案为:(1)相等,60°;(2)三;(3)中线,高线.10.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为120°.【分析】利用等边三角形的性质以及等腰三角形的性质得出∠B=∠BAD=∠C=∠EAC=30°,进而利用三角形内角和定理求出即可.【解答】解:∵E是BC的三等分点,且△ADE是等边三角形,∴BD=DE=EC=AD=AE,∠ADE=∠AED=60°,∴∠B=∠BAD=∠C=∠EAC=30°,∴∠BAC=180°﹣∠B﹣∠C=120°.故答案为:120°.11.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.12.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+DF.【分析】连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.【解答】解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴AC•BN=AB•DE+AC•DF,∵△ABC为等边三角形,∴AB=AC,∴AC•BN=AC•DE+AC•DF,∴BN=DE+DF.故答案为:BN=DE+DF.13.如图,已知等边△ABC,AB=6,点D在AB上,点F在AC的延长线上,BD=CF,DF交BC于点P,作DE⊥BC与点E,则EP的长是3.【分析】过点D作DH∥AC交BC于H,判断出△BDH是等边三角形,从而求出HD=CF,再根据两直线平行,内错角相等可得∠PCF=∠PHD,然后利用“角角边”证明△PCF和△PHD全等,根据全等三角形对应边相等可得PC=PH,再根据等边三角形的性质可得BE=EH,然后求出EP=BC,从而得解.【解答】解:如图,过点D作DH∥AC交BC于H,∵△ABC是等边三角形,∴△BDH也是等边三角形,∴BD=HD,∵BD=CF,∴HD=CF,∵DH∥AC,∴∠PCF=∠PHD,在△PCF和△PHD中,,∴△PCF≌△PHD(AAS),∴PC=PH,∵△BDH是等边三角形,DE⊥BC,∴BE=EH,∴EP=EH+HP=BC,∵等边△ABC,AB=6,∴EP=×6=3.故答案为:3.14.如图,等边△ABC的边长为1,在边AB上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,连接PQ交AC于点D,则DE的长为.【分析】过P作BC的平行线至AC于F,通过求证△PFD和△QCD全等,推出FD=CD,再通过证明△APF 是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得ED=AC,即可推出ED的长度.【解答】解:过P做BC的平行线至AC于F,∴∠Q=∠FPD,∵等边△ABC,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴△APF是等边三角形,∴AP=PF,AP=CQ,∵AP=CQ,∴PF=CQ,∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,∴AE+DC=EF+FD,∴ED=AC,∵AC=1,∴DE=.故答案为.15.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①BE=FD;②∠BFE=∠CFD;③△EBF≌△DFC.其中正确的结论是①③(请写出正确结论的序号).【分析】由三角形ABE与三角形BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到三角形EBF与三角形DFC全等解答即可.【解答】解:∵△ABE、△BCF为等边三角形,∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,在△ABC和△EBF中,,∴△ABC≌△EBF(SAS),∴EF=AC,又∵△ADC为等边三角形,∴CD=AD=AC,∴EF=AD=DC,同理可得△ABC≌△DFC,∴DF=AB=AE=DF;∴∠FEA=∠ADF,∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,在△FEB和△CDF中,.∴△FEB≌△CDF(SAS),∴BE=FD;∠BFE=∠FCD;故答案为:①③三.解答题(共8小题)16.已知,如图,等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=DC,求证:AD=BE.【分析】先根据等边△ABC中,AB=CA,∠BAC=∠ACB=60°,得出∠EAB=∠DCA=120°,再根据SAS即可判定△EAB≌△DCA,进而得出结论.【解答】证明:在等边△ABC中,AB=CA,∠BAC=∠ACB=60°,∴∠EAB=∠DCA=120°.在△EAB和△DCA中,,∴△EAB≌△DCA(SAS),∴AD=BE.17.如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE.(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.【分析】(1)根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.(2)由DF的长可求出CD,进而可求出AC的长,则△ABC的周长即可求出.【解答】(1)证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)解:∵∠CDE=∠CED=∠BCD=30°,∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.18.在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AE=DB(填“>”“<”或“=”)(2)当点E为AB上任意一点时,如图②,AE=DB(填“>”“<”或“=”),并说明理由.(提示:过E 作EF∥BC,交AC于点F)【分析】(1)先证AE=BE,再证∠D=∠DEB,得出DB=BE,即可得出DB=AE;(2)过点E作EF∥BC,交AC于F,先证明△AEF是等边三角形,得出AE=EF,再证明△DBE≌△EFC,得出DB=EF,即可证出AE=DB.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠ABC=60°,AE=BE,∠ECB=30°,∵ED=EC,∴∠D=∠ECB=30°,∵∠ABC=∠D+∠DEB,∴∠DEB=30°,∴∠D=∠DEB,∴DB=BE,∴DB=AE;故答案为:=;(2)DB=AE成立;理由如下:过点E作EF∥BC,交AC于F,如图2所示:则∠AEF=∠ABC,∠AFE=∠ACB,∠CEF=∠ECD,∵∠A=∠ABC=∠ACB=60°,∴∠A=∠AEF=∠AFE=60°,∠DBE=120°,∴△AEF是等边三角形,∴AE=EF,∠EFC=120°,∴BE=CF,∠DBE=∠EFC,∵ED=EC,∴∠D=∠ECD,∴∠D=∠CEF,在△DBE和△EFC中,,∴△DBE≌△EFC(AAS),∴DB=EF,∴AE=DB;故答案为:=.19.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.20.如图,以△ABC的两边AB、AC向外作等边三角形ABE和等边三角形ACD,连接BD、CE,相交于O.(1)试写出图中和BD相等的一条线段并说明你的理由;(2)求出BD和CE的夹角大小,若改变△ABC的形状,这个夹角的度数会发生变化吗?请说明理由.【分析】(1)EC=BD,理由为:由△ABE和△ACD都为等边三角形,利用等边三角形的性质得到∠EAB=∠DAC=60°,AE=AB,AD=AC,利用等式的性质得到∠EAC=∠BAD,利用SAS可得出△AEC≌△ABD,利用全等三角形的对应边相等即可得证;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:由三角形ADC 为等边三角形,得到∠ADC=∠ACD=60°,再由(1)得到△AEC≌△ABD,利用全等三角形的对应角相等得到∠ACE=∠ADB,由∠EOD为三角形OCD的外角,利用三角形的外角性质及等量代换可得出∠EOD=∠ADC+∠ACD,可求出∠EOD的度数,利用邻补角定义求出∠DOC的度数,即为BD与CE的夹角.【解答】解:(1)EC=BD,理由为:∵△ABE和△ACD都为等边三角形,∴∠EAB=∠DAC=60°,AE=AB,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中,,∴△AEC≌△ABD(SAS),∴EC=BD;(2)BD和CE的夹角大小为60°,若改变△ABC的形状,这个夹角的度数不变,理由为:∵△ADC为等边三角形,∴∠ADC=∠ACD=60°,∵△AEC≌△ABD,∴∠ACE=∠ADB,∵∠EOD为△COD的外角,∴∠EOD=∠ODC+∠OCD=∠ODC+∠ACD+∠ACE=∠ODC+∠ADB+∠ACD=∠ADC+∠ACD=120°,即∠DOC=60°,则BD和CE的夹角大小为60°.21.如图,△ABC和△ADC都是边长相等的等边三角形,点E、F同时分别从点B、A出发,各自沿BA、AD方向运动到点A、D停止,运动的速度相同,连接EC、FC.(1)在点E、F运动过程中∠ECF的大小是否随之变化?请说明理由;(2)在点E、F运动过程中,以点A、E、C、F为顶点的四边形的面积变化了吗?请说明理由;(3)连接EF,在图中找出和∠ACE相等的所有角,并说明理由.【分析】(1)根据SAS证明△BCE≌△ACF,得到∠ECB=∠FCA,从而证明结论;(2)结合(1)中证明的全等三角形,即可发现以点A、E、C、F为顶点的四边形的面积即为△ABC的面积;(3)根据等边三角形的判定可以证明△ECF是等边三角形,再进一步根据平角定义,得到∠AFE+∠DFC=120°,则∠AFE=∠FCD,从而求解.【解答】解:(1)∠ECF不变为60°.(1分)理由如下:∵△ABC和△ADC都是边长相等的等边三角形,∴BC=AC=CD,∠B=∠DAC=60°,又∵E、F两点运动时间、速度相等,∴BE=AF,∴△BCE≌△ACF(SAS),∴∠ECB=∠FCA.(4分)所以∠ECF=∠FCA+∠ACE=∠ECB+∠ACE=∠BCA=60°;(6分)(2)不变化.理由如下:∵四边形AECF的面积=△AFC的面积+△AEC的面积,△BCE≌△ACF,∴△AEC的面积+△BEC的面积=△ABC的面积;(8分)(3)证明:由(1)知CE=CF,∠ECF=60°,∴△CEF为等边三角形,∵∠FCD+∠DFC=120°,∠AFE+∠DFC=120°,∴∠ECF﹣∠ACF=∠ACD﹣∠ACF,即∠AFE=∠FCD,所以∠ACE=∠FCD=∠AFE.(10分)22.已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.【分析】(1)根据对角和是180°可推断出BEFD四点共圆,然后在由同(等)圆中,相等的圆周角所对弧相等来证明DE=DF;(2)先证明△BDE和△BDF是直角三角形,然后利用(1)的结果证明Rt△BED≌Rt△BFD(HL);最后根据全等三角形的性质来证明、计算CF=BC;(3)过点D作DH∥BC,交AB于点H.根据平行线的性质及全等三角形的判定定理(SAS)证明△DHE ≌△DCF(SAS);然后再由全等三角形的性质及等边三角形的性质找出CF与BC的数量关系.【解答】证明:(1)连接BD.∵∠EDF=120°,∠B=60°,∴BEFD四点共圆;又∵D为AC中点,∴在等边三角形ABC中,BD为∠ABC的角平分线,∴DE和DF在BEFD四点所构成的圆内,其圆周角相等,∴DE=DF;(2)连接BD.由(1)知,四边形BEFD是圆内接四边形,又∵在等边三角形ABC中,BD为∠ABC的角平分线,∴BD也是∠EDF的角平分线,∴∠DEB=180°﹣=90°,∴△BED是直角三角形;同理,得△BFD是直角三角形;在Rt△BED和Rt△BFD中,BD=DB(公共边),DE=DF(由上题知),∴Rt△BED≌Rt△BFD(HL),∴BE=BF(对应边相等);又∵AB=BC,BE=3AE∴CF=BC;(3)过点D作DH∥BC,交AB于点H.∴∠CDH+∠BCA=180°,∴∠CDH=120°;又∵D为AC中点,∴DH=BC=DC;∵∠HDE+∠EDC=120°,∠FDC+∠EDC=120°,∴∠HDE=∠FDC;又由ED=FD,∴△DHE≌△DCF(SAS);∴HE=FC;①∵BE=AE,AB=BC,∴BE=BC,∵AH=BC,∴HE=BC﹣AH﹣BE=BC,∴BC;②∵BE=4AE,∴AE=BC,如图(1),连接BD.在Rt△BED和Rt△BFD中,,则Rt△BED≌Rt△BFD,∴BE=BF,∴FC=BC﹣BF=AB﹣BE=AE=BC;故答案分别是:,.23.阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h (定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?存在(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=2.若不存在,请说明理由.【分析】(1)连接AP,BP,CP.根据三角形ABC的面积的两种计算方法进行证明;(2)根据角平分线上的点到角两边的距离相等进行求作.【解答】证明:(1)连接AP,BP,CP.则S△ABP+S△BCP+S△ACP=S△ABC,即,∵△ABC是等边三角形,∴AB=BC=AC,∴r1+r2+r3=h(定值);(2)存在.r=2.。

