(完整版)双曲线的简单性质练习题及答案

合集下载

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题 (优秀经典练习题及答案详解)

双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。

(完整版)《双曲线》练习题经典(含答案)

(完整版)《双曲线》练习题经典(含答案)

A.1
B.2
C.3
D.4
16.已知双曲线 C: ﹣ =1(a>0,b>0),以原点为圆心,b 为半径的圆与 x 轴正半轴的交点恰好
是右焦点与右顶点的中点,此交点到渐近线的距离为 ,则双曲线方程是( C )
A. ﹣ =1 B. ﹣ =1 C. ﹣ =1 D. ﹣ =1
17.如图,F1、F2 是双曲线
=1(a>0,b>0)的左、右焦点,过 F1 的直线 l 与双曲
3.在平面直角坐标系中,双曲线 C 过点 P(1,1),且其两条渐近线的方程分别为 2x+y=0 和 2x﹣y=0,则双曲线 C 的标准方程为( B )
A.
B.
C.

D.
x2
y2
x2 y2
4.已知椭圆 2a 2 + 2b 2 =1(a>b>0)与双曲线 a 2 - b 2 =1 有相同的焦点,则椭圆的离心率为( A )
线的左右两支分别交于点 A、B.若△ABF2 为等边三角形,则双曲线的离心率为( B )
A.4 B. C.
D.
18.如图,已知双曲线 ﹣ =1(a>0,b>0)的左右焦点分别为 F1,F2,|F1F2|=4,P 是双曲线右支上的一
点,F2P 与 y 轴交于点 A,△APF1 的内切圆在边 PF1 上的切点为 Q,若|PQ|=1,则双曲线的离心率是(B ) A.3 B.2 C. D.
14.设双曲线 ﹣ =1(a>0,b>0)的左、右焦点分别为 F1,F2,以 F2 为圆心,|F1F2|为半径的圆与双曲
线在第一、二象限内依次交于 A,B 两点,若 3|F1B|=|F2A|,则该双曲线的离心率是( C )
A.
B.
C.
D.2
15.过双曲线 x 2 y 2 1 的右焦点作直线 l 交双曲线于 A、B 两点,若|AB|=4,则这样的直线共有( C )条。 2

双曲线的几何性质练习题及答案

双曲线的几何性质练习题及答案
8.设 、 是双曲线 的两焦点,Q是双曲线上任意一点,从 引 的平分线的垂线,垂足为P,则点P的轨迹方程是__________。
三、解答题新课标第一网
9.在双曲线 的一支上不同的三点 , , 与焦点F(0,5)的距离成等差数列
(1)试求 ;
(2)证明线段AC的垂直平分线经过一个定点,并求出该定点坐标。
三、9. (2)必过定点
10.方程为 11.l:x=-2或
10.设双曲线中心是坐标原点,准线平行于x轴,离心率为 ,已知点P(0,5)到这双曲线上的点的最近距离是2,求双曲线方程。
11.已知直线l与圆 相切于点T,且与双曲线C: 相交于A、B两点,若T是线段AB的中点,求直线l的方程。
答案与提示
一、1.B 2.B 3.C 4.C 5.B 6.D
二、7.3条8.
A.1 B. C.2 D.4
3.双曲线 的离心率为 ,双曲线 的离心率为则 的最小值是( )
A. B.2 C. D.4
4.已知双曲线 的焦点为 、 ,弦AB过 且在若 ,双曲线的一支上,则|AB|等于( )
A.2aB.3aC.4aD.不能确定
5.椭圆和双曲线有相同的中心和准线,椭圆的焦Байду номын сангаас 、 三等分以双曲线点 、 为端点的线段,则双曲线的离心率e′与椭圆的离心率e的比值是( )
一、选择题(每小题四个选项中,只有一项符合题目要求)
1.双曲线 的一条准线l与一条渐近线F是与l相应的焦点,则|PF|等于( )交于P点,F是与l相应的焦点,则|PF|等于( )
A.aB.bC.2aD.2b
2.已知平面内有一定线段AB,其长度为4,动点P满足|PA|-|PB|=3,O为AB的中点,则|PO|的最小值为( )

