现代控制理论最新版ppt课件
合集下载
《现代控制理论》课件
现代控制理论
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
现代控制理论课件PPT
西华大学电气与电子信息学院
▪ 系统辨识(系统辨识,参数估计) 未知系统的建模,在仅知道y和u,根据输入输出关系建立 系统模型。 包括两部分:模型结构及模型参数的确立。 系统辨识:包括模型结构及参数的辨识; 参数估计:模型结构已定,估计其参数;以下三阶系统: a3 y(3) a2 y(2) a1 y' a0 y b0u
问题称为极点配置问题。
3)使一个MIMO系统实现一个输入只控制一个输出作为
性能指标,相应的综合问题称为解耦问题。
4)将系统的输出y(t)无静差地跟踪一个外部信号 u(t) 的能
力,作为性能指标,相应的综合问题称为跟踪问题。
西华大学电气与电子信息学院
3 控制系统仿真 系统
建立数 学模型
仿真 实验
结果分析
模型
计算机
建立仿真模型
MATLAB工程软件简介
在控制类学科中, MATLAB/Simulink是首选的计算机 工具。 MATLAB软件中有大量的MATLAB配套工具箱 功能强大的控制系统仿真环境SIMULINK,它用形象的图 形环境为控制系统的分析设计提供了很好的试验工具。
西华大学电气与电子信息学院
F135-PW-100
西华大学电气与电子信息学院
蒸气发电机的谐调控制系统模型
西华大学电气与电子信息学院
0.1.2 现代控制理论和经典控制理 论的区别
经典控制理论
单输入单输出(SISO) 黑箱问题,不完全描述 近似分析、设计,采用拼凑法 无法考虑系统的初始条件(传递函数的定义) 传递函数、微分方程 时域法、根轨迹法、频域法
现代控制理论
宋潇潇 西华大学电气与电子信息学院
现代控制理论
地位和重要性 所需基础知识 知识构架 笔记和课件 出勤和考试
▪ 系统辨识(系统辨识,参数估计) 未知系统的建模,在仅知道y和u,根据输入输出关系建立 系统模型。 包括两部分:模型结构及模型参数的确立。 系统辨识:包括模型结构及参数的辨识; 参数估计:模型结构已定,估计其参数;以下三阶系统: a3 y(3) a2 y(2) a1 y' a0 y b0u
问题称为极点配置问题。
3)使一个MIMO系统实现一个输入只控制一个输出作为
性能指标,相应的综合问题称为解耦问题。
4)将系统的输出y(t)无静差地跟踪一个外部信号 u(t) 的能
力,作为性能指标,相应的综合问题称为跟踪问题。
西华大学电气与电子信息学院
3 控制系统仿真 系统
建立数 学模型
仿真 实验
结果分析
模型
计算机
建立仿真模型
MATLAB工程软件简介
在控制类学科中, MATLAB/Simulink是首选的计算机 工具。 MATLAB软件中有大量的MATLAB配套工具箱 功能强大的控制系统仿真环境SIMULINK,它用形象的图 形环境为控制系统的分析设计提供了很好的试验工具。
西华大学电气与电子信息学院
F135-PW-100
西华大学电气与电子信息学院
蒸气发电机的谐调控制系统模型
西华大学电气与电子信息学院
0.1.2 现代控制理论和经典控制理 论的区别
经典控制理论
单输入单输出(SISO) 黑箱问题,不完全描述 近似分析、设计,采用拼凑法 无法考虑系统的初始条件(传递函数的定义) 传递函数、微分方程 时域法、根轨迹法、频域法
现代控制理论
宋潇潇 西华大学电气与电子信息学院
现代控制理论
地位和重要性 所需基础知识 知识构架 笔记和课件 出勤和考试
《现代控制理论基础》PPT课件
1875 年 , 英 国 的 劳 斯 ( E.J.Routh,1831-1907 ) , 1995年,德国的赫尔维茨(A.Hurwitz,1859-1919),先 后分别提出根据代数方程系数判别系统稳定性的一般准 则。
11
20世纪20年代,电子技术得到了迅速发展,促进 了信息处理和自动控制及其理论的发展。
这 个 时 期 的 主 要 代 表 人 物 有 美 国 的 贝 尔 曼 ( R. Bellman)、原苏联的庞特里亚金和美籍匈牙利人卡尔曼 (R.E.Kalman)等人。
23
1965年,贝尔曼发表了“动态规划理论在控制过程中 的应用“一文,提出了寻求最优控制的动态规划法。
1958年,Kalman提出递推估计的自动化控制原理,奠 定了自校正控制器的基础。
5
二 控制理论的产生及其发展
6
自动控制思想及其实践可以说历史悠久。它是人类 在认识世界和改造世界的过程中产生的,并随着社会的 发展和科学水平的进步而不断发展。