综合应用题

综合应用题

1、有两桶油,甲桶油比乙桶油少15千克,现在把乙桶油的25%倒入甲桶,这时甲桶油比乙桶油多5千克,乙桶油原来有多少千克?
2、甲、乙两车同时从A、B两地相向而行,第一次相遇在离A 地70千米的地方,两车仍以原速度继续前进,各自到达对方出发点后都立即返回,又在离B地15千米的地方第二次相遇。

A、B两地相距多少千米?
3、一艘船往返于甲、乙两港之间,已知船在静水中的速度为每小时9千米,平时逆行与顺行所用的时间比是2:1。

一天因下暴雨,水流速度为原来的2倍,这艘船往返共用10小时,问:甲、乙两港相距多少千米?
4、小明从家到学校去上课,如果以每分钟50米的速度走,则要迟到8分钟,于是他加快速度,每分钟多走10米,结果小明早到了5分钟,小明家到学校的路程有多远?
5、甲、乙两车同时从A地出发去B地,甲车每小时行40千米,乙车每小时行35千米,途中甲车出了故障停车修理了3小时,结果甲车比乙车迟到1小时到达目的地。

A、B两地间的路程是多少千米?。

高中数学选修一综合测试题专项训练(带答案)

高中数学选修一综合测试题专项训练(带答案)