双曲线基础题10道-含答案

双曲线基础题10道-含答案

近距离为 2,则双曲线 C 的方程为( )
A. y2 x2 1 34
C. y2 x2 1 49
B. y2 x2 1 9 16
D. y2 x2 1 9 34
3.若双曲线 1 :
x2 a2
y2 b2
1( a
0,b
0 )的离心率为
2,则双曲线
2

y2 b2
x2 a2
1
的离心率为( )
A. 2 3 3
F
,准线为 l
,且 l 与双曲线
C. 3
【分析】由双曲线的离心率公式求解即可.
D. 5
【详解】因为双曲线 1 的离心率 e1
a2 b2 a2
2 ,所以 b2
3a2 ,
所以双曲线 2 的离心率 e2
a2 b2 b2
4 2 3 . 33
故选:A
4.已知双曲线
x2 m
y2 8m
1(0
m
8 )的一条渐近线与直线
x
3 y 1平行,则此 3
F
,准线为 l
,且 l 与双曲线
:
x2 a2
y2 b2
1
( a 0,b 0 )的两条渐近线分别交于 A, B 两点,若△ABF 是正三角形,则双曲线 的
离心率为( )
A. 21
3
B. 7 2
C. 2 3 3
D. 7 3
试卷第 2页,共 3页
8.已知双曲线 C :
y2 a2
x2 b2
1a
6.若方程
2
x2 m
2
y2 m
1 表示双曲线,则
m
的取值范围是(

A. 2 m 2

双曲线的简单几何性质及经典习题

双曲线的简单几何性质及经典习题

知识回顾:二、讲解新课: 1.范围、对称性由标准方程12222=-by a x 可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 这说明从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向2.顶点顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做虚轴:21B B 长为2b ,b 叫做讲述:结合图形,讲解顶点和轴的概念,在双曲线方程12222=-by a x 中,令y=0得ax ±=,故它与x 轴有两个交点()0,),0,(21a A a A -,且x 轴为双曲线12222=-by a x 的对称轴,所以()0,),0,(21a A a A -与其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-by a x 的实轴长,它的长是2a.在方程12222=-by a x 中令x=0得22b y -=,这个方程没有实数根,说明双曲线和Y 轴没有交点。

但Y 轴上的两个特殊点()b B b B -,0),,0(21把线段21B B 叫做双曲线的虚轴,它的长是要特别注意不要把虚轴与椭圆的短轴混3.渐近线过双曲线12222=-by a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B作X 轴的平行线b y ±=矩形的两条对角线所在直线方程是x a b y ±=(0=±bya x )分析:要证明直线x ab y ±=(0=±b ya x )是双曲线12222=-by a x 的渐近线,即要证明随着X4.等轴双曲线a=b 结合图形说明:a=b 时,双曲线方程变成222a y x =-(或)2b ,它的实轴和都等于2a(2b),这时直线围成正方形,渐近线方程为x y ±= 它们互相垂直且平分5.共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x6.双曲线的草图具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的三、讲解范例:例1 求双曲线1422=-y x 的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近例2 求与双曲线191622=-y x 共渐近线且过)3,33(-A 分析:因所求的双曲线与已知双曲线共渐近线,故可先设出双曲线系,再把已知点代入,求得K 例2 (1)已知双曲线的两条渐近线方程是xy 23±=,焦点坐标是)26,0(-,)26,0(,求双曲线的标准方程.(2)求与双曲线13422=-x y 有共同的渐近线,且经过点)2,3(-M 的双曲线的标准方程.(2)已知双曲线的一条渐近线方程是043=+y x ,且焦距为8,求此双曲线的离心率及标准方程.四、课堂练习:1.下列方程中,以x±2y=0为渐近线的双曲线方程是12)(12)(1164)(1416)(22222222=-=-=-=-y x D y x C y x B y x A24.过点(3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则直线l 共有 (A)1条 (B)2条 (C)3条 (D)4条34.若方程ak 4y a k 3x 22-++=1表示双曲线,其中a 为负常数,则k 的取值范围是( )(A)(3a ,-4a ) (B)(4a ,-3a ) (C)(-3a ,4a ) (D)(-∞,4a )∪(-3a,+∞)45.中心在原点,一个焦点为(3,0),一条渐近线方程2x-3y=0的双曲线方程是(A)138********x y -= (B)13361381122x y -= (C)536554122x y -= (D)554536122x y -=55.与双曲线x y 22916-=λ有共同的渐近线,且一顶点为(0,9)的双曲线的方程是( )(A)x y 22144811-= (B)--=x y 22144811 (C)x y 221691-= (D)-+=x y 22274811(/)65.一双曲线焦点的坐标、离心率分别为(±5,0)、32,则它的共轭双曲线的焦点坐标、离心率分别是 ( ) (A)(0,±5),35 (B)(0,±532), (C)(0,±532), (D)(0,±535),75.双曲线2kx 2-ky 2=1的一焦点是F(0,4),则k 等于 ( )1.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为)2,0(,则双曲线的标准方程为 .2.双曲线与椭圆1641622=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线方程为 .3.双曲线的两条渐近线的夹角为60°,则双曲线的离心率为 .4.中心在原点,离心率为35的圆锥曲线的焦点在y 轴上,则它的渐近线方程为 .5.与双曲线116922=-y x 有共同的渐近线,且经过点)32,3(-A 的双曲线的一个焦点到一条渐近线的距离是 .五、小结 :双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线草图的画法;双曲线12222=-by a x 的渐近线是x aby ±=,但反过来此渐近线对应的双曲线则是)0(1)()(2222>±=-k kb y ka x λ=-2222b y a x。