人类发明具有“自动”功能的装置的历史可以追溯到 公元前14-11世纪的中国、埃及和巴比伦出现的铜壶滴 漏计时器。
公元前4世纪,希腊柏拉图(Platon,公元前47-公元 前347)首先使用了“控制论”一词。
27
例如,在20世纪70年代以来形成的大系统理论主要 是解决大型工程和社会经济中信号处理、可靠性控制等 综合最优的设计问题。
由于应用范围涉及越来越复杂的工程系统和社会、 经济、管理等非工程的人类活动系统,原有的理论方法 遇到了本质困难,大系统和社会发展逐渐转向“复杂系 统”的概念。
28
智能控制的发展始于20世纪60年代,它是一种能更好地 模仿人类智能的、非传统的控制方法。它突破了传统控制中 对象有明确的数学描述和控制目标是可以数量化的限制。它 所采用的理念方法主要是来自自动控制理论、人工智能、模 糊集和神经网络以及运筹学等学科分支。
11
20世纪20年代,电子技术得到了迅速发展,促进 了信息处理和自动控制及其理论的发展。
这 个 时 期 的 主 要 代 表 人 物 有 美 国 的 贝 尔 曼 ( R. Bellman)、原苏联的庞特里亚金和美籍匈牙利人卡尔曼 (R.E.Kalman)等人。
23
1965年,贝尔曼发表了“动态规划理论在控制过程中 的应用“一文,提出了寻求最优控制的动态规划法。
1958年,Kalman提出递推估计的自动化控制原理,奠 定了自校正控制器的基础。
5
二 控制理论的产生及其发展
6
自动控制思想及其实践可以说历史悠久。它是人类 在认识世界和改造世界的过程中产生的,并随着社会的 发展和科学水平的进步而不断发展。
人类发明具有“自动”功能的装置的历史可以追溯到 公元前14-11世纪的中国、埃及和巴比伦出现的铜壶滴 漏计时器。
公元前4世纪,希腊柏拉图(Platon,公元前47-公元 前347)首先使用了“控制论”一词。
27
例如,在20世纪70年代以来形成的大系统理论主要 是解决大型工程和社会经济中信号处理、可靠性控制等 综合最优的设计问题。
由于应用范围涉及越来越复杂的工程系统和社会、 经济、管理等非工程的人类活动系统,原有的理论方法 遇到了本质困难,大系统和社会发展逐渐转向“复杂系 统”的概念。
28
智能控制的发展始于20世纪60年代,它是一种能更好地 模仿人类智能的、非传统的控制方法。它突破了传统控制中 对象有明确的数学描述和控制目标是可以数量化的限制。它 所采用的理念方法主要是来自自动控制理论、人工智能、模 糊集和神经网络以及运筹学等学科分支。
1.2-现代控制理论的主要内容PPT优秀课件
6
最优控制(1/1)
1.2.2 最优控制
最优控制理论是研究和解决从一切可能的控制方案中寻找最 优解的一门学科。 ➢ 具体地说就是研究被控系统在给定的约束条件和性能指 标下,寻求使性能指标达到最佳值的控制规律问题。 ➢ 例如要求航天器达到预定轨道的时间最短、所消耗的燃 料最少等。
该分支的基本内容和常用方法为 ➢ 变分法; ➢ 庞特里亚金的极大值原理; ➢ 贝尔曼的动态规划方法。
8
随机系统理论和最优估计(2/2)
最优估计讨论根据系统的输入输出信息估计出或构造出随机 动态系统中不能直接测量的系统内部状态变量的值。 ➢ 由于现代控制理论主要以状态空间模型为基础,构成反馈 闭环多采用状态变量,因此估计不可直接测量的状态变量 是实现闭环控制系统重要的一环。 ➢ 该问题的困难性在于系统本身受到多种内外随机因素扰 动,并且各种输入输出信号的测量值含有未知的、不可测 的误差。
系统辨识是重要的建模方法,因此亦是控制理论实现和应用 的基础。 ➢ 系统辨识是控制理论中发展最为迅速的领域,它的发展还 直接推动了自适应控制领域及其他控制领域的发展。
11
自适应控制(1/5)
1.2.5 自适应控制
自适应控制研究当被控系统的数学模型未知或者被控系统的 结构和参数随时间和环境的变化而变化时,通过实时在线修正 控制系统的结构或参数使其能主动适应变化的理论和方法。 ➢ 自适应控制系统通过不断地测量系统的输入、状态、输 出或性能参数,逐渐了解和掌握对象,然后根据所得的信息 按一定的设计方法,做出决策去更新控制器的结构和参数 以适应环境的变化,达到所要求的控制性能指标。 ➢ 该分支诞生于1950年代末,是控制理论中近60年发展最为 迅速、最为活跃的分支。
12
自适应控制(2/5)
最优控制(1/1)
1.2.2 最优控制