高中数学选修一综合测试题专项训练单选题1、设圆C 1:x 2+y 2−2x +4y =4,圆C 2:x 2+y 2+6x −8y =0,则圆C 1,C 2的公切线有( ) A .1条B .2条C .3条D .4条 答案:B分析:先根据圆的方程求出圆心坐标和半径,再根据圆心距与半径的关系即可判断出两圆的位置关系,从而得解.由题意,得圆C 1:(x −1)2+(y +2)2=32,圆心C 1(1,−2),圆C 2:(x +3)2+(y −4)2=52,圆心C 2(−3,4),∴5−3<|C 1C 2|=2√13<5+3,∴C 1与C 2相交,有2条公切线. 故选:B .2、经过点(-√2,2),倾斜角是30°的直线的方程是( ) A .y +√2 =√33(x -2)B .y +2=√3(x -√2) C .y -2=√33(x +√2)D .y -2=√3(x +√2) 答案:C分析:根据k =tan30°求出直线斜率,再利用点斜式即可求解. 直线的斜率k =tan30°=√33,由直线的点斜式方程可得y -2=√33(x +√2), 故选:C .3、已知点P(x ,y)在直线x −y −1=0上的运动,则(x −2)2+(y −2)2的最小值是( ) A .12B .√22C .14D .√34 答案:A分析:(x −2)2+(y −2)2表示点P(x ,y)与(2,2)距离的平方,求出(2,2)到直线x −y −1=0的距离,即可得到答案.(x −2)2+(y −2)2表示点P(x ,y)与(2,2)距离的平方,因为点(2,2)到直线x −y −1=0的距离d =√2=√22, 所以(2,2)的最小值为d 2=12. 故选:A4、动点P ,Q 分别在抛物线x 2=4y 和圆x 2+y 2−8y +13=0上,则|PQ|的最小值为( ) A .2√3B .√3C .12√3D .32√3 答案:B分析:设P (x 0,14x 02),根据两点间距离公式,先求得P 到圆心的最小距离,根据圆的几何性质,即可得答案. 设P (x 0,14x 02),圆化简为x 2+(y −4)2=3,即圆心为(0,4),半径为√3,所以点P 到圆心的距离d =√(x 0−0)2+(14x 02−4)2=√116(x 02)2−x 02+16,令t =x 02,则t ≥0,令f(t)=116t 2−t +16,t ≥0,为开口向上,对称轴为t =8的抛物线,所以f(t)的最小值为f (8)=12, 所以d min =√12=2√3,所以|PQ|的最小值为d min −√3=2√3−√3=√3. 故选:B5、已知圆C 1:x 2+y 2+4x −2y −4=0,C 2:(x +32)2+(y −32)2=112,则这两圆的公共弦长为( )A .4B .2√2C .2D .1 答案:C分析:先求出两圆的公共弦所在直线的方程,用垂径定理求弦长.由题意知C 1:x 2+y 2+4x −2y −4=0,C 2:x 2+y 2+3x −3y −1=0,将两圆的方程相减,得x +y −3=0,所以两圆的公共弦所在直线的方程为x +y −3=0.又因为圆C 1的圆心为(−2,1),半径r =3,所以圆C 1的圆心到直线x +y −3=0的距离d =√2=2√2.所以这两圆的公共弦的弦长为2√r2−d2=2√32−(2√2)2=2. 故选:C.6、设B是椭圆C:x2a2+y2b2=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是()A.[√22,1)B.[12,1)C.(0,√22]D.(0,12]答案:C分析:设P(x0,y0),由B(0,b),根据两点间的距离公式表示出|PB|,分类讨论求出|PB|的最大值,再构建齐次不等式,解出即可.设P(x0,y0),由B(0,b),因为x02a2+y02b2=1,a2=b2+c2,所以|PB|2=x02+(y0−b)2=a2(1−y02b2)+(y0−b)2=−c2b2(y0+b3c2)2+b4c2+a2+b2,因为−b≤y0≤b,当−b3c2≤−b,即b2≥c2时,|PB|max2=4b2,即|PB|max=2b,符合题意,由b2≥c2可得a2≥2c2,即0<e≤√22;当−b3c2>−b,即b2<c2时,|PB|max2=b4c2+a2+b2,即b4c2+a2+b2≤4b2,化简得,(c2−b2)2≤0,显然该不等式不成立.故选:C.小提示:本题解题关键是如何求出|PB|的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.7、如图1所示,双曲线具有光学性质;从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,从F2发出的光线经过图2中的A,B两点反射后,分别经过点C和D,且cos∠BAC=−35,AB⊥BD,则E的离心率为()A .√52B .√173C .√102D .√5 答案:B分析:利用双曲线的光学性质及双曲线定义,用|BF 2|表示|BF 1|,|AF 1|,|AB|,再在两个直角三角形中借助勾股定理求解作答.依题意,直线CA,DB 都过点F 1,如图,有AB ⊥BF 1,cos∠BAF 1=35,设|BF 2|=m ,则|BF 1|=2a +m ,显然有tan∠BAF 1=43,|AB|=34|BF 1|=34(2a +m),|AF 2|=32a −14m ,因此,|AF 1|=2a +|AF 2|=72a −14m ,在Rt △ABF 1,|AB|2+|BF 1|2=|AF 1|2,即916(2a +m)2+(2a +m)2=(72a −14m)2,解得m =23a ,即|BF 1|=83a,|BF 2|=23a ,令双曲线半焦距为c ,在Rt △BF 1F 2中,|BF 2|2+|BF 1|2=|F 1F 2|2,即(23a)2+(83a)2=(2c)2,解得ca =√173, 所以E 的离心率为√173. 故选:B小提示:方法点睛:求双曲线离心率的三种方法:①定义法,通过已知条件列出方程组,求得a,c 得值,根据离心率的定义求解离心率e ;②齐次式法,由已知条件得出关于a,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8、已知直线l 1:√3x +y =0与直线l 2:kx −y +1=0,若直线l 1与直线l 2的夹角是60°,则k 的值为( ) A .√3或0B .−√3或0 C .√3D .−√3 答案:A分析:先求出l 1的倾斜角为120°,再求出直线l 2的倾斜角为0°或60°,直接求斜率k . 直线l 1:√3x +y =0的斜率为k 1=−√3,所以倾斜角为120°. 要使直线l 1与直线l 2的夹角是60°, 只需直线l 2的倾斜角为0°或60°, 所以k 的值为0或√3. 故选:A 多选题9、下列四个命题中,错误的有( ) A .若直线的倾斜角为θ,则sinθ>0 B .直线的倾斜角θ的取值范围为0≤θ≤πC .若一条直线的倾斜角为θ,则此直线的斜率为tanθD .若一条直线的斜率为tanθ,则此直线的倾斜角为θ 答案:ABCD分析:根据倾斜角与斜率的定义判断即可;解:因为直线的倾斜角的取值范围是[0,π),即θ∈[0,π),所以sinθ≥0, 当θ≠π2时直线的斜率k =tanθ,故A 、B 、C 均错误; 对于D :若直线的斜率k =tan 4π3=√3,此时直线的倾斜角为π3,故D 错误;故选:ABCD10、(多选)已知三条直线x -2y =1,2x +ky =3,3kx +4y =5相交于一点,则k 的值为( ) A .-163B .