高中物理稳恒电流(一)解题方法和技巧及练习题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理稳恒电流(一)解题方法和技巧及练习题及解析
一、稳恒电流专项训练
1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .
经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开
2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其
大小为0R .由此可测出x R = .
【答案】0375,,I R 【解析】
解:方案一中根据闭合电路欧姆定律,有
E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω
方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.
【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.
2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:
x /mm
600 700 800 900 1000 1200
1400
1600
1800
2000
2100
2200
2300
2400
U/V
3.95
4.50
5.10
5.90
6.50
6.65
6.82
6.93
7.02
7.15
7.85
8.50
9.05
9.75
⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比
较.
【答案】(1)如图所示; (2)电阻率的允许范围:
a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅
b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅
c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅
通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】
(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ
=可得S U S R l I l
ρ=⋅=⋅. 66
3
(6.5 3.9)0.2010 1.04101.25(1000600)10
a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯
67
3
(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 66
3
(9.77.1)0.2010 1.04101.25(24002000)10
c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.
3.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;
(2)导体棒受到的安培力的大小和方向.
【答案】(1)1.2 A ; (2)0.096 N ,方向沿导轨水平向左 【解析】 【分析】 【详解】
(1)由闭合电路欧姆定律可得:
I =
6
4.50.5E A R r =++=1.2A (2)安培力的大小为: F =BIL =0.04×1.2×2N =0.096N
安培力方向为沿导轨水平向左
4.已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 【答案】改装成量程是6 V 的电压表,应串联1 880 Ω的电阻; 要把它改装成量程是3 A 的电流表,应并联0.12 Ω的电阻. 【解析】 【分析】 【详解】
根据欧姆定律和串联电路特点可知,需串联的电阻
1880g g
U
R R I =
-=Ω; 同理,根据欧姆定律的并联电路的特点可知,改装成3A 电流表需并联的电阻
0.12g g g
I R R I I =
=Ω-.
5.山师附中一研究性学习小组制作了一辆以蓄电池为驱动能源的环保电动汽车,其电池每次充电仅需三至五个小时,蓄电量可让小汽车一次性跑500m ,汽车时速最高可达10m/s ,汽车总质量为9kg .驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在水平路面上以v =2m/s 的速度匀速行驶时,驱动电机的输入电流I =1.5A ,电压U =3.0V ,内电阻R M =0.40Ω.在此行驶状态下(取g =10 m/s 2),求: (1)驱动电机输入的电功率P 入; (2)驱动电机的热功率P 热; (3)驱动电机输出的机械功率P 机; (4)蓄电池的电动势E .
【答案】(1)4.5W (2)0.9W (3)3.6W (4)3.3V 【解析】
试题分析:根据P =UI 求出驱动电机的输入功率;由P =I 2r 可求得热功率;由输入功率与热功率的差值可求出机械功率;由闭合电路欧姆定律可求得电源的电动势. (1)驱动电机输入的电功率:P 入=IU =1.5×3.0W =4.5W (2)驱动电机的热功率:P 热=I 2R =(1.5)2×0.40W =0.9W (3)驱动电机输出的机械功率:P 机=P 入−P 热=3.6W (4)蓄电池的电动势:E =U +IR =(3.0+1.5×0.2)V=3.3V
点睛:本题主要考查了功率的公式P =UI ,以及机械功率的公式P =Fv 的应用;要注意体会能量的转化与守恒关系.
6.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:
①金属导线电阻;
②金属导线在10 s 内产生的热量. 【答案】(1)5 Ω (2)200 J
【解析】试题分析:根据欧姆定律和焦耳定律即可解题。

(1)根据欧姆定律: 10
52
U R I =
=Ω=Ω。

(2)产生的热量为: 2
Q I Rt =,代入数据得: 200Q J = 点睛:本题主要考查了欧姆定律和焦耳定律,此题为基础题。

7.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两
导轨间距为L .M 、P 两点间接有电阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.求:
(1)在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; (2)在下滑过程中,ab 杆可以达到的速度最大值.
【答案】(1)BLv R 22B L v
gsin mR
θ- (2)22sin mgR B L θ
【解析】
(1)当ab 加速下滑时,速度大小为v 时,则 E BLv =
根据闭合电路欧姆定律,有:
E I R
= 故BLv
I R
=
,方向由a 到b 由安培力公式: F BIL =
根据牛顿第二定律:mgsin F ma θ-=
整理可以得到:2222 )/sin B L v B L v a mgsin m g R mR
(θθ=-=-
(2)当0a =时ab 杆的速度可以达到最大值 即: m
BLv mgsin BL R
θ= 所以:22
sin m mgR v B L
θ
=