最优控制理论是研究和解决从一切可能的控制方案中寻找最 优解的一门学科。 ➢ 具体地说就是研究被控系统在给定的约束条件和性能指 标下,寻求使性能指标达到最佳值的控制规律问题。 ➢ 例如要求航天器达到预定轨道的时间最短、所消耗的燃 料最少等。
该分支的基本内容和常用方法为 ➢ 变分法; ➢ 庞特里亚金的极大值原理; ➢ 贝尔曼的动态规划方法。
8
随机系统理论和最优估计(2/2)
最优估计讨论根据系统的输入输出信息估计出或构造出随机 动态系统中不能直接测量的系统内部状态变量的值。 ➢ 由于现代控制理论主要以状态空间模型为基础,构成反馈 闭环多采用状态变量,因此估计不可直接测量的状态变量 是实现闭环控制系统重要的一环。 ➢ 该问题的困难性在于系统本身受到多种内外随机因素扰 动,并且各种输入输出信号的测量值含有未知的、不可测 的误差。
系统辨识是重要的建模方法,因此亦是控制理论实现和应用 的基础。 ➢ 系统辨识是控制理论中发展最为迅速的领域,它的发展还 直接推动了自适应控制领域及其他控制领域的发展。
11
自适应控制(1/5)
1.2.5 自适应控制
自适应控制研究当被控系统的数学模型未知或者被控系统的 结构和参数随时间和环境的变化而变化时,通过实时在线修正 控制系统的结构或参数使其能主动适应变化的理论和方法。 ➢ 自适应控制系统通过不断地测量系统的输入、状态、输 出或性能参数,逐渐了解和掌握对象,然后根据所得的信息 按一定的设计方法,做出决策去更新控制器的结构和参数 以适应环境的变化,达到所要求的控制性能指标。 ➢ 该分支诞生于1950年代末,是控制理论中近60年发展最为 迅速、最为活跃的分支。
12
自适应控制(2/5)
第2章 现代控制理论1PPT课件
时不变系统状态转移矩阵Φ tt0或 Φ t是满足如下矩阵微分
方程和初始条件的解,这也是检验一个矩阵是不是状态转移
的条件。
Φ (tt0)AΦ (tt0)或 Φ (t)AΦ (t)
Φቤተ መጻሕፍቲ ባይዱ(0)I
Φ (0)I
(2.5)
1Φ t在 t0的值 lim ΦtI
t0
(2)Φt对t的导 Φ 数 tA Φ tΦ tA
故可求出其解为:
t
X ( t) ( t) X ( 0 ) o ( t ) B () U d ( 2 .2 b )
式中 (t) eAt 为系统的状态转移矩阵。
对于线性时变系统非齐次状态方程,
X ( t) A ( t) X ( t) B ( t) U ( t) ( 2 3 )
类似可求出其解为
x (0 )e a t tb(u )e a (t )d 0
同样,将方程(2.1)写为 X (t)A(X t)B(U t)
在上式两边左乘eAt ,可得:
e A [X t(t) A(t) X ]d[e AX t(t) ]e A B t (tU )
dt
3
将上式由 0 积分到 t ,得
X ( t) e A X t ( 0 ) te A (t )B () U d (2 .2 a ) o
的解,X(t)=Ф (t, t0)X(0) 。 下面不加证明地给出线性时变系统状态转移矩阵的几个
重要性质: 1、 (t,t)I
2 、 ( t 2 ,t 1 ) ( t 1 ,t 0 ) ( t 2 ,t 0 )
3 、 1 (t,t0) (t0 ,t) 4、当A给定后,(t,t0) 唯一
5、计算时变系统状态转移矩阵的公式
令 x (t) b 0 b 1 t b 2 t2 b iti b iti,t 0
现代控制理论ppt
x ( t ) f x ( t ) u( t ) y ( t ) g x ( t ) u( t )
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间
现代控制理论第1讲 PPT课件
• 18世纪,James Watt 为控制蒸汽机速度 设计的离心调节器。
• 1922年,Minorsky研制船舶操纵自动控 制器,并证明了从系统的微分方程确定系统 的稳定性。
• 1932年,Nyquist提出了一种相当简便的 方法,根据对稳态正弦输入的开环响应,确 定闭环的稳定性。
• 1934年,Hezen提出了用于位置控制系统 的伺服机构的概念。讨论了可以精确跟踪变 化的输入信号的继电式伺服机构。
六、现代控制理论的应用 1、飞行控制(航空、航天) 2、药物治疗 3、电力生产 4、电力调度 5、石油化工生产过程控制 6、钢铁行业等等
七、控制一个动态系统的几个基本步骤
1、系统模型的建立 2、系统分析 3、寻找控制规律 4、系统实现 5、系统的调整与验证
八、现代控制理论的研究课题
1、系统健壮性研究 2、自适用控制(自动调整控制规律) 3、多变量控制问题 4、随机控制问题 5、非线性理论 6、其它控制技术