-1C .1D .163分析:由任意两个直线方程联立方程组求出交点坐标,再由其会标代入第三个方程中可求出k 的值 解:由{x −2y =12x +ky =3,得{x =6+k4+ky =14+k ,所以三条直线的交点为(6+k4+k ,14+k),所以3k ⋅6+k 4+k+4⋅14+k =5,化简得3k 2+13k −16=0,解得k =1或k =−163, 故选:AC11、已知直线l 经过点P(3,1),且被两条平行直线l 1:x +y +1=0和l 2:x +y +6=0截得的线段长为5,则直线l 的方程为( ) A .x =2B .x =3 C .y =1D .y =2 答案:BC分析:先分析当直线l 的斜率不存在,则直线l 的方程为x =3,符合题意;再分析直线l 的斜率存在时,先求出A,B 的坐标,解方程(3k−2k+1−3k−7k+1)2+(−4k−1k+1+9k−1k+1)2=52求出k 的值,综合即得解.若直线l 的斜率不存在,则直线l 的方程为x =3, 此时与l 1、l 2的交点分别为A(3,−4),B(3,−9), 截得的线段AB 的长|AB|=|−4+9|=5,符合题意, 若直线l 的斜率存在,则设直线l 的方程为y =k(x −3)+1, 解{y =k(x −3)+1x +y +1=0 得A(3k−2k+1,−4k−1k+1),解{y =k(x −3)+1x +y +6=0 得B(3k−7k+1,−9k−1k+1),由|AB|=5,得(3k−2k+1−3k−7k+1)2+(−4k−1k+1+9k−1k+1)2=52,解得k =0,即所求的直线方程为y =1,综上可知,所求直线l 的方程为x =3或y =1,填空题12、已知抛物线y 2=2px (p >0),圆(x −p 2)2+y 2=1与y 轴相切,斜率为k 的直线过抛物线的焦点与抛物线交于A ,D 两点,与圆交于B ,C 两点(A ,B 两点在x 轴的同一侧),若AB ⃑⃑⃑⃑⃑ =λCD ⃑⃑⃑⃑⃑ ,λ∈[2,4],则k 2的取值范围为___________. 答案:[8,16+12√2]分析:先求出p ,然后设出直线,让直线与抛物线联立,再根据向量之间的关系及韦达定理求出x A ,x D ,再利用抛物线的定义及条件建立等式,再转化为不等式求解即可.由圆的方程可知,其圆心坐标为(p2,0),当圆与y 轴相切可知p2=1,得p =2,所以抛物线的焦点坐标为(1,0),抛物线方程为y 2=4x ,设斜率为k 的直线方程为y =k(x −1),设A(x A ,y A ),D(x D ,y D ),直线与抛物线联立, {y =k(x −1)y 2=4x,得k 2x 2−(2k 2+4)x +k 2=0, 所以x A +x D =2k 2+4k 2①,x A x D =1②所以|AB⃑⃑⃑⃑⃑ |=|AF ⃑⃑⃑⃑⃑ |−1=x A +1−1=x A ,|CD ⃑⃑⃑⃑⃑ |=|DF ⃑⃑⃑⃑⃑ |−1=x D +1−1=x D , 而AB⃑⃑⃑⃑⃑ =λCD ⃑⃑⃑⃑⃑ ,则有|AB ⃑⃑⃑⃑⃑ |=λ|CD ⃑⃑⃑⃑⃑ |,λ∈[2,4], 所以x A =λx D ③,由①,③解得x A =λ(2k 2+4)(λ+1)k 2,x D =2k 2+4(λ+1)k 2,代入②有λ(λ+1)2⋅(2k 2+4)2k 4=1,变形得(2k 2+4)2k 4=(λ+1)2λ,因为λ∈[2,4],所以(λ+1)2λ=λ+1λ+2∈[92,254],所以92≤(2k 2+4)2k 4≤254,变形得√2≤2k 2+4k 2≤52,解得8≤k 2≤16+12√2. 所以答案是:[8,16+12√2].小提示:关键点睛:解决本题的关键一是先求出抛物线方程,二是运用抛物线的定义,三是解不等式. 13、设m ∈R ,圆M:x 2+y 2−2x −6y =0,若动直线l 1:x +my −2−m =0与圆M 交于点A 、C ,动直线l2:mx−y−2m+1=0与圆M交于点B、D,则|AC|+|BD|的最大值是________.答案:2√30分析:求出圆的圆心和半径,求出两条直线位置关系和经过的定点,作出图像,设圆心到其中一条直线的距离为d,根据几何关系表示出|AC|+|BD|,利用基本不等式即可求出其最大值.x2+y2−2x−6y=0⇒(x−1)2+(y−3)2=10,圆心M(1,3),半径r=√10,x+my−2−m=0⇒x−2+m(y−1)=0⇒l1过定点E(2,1),mx−y−2m+1=0⇒m(x−2)−y+1=0⇒l2过定点E(2,1),且l1⊥l2,如图,设AC和BD中点分别为F、G,则四边形EFMG为矩形,设|MF|=d,0≤d≤|ME|=√5,则|MG|=√|ME|2−|EG|2=√|ME|2−|MF|2=√5−d2,则|AC|+|BD|=2√10−d2+2√10−(5−d2)=2(√10−d2+√5+d2)⩽2√2(10−d2+5+d2)=2√30,当且仅当10−d2=5+d2即d=√102时取等号.所以答案是:2√30.14、已知椭圆C:x24+y23=1的左、右焦点分别为F1,F2,M为椭圆C上任意一点,N为圆E:(x−3)2+(y−2)2=1上任意一点,则|MN|−|MF1|的最小值为___________. 答案:2√2−5分析:首先根据椭圆的定义将|MN|−|MF1|的最小值转化为|MN|+|MF2|−4,再根据|MN|≥|ME|−1(当且仅当M、N、E共线时取等号),最后根据|ME|+|MF2|≥|EF2|求得|MN|−|MF1|的最小值.如图,由M为椭圆C上任意一点,则|MF1|+|MF2|=4又N为圆E:(x−3)2+(y−2)2=1上任意一点,则|MN|≥|ME|−1(当且仅当M、N、E共线时取等号),∴|MN|−|MF1|=|MN|−(4−|MF2|)=|MN|+|MF2|−4≥|ME|+|MF2|−5≥|EF2|−5,当且仅当M、N、E、F2共线时等号成立.∵F2(1,0),E(3,2),则|EF2|=√(3−1)2+(2−0)2=2√2,∴|MN|−|MF1|的最小值为2√2−5.所以答案是:2√2−5.小提示:思路点睛;本题主要考查与椭圆与圆上动点相关的最值问题,主要根据椭圆的定义将目标等价转化为能够通过数形结合解题的类型,考查学生的转化与化归思想,属于较难题.解答题15、如图所示,某隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成.已知隧道总宽度AD为6√3m,行车道总宽度BC为2√11m,侧墙高EA,FD为2m,弧顶高MN为5m.(1)以EF所在直线为x轴,MN所在直线为y轴,1m为单位长度建立平面直角坐标系,求圆弧所在的圆的标准方程;(2)为保证安全,要求隧道顶部与行驶车辆顶部(设为平顶)在竖直方向上的高度之差至少为0.5m ,问车辆通过隧道的限制高度是多少?答案:(1)x 2+(y +3)2=36;(2)3.5m . 分析:(1)设出圆的方程,代入F,M 即可求解;(2)设限高为ℎ,作CP ⊥AD ,求出点P 的坐标,即可得出答案. (1)由题意,有E(−3√3,0),F(3√3,0),M(0,3).∵所求圆的圆心在y 轴上,∴设圆的方程为(x −0)2+(y −b)2=r 2(b ∈R ,r >0), ∵F(3√3,0),M(0,3)都在圆上, ∴{(3√3)2+b 2=r 202+(3−b )2=r 2,解得{b =−3r 2=36 .∴圆的标准方程是x 2+(y +3)2=36.(2)设限高为ℎ,作CP ⊥AD ,交圆弧于点P , 则CP =ℎ+0.5.将点P 的横坐标x =√11代入圆的方程,得(√11)2+(y +3)2=36, 得y =2或y =−8(舍去).∴ℎ=CP −0.5=(2+2)−0.5=3.5(m ). 故车辆通过隧道的限制高度为3.5m .。