8.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:
(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)
(2)电源电动势E 和内电阻r 各是多少?
【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】
试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧 R 3断开前R 1上电压U 1=R 1I=4V U 1= U 2 + U 3 所以 U 2=1V U 2:U 3 = R 2:R 3 =1:3 R 2=1Ω
(2)R 3断开前 总电流I 1=3A E = U 1 + I 1r
R 3
断开后 总电流I 2=2.5A
E = U 2 + I 2r
联解方程E= 10 V r=2Ω 考点:闭合电路的欧姆定律 【名师点睛】
9.如图所示,电源电动势E =27 V ,内阻r =2 Ω,固定电阻R 2=4 Ω,R 1为光敏电阻.C 为平行板电容器,其电容C =3pF ,虚线到两极板距离相等,极板长L =0.2 m ,间距d =1.0×10-2 m .P 为一圆盘,由形状相同透光率不同的二个扇形a 、b 构成,它可绕AA′轴转动.当细光束通过扇形a 、b 照射光敏电阻R 1时,R 1的阻值分别为12 Ω、3 Ω.有带电量为q =-1.0×10-4 C 微粒沿图中虚线以速度v 0=10 m/s 连续射入C 的电场中.假设照在R 1上的光强发生变化时R 1阻值立即有相应的改变.重力加速度为g =10 m/s 2.
(1)求细光束通过a 照射到R 1上时,电容器所带的电量;
(2)细光束通过a 照射到R 1上时,带电微粒刚好沿虚线匀速运动,求细光束通过b 照射到R 1上时带电微粒能否从C 的电场中射出.
【答案】(1)11
1.810C Q -=⨯(2)带电粒子能从C 的电场中射出
【解析】 【分析】
由闭合电路欧姆定律求出电路中电流,再由欧姆定律求出电容器的电压,即可由Q=CU 求其电量;细光束通过a 照射到R 1上时,带电微粒刚好沿虚线匀速运动,电场力与重力二力平衡.细光束通过b 照射到R 1上时,根据牛顿第二定律求粒子的加速度,由类平抛运动分位移规律分析微粒能否从C 的电场中射出. 【详解】
(1)由闭合电路欧姆定律,得1227
1.5A 1242
E
I R R r =
==++++
又电容器板间电压22C U U IR ==,得U C =6V 设电容器的电量为Q ,则Q=CU C 解得111.810C Q -=⨯
(2)细光束通过a 照射时,带电微粒刚好沿虚线匀速运动,则有C
U mg q d
= 解得20.610m kg -=⨯
细光束通过b 照射时,同理可得12C U V '=
由牛顿第二定律,得C U q mg ma d
'
-= 解得210m/s a =
微粒做类平抛运动,得212
y at =,
0l
t v = 解得2
0.210m 2
d
y -=⨯<, 所以带电粒子能从C 的电场中射出. 【点睛】
本题考查了带电粒子在匀强电场中的运动,解题的关键是明确带电粒子的受力情况,判断其运动情况,对于类平抛运动,要掌握分运动的规律并能熟练运用.