双曲线练习题及答案

双曲线练习题及答案

双曲线相关知识双曲线的焦半径公式:1:定义:双曲线上任意一点P 与双曲线焦点的连线段,叫做双曲线的焦半径。

2.已知双曲线标准方程x^2/a^2-y^2/b^2=1 点P(x,y)在左支上│PF1│=-(ex+a) ;│PF2│=-(ex-a) 点P(x,y)在右支上│PF1│=ex+a ;│PF2│=ex-a运用双曲线的定义例1.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限练习1.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( )A .7 B.23 C.5或23 D.7或23例2. 已知双曲线的两个焦点是椭圆10x 2+32y 52=1的两个顶点,双曲线的两条准线分别通过椭圆的两个焦点,则此双曲线的方程是( )。

(A )6x 2-4y 2=1 (B )4x 2-6y 2=1 (C )5x 2-3y 2=1 (D )3x 2-5y 2=1练习2. 离心率e=2是双曲线的两条渐近线互相垂直的( )。

(A )充分条件 (B )必要条件 (C )充要条件 (D )不充分不必要条件例3. 已知|θ|<2π,直线y=-tg θ(x -1)和双曲线y 2cos 2θ-x 2 =1有且仅有一个公共点,则θ等于( )。

(A )±6π (B )±4π (C )±3π (D )±125π课堂练习1、已知双曲线的渐近线方程是2x y ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ; 2、焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x y C .1122422=-x y D .1122422=-y x3. 设e 1, e 2分别是双曲线1b y a x 2222=-和1ay b x 2222=-的离心率,则e 12+e 22与e 12·e 22的大小关系是 。

双曲线习题及答案

双曲线习题及答案

双曲线习题及答案双曲线习题及答案双曲线是高中数学中一个重要的概念,它在数学和物理学中都有广泛的应用。

掌握双曲线的性质和解题技巧对于学生来说是非常重要的。

在本文中,我们将介绍一些典型的双曲线习题,并给出详细的解答。

1. 问题:给定双曲线的标准方程为$\displaystyle \frac{x^{2}}{a^{2}} -\frac{y^{2}}{b^{2}} =1$,求其焦点坐标和准线方程。

解答:由双曲线的标准方程可知,$\displaystyle a^{2} >b^{2}$,因此双曲线的焦点在$x$轴上。

根据焦点与准线的定义,焦点坐标为$(\displaystyle \pm c,0)$,其中$\displaystyle c=\sqrt{a^{2} +b^{2}}$。

准线方程为$\displaystyle x=\pm a$。

2. 问题:已知双曲线的焦点坐标为$(2,0)$和$(-2,0)$,离心率为$\displaystyle\sqrt{2}$,求其标准方程。

解答:根据双曲线的离心率定义,$\displaystyle e=\sqrt{1+\frac{b^{2}}{a^{2}}}$。

由题目可知,焦点坐标为$(2,0)$和$(-2,0)$,因此$\displaystyle c=2$。

又由离心率的定义可得$\displaystyle e=\frac{c}{a}$。

将这些信息代入双曲线的标准方程$\displaystyle \frac{x^{2}}{a^{2}} -\frac{y^{2}}{b^{2}} =1$中,整理得到$\displaystyle \frac{x^{2}}{4} -\frac{y^{2}}{2} =1$。