(完整)语文综合性学习专项训练 习题及答案

(完整)语文综合性学习专项训练 习题及答案

2010中考专题复习:综合性学习专项训练目录:1、我爱我家2、青春随想3、岁月如歌4、微笑着面对生活5、让世界充满爱6、漫游语文世界7、感受自然8、走上辩论台9、脚踏一方土 10、好读书,读好书 11、话说千古风流人物 12、我所了解的孔子和孟子一、我爱我家家,是一桌热气腾腾的饭菜,你一推开门就用香味把你紧紧来拥抱;家,是夜归时窗口亮起的灯,瞬间消散你独行的寂寞和奔波的疲惫;家,是母亲低回绵长的唠叨,惟恐避之不及又深深迷恋回味不已;家,是父亲下巴硬匝匝的胡须,扎得你脸颊发疼心里开出了花.在2009年5月12日,红花中学九(3)班开展了以“我爱我家”为主题的综合性学习活动,请你踊跃参加吧!1、温馨回忆:请你回忆一下,在你成长的各个阶段,父母付出最多的是什么?答案略2、体验亲情:亲情是一种血脉相通的默契,是一种无法割裂的存在。

为营造活动的氛围,请你写一条标语张贴在教室里。

答案示例:①成长的驿站,心灵的乐园②家是心灵的港湾3、感受家庭:请你用一句话说一说你对家的感受。

答案示例:①家是昨夜依旧未眠的严父②家是今晨忙碌不休的慈母③家是风雨中的搀扶④家是夕阳下的依偎4、美好积累:请写出与家有关的课文一篇,歌曲一首,古诗两句,名言一则。

答案示例:课文:《风筝》、《散步》歌曲:《吉祥三宝》、《让爱住我家》古诗:独在异乡为异客,每逢佳节倍思亲名言:幸福的家庭都是相似的,不幸的家庭却各有各的不幸——托尔斯泰.5、回报亲情:父母给了我们那么多的爱,我们已经渐渐长大,我们应该怎样回报父母呢?请你确定一个回报父母关爱的最佳方案。

答案示例:(1)给父母一份惊喜:送一份独特的礼物给父母,如自己设计的贺卡或小制作;给父母洗洗脚;最近通过努力取得的最佳成绩或获得的喜报;一封感谢父母的信……(2)帮父母做家务事:每天在家给自己设立一个劳动岗位,帮助父母分担家务,向父母表示关爱。