y(t) g ( x, u, t) x(k 1) Gx(k) Hu(k)
y(k) Cx(k) Du(k)
xg(t(ktk1))gf((xx, u, u, t, ktk))
线性定常系统
x Ax Bu , y Cx Du
线性定常离散系统
x(k 1) Gx(k) Hu(k)
• 19世纪40年代,频率响应法为闭环控制系统提供了一种可 行方法,从20世纪40年代末到50年代初,伊凡思Evans 提出并完善了根轨迹法。
• 在20世纪50年代中期,经典控制理论已经发展成熟和完备, 并在不少工程技术领域得到了成功的应用。
• 在20世纪50年代蓬勃兴起的航天技术的推动下,数字计算 机的出现为复杂系统的时域分析提供了可能。控制理论从 20世纪60年代后开始了从经典控制到现代控制理论的过渡。
• 1922年,Minorsky研制船舶操纵自动控 制器,并证明了从系统的微分方程确定系统 的稳定性。
• 1932年,Nyquist提出了一种相当简便的 方法,根据对稳态正弦输入的开环响应,确 定闭环的稳定性。
• 1934年,Hezen提出了用于位置控制系统 的伺服机构的概念。讨论了可以精确跟踪变 化的输入信号的继电式伺服机构。
六、现代控制理论的应用 1、飞行控制(航空、航天) 2、药物治疗 3、电力生产 4、电力调度 5、石油化工生产过程控制 6、钢铁行业等等
七、控制一个动态系统的几个基本步骤
1、系统模型的建立 2、系统分析 3、寻找控制规律 4、系统实现 5、系统的调整与验证
八、现代控制理论的研究课题
1、系统健壮性研究 2、自适用控制(自动调整控制规律) 3、多变量控制问题 4、随机控制问题 5、非线性理论 6、其它控制技术
y(t) g ( x, u, t) x(k 1) Gx(k) Hu(k)
y(k) Cx(k) Du(k)
xg(t(ktk1))gf((xx, u, u, t, ktk))
线性定常系统
x Ax Bu , y Cx Du
线性定常离散系统
x(k 1) Gx(k) Hu(k)
• 19世纪40年代,频率响应法为闭环控制系统提供了一种可 行方法,从20世纪40年代末到50年代初,伊凡思Evans 提出并完善了根轨迹法。
• 在20世纪50年代中期,经典控制理论已经发展成熟和完备, 并在不少工程技术领域得到了成功的应用。
• 在20世纪50年代蓬勃兴起的航天技术的推动下,数字计算 机的出现为复杂系统的时域分析提供了可能。控制理论从 20世纪60年代后开始了从经典控制到现代控制理论的过渡。
现代控制理论教学课件
数字仿真实验结果分析 阐述如何对数字仿真实验结果进 行分析,包括性能指标的计算和 评估,以及对实验结果进行解释 和讨论。
数字仿真软件 介绍常用的数字仿真软件,如 MATLAB/Simulink等,并解释其 基本原理和使用方法。
数字仿真实验设计 详细说明数字仿真实验的设计方 法,包括如何建立系统模型、如 何设计控制器、如何设置仿真参 数等。
该方法能够全面地反映系统的性能,具有较强的适用性和实用 性。同时,该方法可通过实验手段进行验证,可靠性高。
设计过程相对较为复杂,需要一定的专业知识和经验。
适用于高阶系统和多变量系统的控制器设计,广泛应用于工程 实践中。
最优控制设计法
定义
最优控制设计法是一种基于最优化理论进行控制器设计的 方法。
缺点
现代控制理论阶段
自20世纪60年代开始,状态空间 法成为主导,适用于多输入多输 出、非线性、时变系统的分析与 设计。
现代控制理论的特点
状态空间描述
现代控制理论基于状态空间描述 ,通过状态变量全面反映系统内 部状态,提供更深入的系统分析
。
时域分析法
相比古典控制理论的频域分析法, 现代控制理论采用时域分析法,能 够直接反映系统的时间响应特性。
05
现代控制理论进阶知 识
系统的数学模型 ,包括微分方程、差分方程和状态方程等
。
A 非线性现象
介绍系统中的非线性现象,如死区 、饱和、滞后等,并分析其对系统
性能的影响。
B
C
D
非线性系统设计
探讨非线性控制系统的设计方法,如反馈 线性化、滑模变结构控制、反步法等。
稳定性分析
利用状态空间方程的特征值分析系统的稳定性,通过判断 特征值的分布来确定系统的稳定性。
数字仿真软件 介绍常用的数字仿真软件,如 MATLAB/Simulink等,并解释其 基本原理和使用方法。
数字仿真实验设计 详细说明数字仿真实验的设计方 法,包括如何建立系统模型、如 何设计控制器、如何设置仿真参 数等。