3. 问题:已知双曲线的焦点坐标为$(3,0)$和$(-3,0)$,离心率为$\displaystyle\frac{3}{2}$,求其标准方程。

解答:根据双曲线的离心率定义,$\displaystyle e=\sqrt{1+\frac{b^{2}}{a^{2}}}$。

双曲线训练题(二)(含答案)

双曲线训练题(二)(含答案)

双曲线训练题(二)一、选择题: 1.设P 是双曲线22219x ya-=上一点,双曲线的一条渐近线方程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF =( ) A .1或5B .6C .7D .92.焦点为(06),,且与双曲线2212xy -=有相同的渐近线的双曲线方程是( )A .2211224xy-= B .2211224yx-=C .2212412yx-= D .2212412xy-=3.过双曲线221169xy-=左焦点1F 的弦A B 长为6,则2ABF △(2F 为右焦点)周长为( ) A .28B .22C .14D .124.已知m n ,为两个不相等的非零实数,则方程0m x y n -+=与22nx my mn +=所表示的曲线可能是( )5.已知双曲线方程为2214yx -=,过点(10)P ,的直线l 与双曲线只有一个公共点,则l 的条数共有( ) A .4 B .3 C .2 D .16.已知双曲线22221x y ab-=(00)a b >>,的左、右焦点分别为12F F ,,点P 在双曲线的右支上,且124PF PF =,则此双曲线的离心率e 的最大值为( ) A .43B .53C .2D .73二、填空题:7.直线1y x =+与双曲线22123xy-=相交于A B ,两点,则AB =8.已知定点A B ,,且6AB =,动点P 满足4PA PB -=,则PA 的最小值是9.双曲线22221(00)x y a b ab-=>>,一条渐近线的倾斜角为π(0)2αα<<,则其离心率为10.直线y x b =+与双曲线2222x y -=相交于A B ,两点,若以A B 为直径的圆过原点,则b =11.若直线y x m =+与曲线y =m 的取值范围为12.双曲线221169xy-=上有点12P F F ,,是双曲线的焦点,且12π3F P F ∠=,则12F PF △的面积是 三、解答题:13.已知动点P 与双曲线221x y -=的两个焦点12F F ,的距离之和为定值,且12cos F PF ∠的最小值为13-,求动点P 的轨迹方程.14.求过点(3-,,离心率为2e =的双曲线的标准方程.15.已知双曲线2222:1(00)x y C a b ab-=>>,,B 是右顶点,F 是右焦点,点A 在x 轴的正半轴上,且满足O A ,O B ,O F成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P .(1)求证:PA OP PA FP =;(2)若直线l 与双曲线C 的左、右两支分别相交于点D E ,,求双曲线C 的离心率e 的取值范围.双曲线训练题(二)参考答案CBACBB sec α 2± (](]202-- ∞,,13.解:221x y -= ,c ∴=.设1PF m =,2PF n =,则2m n a +=(常数0a >),所以点P 是以12F F ,为焦点,2a为长轴的椭圆,22a c >=a ∴>由余弦定理,有2221212cos 2m n F F F PF m n+-∠=2212()22m n m n F F m n+--=2241a m n-=-.222m n m n a +⎛⎫= ⎪⎝⎭≤,∴当且仅当m n =时,mn 取得最大值2a .此时12cos F PF ∠取得最小值22241a a--,由题意2224113a a--=-,解得23a =,222321b a c ∴=-=-=.P ∴点的轨迹方程为2213xy +=.14.解:(1)若焦点在x 轴上,设方程为22221x y ab-=,则22921ab-=,又2c e a====,得224a b =.由①、②,得21a =,214b =,得方程为2241x y -=.(2)若焦点在y 轴上,同理可得2172b =-不合题意.故所求双曲线标准方程为2241x y -=.15.(1)证明:直线l 为()ay x c b =--, ①在第一、三象限的渐近线by x a =, ②解①、②得垂足2a ab P c c ⎛⎫⎪⎝⎭,. 因为O A ,O B ,O F成等比数列, 所以可得点20a A c ⎛⎫⎪⎝⎭,. 所以0ab P A c ⎛⎫=- ⎪⎝⎭ ,,2a ab O P c c ⎛⎫= ⎪⎝⎭,,2b ab F P c c ⎛⎫=- ⎪⎝⎭ ,. 所以222a b PA O P c = ,222a bPA FP c=- . 因此PA OP PA FP =;(2)解:由222222()a y x c bb x a y a b ⎧=--⎪⎨⎪-=⎩,,得4442222222220a a a c b x cx a b b b b ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭ , 因为直线l 与双曲线C 的左、右两支分别相交于点D E ,,所以42222124220a c a b b x x a b b⎛⎫-+ ⎪⎝⎭=<-, 所以4220a b b->,即44b a >,22b a >,222c a a ->,222c a >,22e >,因此e >。