(3)陪父母聊聊天:每天陪父母聊聊天,说说学校发生的事,同学之间的事,自己的心情,听听父母工作的事,在沟通中积累情感。

高考专项复习:农业综合题训练

高考专项复习:农业综合题训练

20191230手动选题组卷4一、综合题(本大题共6小题,共60.0分)1.阅读图文资料,完成下列要求.剑麻是一种热带经济作物,剑麻纤维韧性强,耐海水腐蚀,是制作船用缆绳、汽车内衬、光缆材料等的上乘材料.非洲坦桑尼亚曾是世界最重要的剑麻生产国,被称为“剑麻王国”.自1999年,中国某公司在坦桑尼亚的基洛萨(位置见图)附近投资兴建剑麻农场,并建设配套加工厂,所产剑麻纤维主要销往我国.该农场一期种植1000多公顷,雇佣当地长期和临时工超过1000人,预计2020年种植面积达3000公顷,年产剑麻纤维1万吨.该公司还帮助当地修建学校、卫生所等.(1)根据剑麻生长的气候条件和用途,说明我国国内剑麻纤维产需矛盾较大的原因.(2)据图指出与其他地区相比,中国公司在基洛萨附近兴建剑麻农场的有利条件.(3)说明剑麻收割后需要及时加工的原因.(4)简述当地从中国公司兴建剑麻农场中获得的利益.【答案】解:(1)我国国内剑麻纤维产需矛盾较大的原因要结合提干要求从气候条件和用途来分析.由材料可知,剑麻属于热带经济作物,而我国热带面积较小,因此产地范围较小,产量较低;我国经济发展较快,剑麻纤维的利用领域较大,需求量大,因袭供需矛盾突出.我国热带地区纬度较高,气候季节差异大,种植的剑麻质量较差。

剑麻纤维需求:我国船舶和汽车制造等规模大,对剑麻纤维需求量大。

(2)兴建剑麻农场的有利条件要从区域交通、土地、劳动力等方面进行分析.由题中图可以看出,基洛萨是距离首都有一段距离的小镇,该区域劳动力充足且廉价;适合种植剑麻的土地面积广大且价格较低;有铁路经过,交通便利;通过铁路连接首都与港口,对外交通便利.(3)剑麻收割后需要及时加工的原因可以从剑麻的特点和区域气候的特点进行分析.由题中材料可知,剑麻生长在热带,温度高,降水多;刚割下来的剑麻叶片的水分含量大,如果不及时加工,则非常容易腐烂,从而会破坏纤维的质量,进而影响品质. (4)从材料中获取相关信息,从“雇佣当地长期和临时工超过1000人”可知能够为该地提供长期和短期的就业机会,从而促进当地居民的经济收入;从“帮助当地修建学校、卫生所”可知,能够促进当地基础设施的建设,从而促进了区域经济的发展.故答案为:(1)剑麻属于热带经济作物,需要高温多雨的生长条件,我国以亚热带和温带气候为主,热带范围较小,产地很小;我国经济发达,随着我国航母,汽车产业,光纤产业发展迅速,对剑麻纤维生产需求量大,因此供需矛盾突出.(2)基罗萨位于热带地区,适合剑麻种植;基罗萨是距离首都有一段距离的小镇,劳动力充足且廉价,土地面积广大且价格较低;由铁路经过,交通便利;通过铁路连接首都与港口,对外交通便利.(3)剑麻生长在热带,叶片的水分含量大,该地温度高,容易腐烂,破坏纤维,影响品质;直接运输剑麻不便且易腐烂,当地就有加工厂,加工后方方便运输.(4)促进了当地农民就业,为农民提供保险等保障,增加了经济收入;促进了当地基础设施建设,提高了农民生活质量;增加了地区消费水平,促进了区域经济的发展;修建学校,卫生所,改善了当地就医难和上学难的问题.【解析】影响农业的主要自然因素有:气候方面,热量、光照、降水影响极大;地形方面,影响农业的类型(平原与山区不同)、影响农作物的分布(农作物随海拔有所不同);土壤方面,作物生长的物质基础,不同土壤适宜生长不同作物,东南丘陵的红壤适宜种茶树等.影响农业生产的社会经济因素主要有:市场方面,市场的需求量最终决定了农业生产的类型和规模;交通运输方面,园艺业、乳畜业产品容易变质,要求有方便的交通运输条件;政策方面,国家政策和政府干预手段影响.本题以剑麻生产为背景,属于知识性试题,考查了学生从材料中获取信息的能力,解题的关键是掌握影响农业生产的因素、农业生产活动的影响.解题时应注意结合实际情况.2.阅读图文材料,完成下列要求.茉莉喜高温,抗寒性差,25℃以上才能孕育花蕾,32〜37℃是花蕾成熟开放的最适温度.喜光.根系发达.生长旺季要求水分充足,但土壤过湿不利于其根系发育.开花季节,于天黑之前采成熟花蕾,花蕾开放吐香时间从20时左右至次日10时左右,是将茶叶染上花香、制作茉莉花茶的最佳时间.广西横县种植茉莉花历史悠久.改革开放后,茉莉花茶市场需求旺,横县开始扩大茉莉种植规模. 1983年,在广西首次举办的茉莉花茶评比中,横县茉莉花茶一举夺魁.至20世纪90年代,我国茉莉花茶生产重心开始从东南沿海地区向横县转移.2000年,横县获“中国茉莉之乡”的称号.目前,横县的茉莉鲜花和茉莉花茶产量占全国总产量80%以上,占世界总产量60%以上.如图示意横县在广西的位置和范围.(1)与江苏、浙江相比,说明横县有利于茉莉生长的气候条件.(2)横县地形以河流冲积平原为主,茉莉主要种植在平原地势较高的旱地上.试解释冲积平原地势较高的旱地有利于茉莉种植的原因.(3)目前横县县城集聚了100多家茉莉花茶厂.分析横县县城集聚众多茉莉花茶厂的原因.(4)请在下列两个问题中,选择其中一个问题作答.如果多做,则按所做的第一个问题计分.问题①:说明横县茉莉花茶产业的发展经验对我国一些贫困县脱贫致富的启示.问题②:为以茉莉种植为基础的横县经济进一步发展提出建议.【答案】解:(1)依据文字材料中有关茉莉的生长习性,对比横县与苏浙地区气温和降水特点可得出答案.(2)设问精细,答题时需抓住河流冲积平原的土层厚,距河近便于灌溉等特点,还要明确地势较高的优势.(3)设问重点考察横县聚集众多茶厂的区位优势条件.可从茶源、交通等基础设施入手分析.(4)设问自由度高,能很好的评价区域发展观.可从可持续发展的角度来答题.故答案为:(1)横县位于北回归线以南,高温期较长;高温期湿度较高(降水较多),(而江浙一带或梅雨期过湿,或伏旱早期过早且时有超过37℃的高温);冬季受寒潮影响较小,气温较高.(2)(冲积平原地势较高的旱地),平坦便于种植;排水良好,土壤不会过湿;离河较近,便于灌溉,且不易受洪水侵袭;土层深厚疏松,利于茉莉根系发育;冲积平原土壤肥沃.(3)(茉莉花茶生产应接近茉莉花产地)横县茉莉生产规模大,花源供应充足且品质佳;县城交通便利,便于收集茉莉花(蕾);县城基础设施较好,便于生产组织.(离南宁市较近,便于产品销售).(4)问题1:因地制宜,发挥特色农产品优势;扩大生产规模以达到规模效益和影响(实行专业生产);推进农产品的加工业,延长产业链,增加附加值.问题2:加强茉莉种植和茉莉花茶生产的科研优势投入,确保茉莉花茶的品牌优势;加大茉莉花其他产业化应用的研究;开发新产品;拓展旅游,文化市场,实现经营多元化. 【解析】本题主要考查工业地域的形成条件与发展特点,影响农业的区位因素,农业持续发展的方法与途径.影响农业的区位因素:自然因素(气候、地形、土壤、水源)和社会经济因素(市场、交通、科技、劳动力等).该题以广西横县茉莉花的种植与茉莉花茶生产为主题,从地域认知到人类活动,设问细致灵活,注重评价地理思维过程与探究能力.3.山西、陕西两省为我国北方主要农业区。