10.如图所示,在两光滑平行金属导轨之间存在方向垂直纸面向里的匀强磁场,磁感应强度大小为B ,导轨的间距为L ,电阻不计.金属棒垂直于导轨放置,质量为m ,重力和电阻可忽略不计.现在导轨左端接入一个电阻为R 的定值电阻,给金属棒施加一个水平向右的恒力F ,经过时0t 后金属棒达到最大速度.
()1金属棒的最大速度max v 是多少?
()2求金属棒从静止达到最大速度的过程中.通过电阻R 的电荷量q ;
()3如图乙所示,若将电阻换成一个电容大小为C 的电容器(认为电容器充放电可瞬间完成
).求金属棒由静止开始经过时间t 后,电容器所带的电荷量Q .
【答案】()221FR B L ;()0332Ft FmR BL B L -;()22
3FCBLt m CB L
+. 【解析】 【分析】
(1)当速度最大时,导体棒受拉力与安培力平衡,根据平衡条件、安培力公式、切割公式列式后联立求解即可;(2)根据法律的电磁感应定律列式求解平均感应电动势、根据欧姆
定律列式求解平均电流、再根据电流定义求解电荷量;(3)根据牛顿第二定律和电流的定义式,得到金属棒的加速度表达式,再分析其运动情况.由法拉第电磁感应定律求解MN 棒产生的感应电动势,得到电容器的电压,从而求出电容器的电量. 【详解】
(1)当安培力与外力相等时,加速度为零,物体速度达到最大,即F=BIL=22max
B L v R
由此可得金属棒的最大速度:v max =
22FR B L
(2)由动量定律可得:(F-F )t 0=mv max
其中:F =220
x
Rt B L
解得金属棒从静止达到最大速度的过程中运动的距离:x=022Ft R B L -2
44FmR B L
通过电阻R 的电荷量:q=
BLx R =0Ft BL -33FmR
B L
(3)设导体棒运动加速度为a ,某时装金属棒的速度为v 1,经过n t 金属体的速度为v 2,导体棒中流过的电流(充电电流)为I ,则:F-BIL=ma 电流:I=
Q t V V =C E
t
V V 其中:n E=BLv 2-BLv 1=BL n v ,a=v
t
n n 联立各式得:a=
22
F
m CB L +
因此,导体棒向右做匀加速直线运动.由于所有电阻均忽略,平行板电容器两板间电压U 与导体棒切割磁感线产生的感应电动势E 相等,电容器的电荷量:Q=CBLat=22
FCBLt
m CB L +
答:(1)金属棒的最大速度max v 是
22
FR
B L ; (2)金属棒从静止达到最大速度的过程中,通过电阻R 的电荷量q 为033
Ft FmR
BL B L -; (3)金属棒由静止开始经过时间t 后,电容器所带的电荷量Q 为22
FCBLt
m CB L +.
【点睛】
解决本题的关键有两个:一是抓住电流的定义式,结合牛顿第二定律分析金属棒的加速度.二是运用微元法,求解金属棒的位移,其切入口是加速度的定义式.
11.有“200V 、40W ”灯泡40盏,并联于电源两端,这时路端电压,当关掉20
盏,则路端电压升为
试求:
(1)电源电动势,内阻多大?
(2)若使电灯正常发光还应关掉多少盏灯?
【答案】(1)210V;10(2)15盏
【解析】
试题分析:(1)电灯的电阻
40盏灯并联的总电阻:R1=R D/40=25;
20盏灯并联的总电阻:R2=R D/20=50;
根据欧姆定律可得:
解得E=210V,r=10
(2)根据欧姆定律可得:,解得:=200,,解得n=5,所以要关15盏。