双曲线习题(含答案)

双曲线习题(含答案)

课后训练1.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有惟一的交点,则直线l 的斜率等于( ).A .1B .-1C .±1D .±2 2.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( ).A .B .C 2D 23.双曲线22163xy-=的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ).A .B .2C .3D .64.设F 1、F 2分别是双曲线2219yx -=的左、右焦点.若P 在双曲线上,且120PF PF ⋅=,则12PF PF +等于( ).A .B .C . D5.双曲线x 2-y 2=1左支上一点P(a ,b )到直线y =x a +b =________.6.过点A(6,1)作直线l 与双曲线221164xy-=相交于两点B 、C ,且A 为线段BC 的中点.则直线l 的方程为________.7.如图,已知F 1、F 2为双曲线22221x y ab-= (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P 且∠PF 1F 2=30°,求双曲线的渐近线方程.8.已知双曲线2213xymm-=的一个焦点为(2,0).(1)求双曲线的实轴长和虚轴长;(2)若已知M(4,0),点N(x ,y )是双曲线上的任意一点,求|MN|的最小值.设直线l :y =ax +1与双曲线C :3x 2-y 2=1相交于A ,B 两点,O 为坐标原点. (1)a 为何值时,以AB 为直径的圆过原点?(2)是否存在实数a ,使O A O B =且OA OB + =λ(2,1)?若存在,求a 的值,若不存在,说明理由.参考答案1. 答案:C解析:由题意知l 与渐近线平行,∴k l =b a±=±1.2. 答案:D解析:∵双曲线一条渐近线过点(4,-2),∴12b a =⇒2214b a=⇒22214c a a-=⇒2254c a=⇒2e =.3. 答案:A解析:双曲线的渐近线方程为2y x =±,圆心坐标为(3,0),由点到直线的距离公式和渐近线与圆相切可得,圆心到渐近线的距离等于r ,即r.4. 答案:C解析:由题意,可知双曲线两焦点的坐标分别为F 1(0)、F 20).设点P(x ,y ),则1P F =(x ,-y ),2PF =x ,-y ),∵120PF PF ⋅=,∴x 2+y 2-10=0,即x 2+y 2=10.∴||21PF PF +.5. 答案:12-解析:由题意知:双曲线的渐近线方程为y =±x ,又P(a ,b )在左支上,∴a <b .又P(a ,b )到直线y =x,=⇒|a -b |=2即a -b =-2.又P(a ,b )在双曲线上,∴a 2-b 2=1. ∴(a +b )(a -b )=1,∴a +b =12-.6. 答案:3x -2y -16=0解析:设B(x 1,y 1),C(x 2,y 2),则有2211222211641164x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩⇒12121212()()()()164x x x x y y y y +--+-=0又A 为BC 的中点,∴x 1+x 2=12,y 1+y 2=2 ∴123()4x x -=122y y -⇒k BC =121232y y x x -=-∴直线l 的方程为:y -1=32(x -6),即3x -2y -16=0.7. 解:设F 2(c ,0)(c >0),P(c ,y 0),则220221y c ab-=,解得20by a=±.∴|PF 2|=2ba.在Rt △PF 2F 1中,∠PF 1F 2=30°,则|F 1F 2||PF 2|,即2c2ba,将c2=a 2+b 2代入,解得b 2=2a 2,故b a =∴双曲线的渐近线方程为y =. 8. 解:(1)由题意可知,m +3m =4,∴m =1. ∴双曲线方程为2213yx -=.∴双曲线实轴长为2,虚轴长为(2)由2213yx -=,得y 2=3x 2-3,∴|MN|=.又∵x ≤-1或x ≥1, ∴当x =1时,|MN|取得最小值3.解:(1)由22131y ax x y =+⎧⎨-=⎩, 消去y 整理得(3-a 2)x 2-2ax -2=0. 依题意得3-a 2≠0,Δ=4a 2+8(3-a 2)>0, ∴a 2<6且a 2≠3,设A(x 1,y 1),B(x 2,y 2),由根与系数的关系 得x 1+x 2=223a a-,x 1x 2=223a -,又以AB 为直径的圆过原点, 即x 1·x 2+y 1·y 2=0, (a 2+1)x 1·x 2+a (x 1+x 2)+1=0, ∴a =±1.(2)假设存在实数a 满足条件. ∵1212y y a x x -=-,OA OB +=λ(2,1),∴(x 1+x 2,y 1+y 2)=λ(2,1),121212y y x x +=+.又O A O B = ,故22221122x y x y +=+,即(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0, 所以12121212y y x x x x y y -+=--+,∴a =-2.故存在实数a =-2满足题意.。