该方法能够全面地反映系统的性能,具有较强的适用性和实用 性。同时,该方法可通过实验手段进行验证,可靠性高。
设计过程相对较为复杂,需要一定的专业知识和经验。
适用于高阶系统和多变量系统的控制器设计,广泛应用于工程 实践中。
最优控制设计法
定义
最优控制设计法是一种基于最优化理论进行控制器设计的 方法。
缺点
现代控制理论阶段
自20世纪60年代开始,状态空间 法成为主导,适用于多输入多输 出、非线性、时变系统的分析与 设计。
现代控制理论的特点
状态空间描述
现代控制理论基于状态空间描述 ,通过状态变量全面反映系统内 部状态,提供更深入的系统分析
。
时域分析法
相比古典控制理论的频域分析法, 现代控制理论采用时域分析法,能 够直接反映系统的时间响应特性。
05
现代控制理论进阶知 识
系统的数学模型 ,包括微分方程、差分方程和状态方程等
。
A 非线性现象
介绍系统中的非线性现象,如死区 、饱和、滞后等,并分析其对系统
性能的影响。
B
C
D
非线性系统设计
探讨非线性控制系统的设计方法,如反馈 线性化、滑模变结构控制、反步法等。
稳定性分析
利用状态空间方程的特征值分析系统的稳定性,通过判断 特征值的分布来确定系统的稳定性。
现代控制理论ppt
求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入
。
动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。
西工大—现代控制理论课件ppt课件
y2
up
yq
被控过程
5
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
一种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的
6
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
xn a0 x1 a1x2 an1xn u
得到动态方程
x Ax bu
y x1
y cx
16
式
x1
0 1 0
0 0
中
x2
0
0
1 b , c 1 0
0
xn
1
0
0
0
1
0
xn
a0 a1 a2
an1
0
例1-5
系统的状态变量图
i 2,3,, n
其展开式为 x1 y h0u
x2 x1 h1u y h0u h1u x3 x2 h2u y h0u h1u h2u
xn xn1 hn1u y (n1) h0u (n1) h1u (n2) hn1u #
式中, h0 , h1 ,, hn1 是n个待定常数。是n个。
3、动态方程对于系统的描述是充分的和完整的,即系统中 的任何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是
输入电压和输入电流,y为输出电压,xi为电容器电压或电感器电流。
x3
解 并非所有电路中的电容器电压和电感器电流都是独立变量。对图8-5(a),
现代控制论第1章PPT课件
将在状态空间x 描( t )绘出一条轨
迹,称为状态轨迹。
1.1.4 状态方程
由系统的状态变量构成的一阶微分方程组称为系统的 状态方程。
用下图所示的 一系统。
网络,说明如何用状态变量描述这
图一
9
根据电学原理,容易写出两个含有状态变量的一阶微分方程组:
亦即
(1)
式(1)就是图1.1系统的状态方程,式中若将状态变量用
40
则有:M 1 y 1 B 1 y 1 k 1 y 1 k 2 ( y 2 y 1 ) B 2 ( y 2 y 1 ) 及:M 2 y 2 B 2 ( y 2 y 1 ) k 2 ( y 2 y 1 ) f
将所选的状态变量 x 1 y 1 ,x 2 y 2 ,x 3 y 1 v 1 ,x 4 y 2 v 2
则得一阶微分方程
组为:
x1 x2
x2
1 LC
x1
R L
x2
1u LC
15
(8)
状态变量选取不同,状态方程也不同。 从理论上说,并不要求状态变量在物理上一定是可以测量 的量,但在工程实践上,仍以选取那些容易测量的量作为状态 变量为宜,因为在最优控制中,往往需要将状态变量作为反馈。
设单输入一单输出定常系统,其状态变量为 则状态方程的一般形式为:
1 L2 2
u2
uA i1R1 i2R1 u2
38
3)状态空间表达式为:
i1 i2
LR21RL11
R1 L1 R1R2 L2
ii12
0L11
1 L1
1 L2
u1 u2
uA R1 R1ii120 1uu12