和差和倍差倍综合测试题

和差和倍差倍综合测试题

和差、和倍、差倍专项训练题姓名:一、和差问题练习1、两堆石子共有800吨,第一堆比第二堆多200吨,两堆石子各有多少吨?2、黄茜和胡敏两人今年的年龄是23岁,4年后,黄茜比胡敏大3岁,问黄茜和胡敏今年各是多少岁?3、把长84厘米的铁丝围成一个使长比宽多6厘米的长方形。

长和宽各是多少厘米?4、小明和小强共有图书120本,小明的图书是小强的2倍,他们两人各有图书多少本?5、果园里一共有桃树和杏树340棵,其中桃树比杏树的3倍多20棵,两种树各种了多少棵?6、甲仓库存粮104吨,乙仓库存粮140吨,要使仓库的存粮是乙仓库的3倍,那么必须人乙仓库运出多少吨放入甲仓库?7、一个长方形的周长是是30厘米,长是宽的2倍,求长方形的面积是多少?8、甲桶酒是乙桶酒重量的5倍,如从甲桶中取出20千克到入乙桶,那么两桶酒重量相等。

两桶酒原来各多少千克?二、和倍与差倍1、果园里有桃树和梨树共150 棵,桃树比梨树多20 棵,两种树各有多少棵?2、纺织厂有职工480人,其中女职工人数是男职工人数的3倍。

请问:男、女职工各多少人?3、甲、乙两堆货物共有160件,已知甲堆货物比乙堆的3倍还多40件。

甲、乙两堆各有多少件货物?4、果园中梨树和苹果树共有67棵,梨树比苹果树的2倍少2棵,苹果树有多少棵?5、一只大象的体重比一头牛重4500 千克,又知大象的重量是一头牛的10 倍,一只大象和一头牛的重量各是多少千克??6、某工厂甲车间工人比乙车间多57人,甲车间的工人比乙车间的3倍多17人。

问甲、乙两个车间各有多少工人?7、甲、乙两筐苹果重量相等.现在从甲筐拿12 千克苹果放入乙筐,结果乙筐苹果的重量就比甲筐的3 倍少2千克.两筐苹果原来各有多少千克?8、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?9、菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?10、山坡上有一群羊,其中有绵羊和山羊。

2023-2024学年人教版八年级上册物理期末专项训练:综合题(含答案)

2023-2024学年人教版八年级上册物理期末专项训练:综合题(含答案)

2023-2024学年人教版八年级上册物理期末专项训练:综合题1.“频闪摄影”是研究物体运动时常用的一种实验方法。

如图所示,甲、乙两图是同一辆小车两次不同运动的频闪照片,频闪灯的闪光时间间隔为1s,图中数字的单位为cm。

根据照片记录的小车位置,回答下列问题:(1)甲图中小车做直线运动,理由,小车的速度为m/s;(2)乙图中小车前2s内的平均速度是m/s,乙图中小车做直线运动。

(选填“匀速”或“变速”);物体的运动情况常常可以用图像来描述,丙图中能反映乙小车运动情况的是(填“A”或“B”);甲车4s内的平均速度(选填“大于”“等于”或“小于”)乙车4s内的平均速度。

2.检查视力的时候,为节省空间,视力表放在被测者头部的后上方,通过识别对面墙上镜子里的像来完成检查(如图所示),视力表到平面镜的距离为3米,视力表到小莉眼睛的距离为1m。

(1)若视力表全长0.8m,则视力表在镜中的像的长度为;视力表上其中一个“E”,字开口指向纸外,则小莉应向她的(上方/下方/左方/右方)指才正确。

(2)如果小莉站起来以0.6m/s的速度朝平面镜的方向走了2秒后,她现在距离“E”型视力表的像是多远?( )(3)小莉在检查视力时,通过平面镜正好能看见自己的脚(图中A点)所成的像,请作出A点发出的光经过平面镜反射后进入眼睛的光路图。