(完整版)双曲线基础练习题

(完整版)双曲线基础练习题

(完整版)双曲线基础练习题
1. 引言
该练题旨在帮助读者巩固并提高对双曲线的理解。

通过一系列的基础练题,读者将能够熟悉双曲线的基本特征、图像以及相关的数学概念。

2. 练题
2.1 双曲线图像的分析
给定下列双曲线的方程,请绘制出相应的图像,然后回答相关问题。

1. 双曲线方程:$y = \frac{1}{x}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。

- 该双曲线是否对称于原点?解释原因。

2. 双曲线方程:$y = \frac{2}{x+1}$
- 绘制出该双曲线的图像
- 该双曲线是否有渐近线?如果有,请确定其方程。

- 该双曲线是否对称于原点?解释原因。

2.2 数学概念的应用
回答下列问题,注意要用双曲线的相关概念来解释答案。

1. 为什么双曲线的渐近线可以帮助我们理解双曲线图像的特征?
2. 双曲线的离心率是什么?如何确定一个双曲线的离心率?
3. 通过改变双曲线方程中的参数,如何调整双曲线的形状?
3. 结论
通过完成上述练习题,读者应该能够更深入地理解双曲线的基
本概念和性质。

这些练习题不仅帮助读者熟悉双曲线的图像和方程,还能够加深对双曲线的数学概念的理解。

继续探索和练习双曲线,
将有助于读者在更高级的数学领域中应用这些概念。

双曲线的性质的练习题及答案

双曲线的性质的练习题及答案

双曲线的性质1、已知双曲线关于两坐标轴对称,且与圆1022=+y x 相交于点()1,3-P ,若此圆过点P 的切线与双曲线的渐近线平行,求此双曲线方程。

2、已知21F F 、是双曲线()0,012222>>=-b a b y a x 的两个焦点,PQ 是经过1F 且垂直于x轴的双曲线的弦,若︒=∠902Q PF ,求双曲线的离心率。

3、双曲线()0,112222>>=-b a b y a x 的焦距为c 2,直线l 过点()0,a 和()b ,0,且点()0,1到直线l 的距离与点()0,1-到直线l 的距离之和c S 54≥,求双曲线的离心率e 的取值范围。

4、如图,21F F 、分别是双曲线()0,012222>>=-b a b ya x的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且AB F 2∆是正三角形,求e 。

5、在双曲线12222=-b ya x中,设0>>a b 。

直线l 过点()0,a A 和()b B ,0,原点到直线l 的距离为c 43(c 为半焦距),求双曲线的离心率。

6、已知双曲线()0,012222>>=-b a b y a x 的离心率25=e ,点()1,0A 与双曲线上的点的最小距离是3052,求双曲线方程。

7、如图,已知双曲线C 的方程为()0,012222>>=-b a by ax ;离心率25=e ;顶点到渐近线的距离为552。

(1)、求双曲线C 的方程;(2)、如图,P 是双曲线C 上一点,B A 、两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若⎥⎦⎤⎢⎣⎡∈=2,31,λλPB AP ,求AOB S ∆的取值范围。

8、双曲线C 与椭圆14822=+y x 有相同的焦点,直线x y 3=为双曲线C 的一条渐近线。

(1)、求双曲线C 的方程;(2)、如图,过()4,0P 的直线l 交双曲线C 于B A 、两点, 交x 轴于Q 点(Q 点与双曲线C 的顶点不重合),当,21QB OA PQ λλ==且3821-=+λλ时,求Q 点坐标。