39
例2:试列出在外力f作
用的下位,移以y1质, y量2 为M输1,出M的2
迹,称为状态轨迹。
1.1.4 状态方程
由系统的状态变量构成的一阶微分方程组称为系统的 状态方程。
用下图所示的 一系统。
网络,说明如何用状态变量描述这
图一
9
根据电学原理,容易写出两个含有状态变量的一阶微分方程组:
亦即
(1)
式(1)就是图1.1系统的状态方程,式中若将状态变量用
40
则有:M 1 y 1 B 1 y 1 k 1 y 1 k 2 ( y 2 y 1 ) B 2 ( y 2 y 1 ) 及:M 2 y 2 B 2 ( y 2 y 1 ) k 2 ( y 2 y 1 ) f
将所选的状态变量 x 1 y 1 ,x 2 y 2 ,x 3 y 1 v 1 ,x 4 y 2 v 2
则得一阶微分方程
组为:
x1 x2
x2
1 LC
x1
R L
x2
1u LC
15
(8)
状态变量选取不同,状态方程也不同。 从理论上说,并不要求状态变量在物理上一定是可以测量 的量,但在工程实践上,仍以选取那些容易测量的量作为状态 变量为宜,因为在最优控制中,往往需要将状态变量作为反馈。
设单输入一单输出定常系统,其状态变量为 则状态方程的一般形式为:
1 L2 2
u2
uA i1R1 i2R1 u2
38
3)状态空间表达式为:
i1 i2
LR21RL11
R1 L1 R1R2 L2
ii12
0L11
1 L1
1 L2
u1 u2
uA R1 R1ii120 1uu12
39
例2:试列出在外力f作
用的下位,移以y1质, y量2 为M输1,出M的2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
的n维空间
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
(1) 状态:系统过去、现在和将来的状况
(2) 状态变量:能够完全表征系统运动状态的最小一组变量:
a) x(t)tt0 x(t0) 表示系统在 t 0 时刻的状态
b ) 若初值 x ( t 0 ) 给定,t t 0 时的 u ( t ) 给定, 则状态变量完全
确定系统在 t t 0 时的行为。
2020/4/21
(1) 状态:系统过去、现在和将来的状况
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1 基本概念 2.1.1 几个定义:
(1) 状态:系统过去、现在和将来的状况 (2) 状态变量:能够完全表征系统运动状态的最小一组变量:
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1 基本概念 2.1.1 几个定义:
的n维空间 (5) 状态方程:描述系统状态与输入之间关系的、一阶微
分方程(组):x & (t)A x(t)B u(t)
(6) 输出方程:描述系统输出与状态、输入之间关系的数 学表达式: y(t)C x(t)D u(t)
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
(2) 非线性系统 x & (t)f(x(t),u (t),t) 或 y(t)g (x(t),u (t),t)
x & f(x,u ,t) yg (x,u ,t)
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1.3 状态空间表达式的状态变量图
加法器
积分器
放大器
绘制步骤:(1) 绘制积分器 (2) 画出加法器和放大器 (3) 用线连接各元件,并用箭头示出信号传递 的方向。
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1.2 状态空间表达式的一般形式:
(1) 线性系统 x & (t) A (t)x (t) B (t)u (t) y (t) C (t)x (t) D (t)u (t) x R n , u R p , y R q
其中,A 为系统矩阵,B 为控制矩阵,C 为输出矩阵,D 为直 接传递矩阵。
2020/4/21
现代控制理论
东北大学信息科学与工程学院 姜囡 讲师
二○一一年三月
2020/4/21
2020/4/21
第1章 绪论 第2章 控制系统状态空间描述 第3章 状态方程的解 第4章 线性系统的能控性和能观测性 第5章 控制系统的李雅普诺夫稳定性分析 第6章 状态反馈和状态观测器 第7章 最优控制 第8章 状态估计