考点:全电路欧姆定律。

12.如图所示,质量m=1kg的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1m 的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内).右侧回路中,电源的电动势E=8V、内阻r=1Ω,额定功率为8W、额定电压为4V的电动机M正常工作.取sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.试求:
(1)电动机当中的电流I M与通过电源的电流I总.
(2)金属棒受到的安培力大小及磁场的磁感应强度大小.
【答案】(1)电动机当中的电流是2A,通过电源的电流是4A;
(2)金属棒受到的安培力大小是6N,磁场的磁感应强度大小3T.
【解析】
试题分析:(1)由P=UI求出电动机中的电流,由串并联电路的电压关系得到内电阻上的电压,由欧姆定律得到干路电流;
(2)进而得到磁场中导线的电流,由平衡条件得到安培力,由安培力公式得到B.
解:(1)电动机的正常工作时,有:P M=UI M
代入数据解得:I M=2A
通过电源的电流为:I总===4A
(2)导体棒静止在导轨上,由共点力的平衡可知,安培力的大小等于重力沿斜面向下的分力,即:F=mgsin37°=6N
流过电动机的电流I 为:I=I 总 I M =4A 2A=2A F=BIL 解得:B=3T
答:(1)电动机当中的电流是2A ,通过电源的电流是4A ; (2)金属棒受到的安培力大小是6N ,磁场的磁感应强度大小3T .
【点评】本题借助安培力与电路问题考查了平衡条件的应用,解答的关键是正确找出两个支路的电流之间的关系.是一道很好的综合题.
13.如图所示的电路中,电源的电动势E=80 V ,内电阻r=2Ω,R1=4Ω,R2为滑动变阻器.问:
(1)R2阻值为多大时,它消耗的功率最大?
(2)如果要求电源输出功率为600 W ,外电路电阻R2应取多少?此时电源效率为多少? (3)该电路中R2取多大时,R1上功率最大? 【答案】(1)6Ω;(2)2Ω, 75%;(3)0Ω 【解析】
试题分析:(1)将1R 视为电源的内电阻处理,则根据电源的输出功率随外电阻变化的特点,知道当21R R r =+时电源的输出功率最大(即外电阻2R 消耗的电功率最大):
21426R R r =+=+Ω=Ω(); 222
12212280••4600 42
P I R R R R W R R r E R ==+=+=++++(
)()()(),解得22R =Ω;,
则得1280
10422
I R r E A A R =
==++++
电源的效率2100%100%75%600102
600P P η=
⨯=⨯=+⨯出
总。

(4)20R =Ω时,电路中电流最大,则1R 上功率最大。

考点:闭合电路的欧姆定律、电功、电功率
【名师点睛】本题关键要掌握电源的总功率、内部消耗的功率和输出功率的计算公式,以及三者之间的关系,并理解掌握电源输出功率最大的条件。

14.(10分)如图所示,倾角θ=30°、宽L=1m 的足够长的U 形光滑金属导轨固定在磁感应强度大小B=IT 、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。

一根质量m=0.2kg ,电阻R=l Ω的金属棒ab 垂直于导轨放置。

现用一平行于导轨向上的牵引力F 作用在棒上,使棒由静止开始沿导轨向上运动,运动中ab 棒始终与导轨接触良好,导轨
电阻不计,重力加速度g 取l0m/s 2。

求:
(1)若牵引力的功率P 恒为56W ,则ab 棒运动的最终速度为多大?
(2)当ab 棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab 棒的速度为零,通过ab 棒的电量q=0.5C ,则撤去牵引力后ab 棒向上滑动的距离多大?
【答案】(1)7 m/s ;(2)0.5m
【解析】
试题分析:(1)当以恒定功率牵引ab 棒达到最大速度时:P=Fv ,E=BLv ,I=E/R ,F 安=BIL ()0sin =+-安F mg F θ
解得:v=7 m/s
(2)设撤去F 后ab 棒沿导轨向上运动到速度为零时滑动的距离为x ,通过ab 的电荷量, t BLx t E ∆=∆∆Φ=,R
BLx t I q =∆⋅= 联立解得:m BL
qR x 5.0==
考点:本题考查电磁感应
15.如图所示,一段长方体金属导电材料,厚度为a 、高度为b 、长度为l ,内有带电量为e 的自由电子。

该导电材料放在垂直于前后表面的匀强磁场中,内部磁感应强度为B 。

当有大小为I 的稳恒电流垂直于磁场方向通过导电材料时,在导电材料的上下表面间产生一个恒定的电势差U 。

求解以下问题:
(1)分析并比较上下表面电势的高低;
(2)该导电材料单位体积内的自由电子数量n 。

(3)经典物理学认为金属导体中恒定电场形成稳恒电流,而金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞。

设某种金属中单位体积内的自由电子数量为n ,自由电子的质量为m ,带电量为e ,自由电子连续两次碰撞的时间间隔的平均值为t 。

试这种金属的电阻率。

【答案】(1)下表面电势高;(2)(3)
【解析】试题分析:(1)因为电流方向向右,则电子运动方向向左,由左手定则电子向上偏转,可知下表面电势高;
(2)①②③④⑤
联立①②③④⑤
(3)设金属导电材料内的匀强电场强度为E
电子定向移动的加速度为
经过时间t获得的定向移动速度为
在时间t内的平均速度为
电流为
欧姆定律

考点:洛伦兹力;电场强度;电流强度;欧姆定律.。

相关文档
最新文档