(保留作图痕迹)3.(1)如图甲所示,该刻度尺的分度值为mm,圆柱体的直径为cm。

(2)如图乙所示,停表所表示的时间是s。

(3)某同学为了测定物理课本内一张纸的厚度,采用了如下步骤:①选用学生用的三角尺并检查零刻度线是否磨损(设:没有磨损);①量出一本书的厚度(除去封皮),记为L;①翻看物理课本最后一页的页码,记为n;①用L/n表示物理课本内每张纸的厚度,记为d。

上述各措施中错误的步骤是,应改为。

4.如图甲,声呐是一种利用声波探测、定位水下目标的电子设备。

探测人员为了探测海底的深度,用声呐竖直向海底发射声波,经过6s收到信号(声音在海水中的传播速度是1500m/s)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机网络复习题---综合题专项训练
1.某校园网网络拓扑如下图所示:
请解答以下问题:
(1)若将192.168.1.192/26划分为3个子网。

其中第一个子网容纳25台主机,另外两个子网分别容纳10台主机。

请按照子网序号顺序进行网络地址分配,写出规划方案(给出子网网络地址和子网掩码,192=11000000,224=11100000,240=11110000)(6分)。

(2)若该网络使用上述地址,边界路由器应该具备什么功能(1分)?为保证外网能够访问到该网络内的服务器,那么应该在边界路由器上对服务器地址进行什么样的处理(1分)?
(3)为达到对数据包进入该网络时进行过滤检测以确定此包是否包含有威胁网络安全特征的目的,同时检测到恶意数据包时,系统不仅发出警报还要采取相应阻断攻击的措施,那么应在该网络中添加何种设备(1分),该设备部署在位置1、位置2和位置3的哪里最为合适(1分)?
2、现有四个基站进行CDMA通信。

已知其中三个基站的码片序列为:A (00011011),B(00101110),C(01011100),D未知。

现在A和D发送1,B 发送0,C未发送数据,根据接收端收到的码片序列:S(-1 +1 -3 +1 -1 -3 +1 +1),请推导出D基站的码片序列。

3、某一网络地址块192.168.75.0中有5台主机A、B、C、D和E,它们的IP地址及子网掩码如下表所示。

主机 IP地址子网掩码
A 192.168.75.18 255.255.255.240
B 192.168.75.146 255.255.255.240
C 192.168.75.158 255.255.255.240
D 192.168.75.161 255.255.255.240
E 192.168.75.173 255.255.255.240
[问题1](2分)
5台主机A、B、C、D、E分属几个网段?哪些主机位于同一网段?
[问题2](2分)
主机C的网络地址为多少?
[问题3](2分)
若要加入第六台主机F,使它能与主机D属于同一网段,其IP地址范围是多少?
[问题4](2分)
若在网络中另加入一台主机,其IP地址设为192.168.75.164,它的广播地址是多少?哪些主机能够收到?
[问题5](2分)
若在该网络地址块中采用VLAN技术划分子网,何种设备能实现VLAN之间的数据转发?
4、公用机房有三个计算机室共有180台计算机,网络地址号为192.168.10.0,按60台计算机一个计算机室划分子网,请计算出各计算机室的子网掩码和IP 地址段。

5、TCP 的拥塞窗口cwnd 大小与传输轮次n 的关系如下所示: cwn
d n
1 1
2 2 4
3 8
4 16
5 32
6 33
7 34
8 35
9 36 10 37 11 38 12 39 13 cwn d n
40 14 41 15 42 16 21 17 22 18 23 19 24 20 25 21 26 22 1 23 2 24 4 25 8
26
(1)试画出如图5-25所示的拥塞窗口与传输轮次的关系曲线。

(请用画图软
件,再转换成JPG 格式上传)
(2)指明TCP 工作在慢开始阶段的时间间隔。

(3)指明TCP 工作在拥塞避免阶段的时间间隔。

(4)在第16轮次和第22轮次之后发送方是通过收到三个重复的确认还是通过
超市检测到丢失了报文段?
(5)在第1轮次,第18轮次和第24轮次发送时,门限ssthresh 分别被设置为多
大?
(6)在第几轮次发送出第70个报文段?
(7)假定在第26轮次之后收到了三个重复的确认,因而检测出了报文段的丢
失,那么拥塞窗口cwnd 和门限ssthresh 应设置为多大?
6、主机A 向主机B 连续发送了两个TCP 报文段,其序号分别为70和100.试问:
(1). 第一个报文段携带了多少字节的数据?
(2). 主机B 收到第一个报文段后发回的确认号应当是多少?
(3). 如果B 收到第二个报文段后发回的确认号是180,试问A 发送的第二个报文段的数据有多少字节?
(4). 如果A 发送的第一个报文段丢失了,但第二个到达B ,B 在第二个报文段到达后向A 发送了确认。

试问这个确认号应为多少?
7、一UDP用户数据报的首部十六进制表示是:06 12 00 45 00 1C E2 17。

试求源端口号、目的端口号、用户数据报的总长度、数据部分长度。

这个用户数据报是从客户发送给服务器还是从服务器发送给客户?使用UDP的这个服务器程序是什么?
8、有五个站分别连接在三个局域网上,并且用两个透明网桥连接起来,如图所示(请参见教材)。

每一个网桥的两个端口号都标明在图上。

在一开始,两个网桥中的转发表都是空的。

以后有以下各站向其他的站发送了数据帧,即H1发送给H5,H3发送给H2,H4发送给H3,H2发送给H1。

试将有关数据填写在下表(请参见教材)。

中(H1-A,H2-B,H3-C,H4-D,H5-E)(书上题目)
9、共有4个站进行码分多址CDMA通信。

4个站的码片序列为:
A:(-1 –1 –1 +1 +1 –1 +1 +1)B:(-1 –1 +1 -1 +1 +1 +1 -1)
C:(-1 +1 –1 +1 +1 +1 -1 -1)D:(-1 +1 –1 –1 -1 –1 +1 -1)
现收到这样的码片序列:(-1 +1 –3 +1 -1 –3 +1 +1)。

问哪个站发送数据了?发送数据的站发送的1还是0?
10、用香农公式计算一下:假定信道带宽为3100Hz,最大信息传输速率为35kb/s,那么若想使最大信息传输速率增加60%。

问信噪比S/N应增大到多少倍数?如果在刚才计算出的基础上将信噪比S/N再增大到10倍,请问最大信息传输速率能否再增加20%?。

相关文档
最新文档