(7) 状态空间表达式: (5)+(6).
2020/4/21
基本概念
第二章 控制系统状态空间描述
状态变量的特点:
(1) 独立性:状态变量之间线性独立 (2) 多样性:状态变量的选取并不唯一,实际上存在无穷多种
方案 (3) 等价性:两个状态向量之间只差一个非奇异线性变换 (4) 现实性:状态变量通常取为含义明确的物理量 (5) 抽象性:状态变量可以没有直观的物理意义
第2章 控制系统状态空间描述
2020/4/21
第二章 控制系统状态空间描述
输入输出模式 黑箱子
状态变量模式 动力学特性
2020/4/21
基本概念
2.1 基本概念 2.1.1 几个定义:
第二章 控制系统状态空间描述
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1 基本概念 2.1.1 几个定义:
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1.2 状态空间表达式的一般形式:
(1) 线性系统 x & (t) A (t)x (t) B (t)u (t) y (t) C (t)x (t) D (t)u (t) x R n , u R p , y R q
其中,A 为系统矩阵,B 为控制矩阵,C 为输出矩阵,D 为直 接传递矩阵。
2020/4/21
基本概念
第二章 控制系统状态空间描述
例2.1.1 设一阶系统状态方程为 x&axbu
则其状态图为
u
b x
x
+
a
2020/4/21
基本概念
第二章 控制系统状态空间描述
例2.1.1 设一阶系统状态方程为 x&axbu
则其状态图为
u
b x
x
+
a
2020/4/21
基Байду номын сангаас概念
第二章 控制系统状态空间描述
的n维空间 (5) 状态方程:描述系统状态与输入之间关系的、一阶微
分方程(组):x & (t)A x(t)B u(t)
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
作为分量的向量,即
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
的n维空间 (5) 状态方程:描述系统状态与输入之间关系的、一阶微
分方程(组):x & (t)A x(t)B u(t)
(6) 输出方程:描述系统输出与状态、输入之间关系的数 学表达式: y(t)C x(t)D u(t)
例2.1.1 设一阶系统状态方程为 x&axbu
则其状态图为
2020/4/21
基本概念
第二章 控制系统状态空间描述
例2.1.2 设三阶系统状态空间表达式为
则其状态图为
x&1 x2 x&2 x3 x&3 6 x1 3 x2 2 x3 u y x1 x2
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
x(t)x1(t),L,xn(t)T
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
的n维空间
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
(1) 状态:系统过去、现在和将来的状况
(2) 状态变量:能够完全表征系统运动状态的最小一组变量:
a) x(t)tt0 x(t0) 表示系统在 t 0 时刻的状态
b ) 若初值 x ( t 0 ) 给定,t t 0 时的 u ( t ) 给定, 则状态变量完全
确定系统在 t t 0 时的行为。
2020/4/21
(1) 状态:系统过去、现在和将来的状况
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1 基本概念 2.1.1 几个定义:
(1) 状态:系统过去、现在和将来的状况 (2) 状态变量:能够完全表征系统运动状态的最小一组变量:
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1 基本概念 2.1.1 几个定义:
的n维空间 (5) 状态方程:描述系统状态与输入之间关系的、一阶微
分方程(组):x & (t)A x(t)B u(t)
(6) 输出方程:描述系统输出与状态、输入之间关系的数 学表达式: y(t)C x(t)D u(t)
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
(2) 非线性系统 x & (t)f(x(t),u (t),t) 或 y(t)g (x(t),u (t),t)
x & f(x,u ,t) yg (x,u ,t)
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1.3 状态空间表达式的状态变量图
加法器
积分器
放大器
绘制步骤:(1) 绘制积分器 (2) 画出加法器和放大器 (3) 用线连接各元件,并用箭头示出信号传递 的方向。
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1.2 状态空间表达式的一般形式:
(1) 线性系统 x & (t) A (t)x (t) B (t)u (t) y (t) C (t)x (t) D (t)u (t) x R n , u R p , y R q
其中,A 为系统矩阵,B 为控制矩阵,C 为输出矩阵,D 为直 接传递矩阵。
2020/4/21
现代控制理论
东北大学信息科学与工程学院 姜囡 讲师
二○一一年三月
2020/4/21
2020/4/21
第1章 绪论 第2章 控制系统状态空间描述 第3章 状态方程的解 第4章 线性系统的能控性和能观测性 第5章 控制系统的李雅普诺夫稳定性分析 第6章 状态反馈和状态观测器 第7章 最优控制 第8章 状态估计
(7) 状态空间表达式: (5)+(6).
2020/4/21
基本概念
第二章 控制系统状态空间描述
状态变量的特点:
(1) 独立性:状态变量之间线性独立 (2) 多样性:状态变量的选取并不唯一,实际上存在无穷多种
方案 (3) 等价性:两个状态向量之间只差一个非奇异线性变换 (4) 现实性:状态变量通常取为含义明确的物理量 (5) 抽象性:状态变量可以没有直观的物理意义
第2章 控制系统状态空间描述
2020/4/21
第二章 控制系统状态空间描述
输入输出模式 黑箱子
状态变量模式 动力学特性
2020/4/21
基本概念
2.1 基本概念 2.1.1 几个定义:
第二章 控制系统状态空间描述
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1 基本概念 2.1.1 几个定义:
2020/4/21
基本概念
第二章 控制系统状态空间描述
2.1.2 状态空间表达式的一般形式:
(1) 线性系统 x & (t) A (t)x (t) B (t)u (t) y (t) C (t)x (t) D (t)u (t) x R n , u R p , y R q
其中,A 为系统矩阵,B 为控制矩阵,C 为输出矩阵,D 为直 接传递矩阵。
2020/4/21
基本概念
第二章 控制系统状态空间描述
例2.1.1 设一阶系统状态方程为 x&axbu
则其状态图为
u
b x
x
+
a
2020/4/21
基本概念
第二章 控制系统状态空间描述
例2.1.1 设一阶系统状态方程为 x&axbu
则其状态图为
u
b x
x
+
a
2020/4/21
基Байду номын сангаас概念
第二章 控制系统状态空间描述
的n维空间 (5) 状态方程:描述系统状态与输入之间关系的、一阶微
分方程(组):x & (t)A x(t)B u(t)
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
作为分量的向量,即
x(t)x1(t),L,xn(t)T
(4) 状态空间:以状态变量 x1(t),L,xn(t) 为坐标轴构成
的n维空间 (5) 状态方程:描述系统状态与输入之间关系的、一阶微
分方程(组):x & (t)A x(t)B u(t)
(6) 输出方程:描述系统输出与状态、输入之间关系的数 学表达式: y(t)C x(t)D u(t)
例2.1.1 设一阶系统状态方程为 x&axbu
则其状态图为
2020/4/21
基本概念
第二章 控制系统状态空间描述
例2.1.2 设三阶系统状态空间表达式为
则其状态图为
x&1 x2 x&2 x3 x&3 6 x1 3 x2 2 x3 u y x1 x2
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即
x(t)x1(t),L,xn(t)T
2020/4/21
基本概念
第二章 控制系统状态空间描述
(3) 状态向量:以系统的n个独立状态变量 x1(t),L,xn(t)
作为分量的向量,即