(完整word版)打印双曲线基础训练题(含答案),推荐文档

(完整word版)打印双曲线基础训练题(含答案),推荐文档

双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-,则n = A.2- B .4 C.6 D.8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是A.B. C. D. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=o,且12PF =,则e =A.B. 1C.D . 19. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D10. 设ABC △是等腰三角形,120ABC ∠=o ,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+ C .21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABCD .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =u u u r u u u u rgA .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =u u u r u u u u r g ,则12PF PF +=u u u r u u u u rA .B .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:x l 与x 轴的交点,若60,PMF ∠=o 45PFM ∠=o ,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是x=,离心率e =(2)中心在原点,离心率e =30.已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点(3P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6.C7.A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144x y-=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21.322.423.324.2π25.826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e=2214yx-=(2)中心在原点,离心率2e=顶点到渐近线的距离为5;2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点(3P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①Q直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(1k∴∈--U U,.②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x 12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。

2024学年高二数学重难点和易错点专项(双曲线的简单几何性质)练习(附答案)

2024学年高二数学重难点和易错点专项(双曲线的简单几何性质)练习(附答案)

2024学年高二数学重难点和易错点专项(双曲线的简单几何性质)练习重难点1已知方程求焦距、实轴、虚轴1.已知12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,则该双曲线的焦距为( ) A .1 B .2C .3D .42.双曲线221x y m-=的实轴长是虚轴长的3倍,则m 的值为( )A .9B .-9C .19D .19-3.已知双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,焦距为6,点M 在双曲线C 上,且MF AF ⊥,2MF AF =,则双曲线C 的实轴长为( )A .2B .4C .6D .84.如图,这是一个落地青花瓷,其外形被称为单叶双曲面,可以看成是双曲线C :22221x y a b -=的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为8cm ,瓶高等于双曲线C 的虚轴长,则该花瓶的瓶口直径为( )A.cm B .24cm C .32cmD .cm5.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的( )A .离心率相等B .焦距相等C .实轴长相等D .虚轴长相等6.等轴双曲线2221(0)x y a a -=>的焦距为 .7.已知椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,M 是1C 上任意一点,12MF F △的面积的1C 的焦距为2,则双曲线22222:1y x C a b -=的实轴长为 .重难点2已知方程求双曲线的渐近线8.双曲线()22102y x a a a-=≠的渐近线方程为( )A .2y x =±B .12y x =±C .y =D .2y x =±9.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e ,若点(与点(),2e 都在双曲线上,则该双曲线的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±10.双曲线22139x y -=的两条渐近线的夹角为( )A .30︒B .45︒C .60︒D .120︒11.在平面直角坐标系xOy 中,双曲线2221x y -=的渐近线方程为( )A .2y x =± B .y =C .y x =±D .4y x =±12.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点是F ,点F 到C 的渐近线的距离为d ,则d ( )A .与a 有关B .与a 无关C .与b 有关D .与b 无关13.双曲线2221(0)36x y a a -=>的渐近线方程为2y x =±,则=a .14.已知双曲线()22:10y C x n n-=>的一条渐近线为0nx =,则C 的离心率为 .重难点3由双曲线的几何性质求标准方程15.已知双曲线2222:1y x C a b-=的一条渐近线斜率为2-,实轴长为4,则C 的标准方程为( )A .2214x y -=B .221416y x -=C .2214y x -=D .221164y x -=16倍,且一个顶点的坐标为()2,0,则双曲线的标准方程为( )A .22144x y -=B .22144-=y xC .2214y x -=D .2214x y -=17.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦点到渐近线的距离为4,实轴长为6,则C 的方程为( )A .22149x y -=B .22194x y -=C .221169x y -=D .221916x y -=18.求双曲线以椭圆22185x y +=的焦点为顶点,且以椭圆的顶点为焦点,则双曲线的方程是 ( )A .22135x y -=B .22153x y -=C .22135y x -=D .22153y x -=19.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4.若点()P m 是双曲线C位于第一象限内的一点,则m =( )A .2B .1CD20.双曲线()2210,0x y m n m n -=>>的渐近线方程为y x =,实轴长为2,则m n -为( )A .14-B .1C .12D .12-21.如果中心在原点,对称轴在坐标轴上的等轴双曲线的一个焦点为()10,6F -,那么此双曲线的标准方程为 .重难点4求共渐近线的双曲线方程22.若双曲线C 与双曲线2211612x y -=有相同的渐近线,且经过点(,则双曲线C 的标准方程是 .23.与双曲线221169x y -=渐近线相同,且一个焦点坐标是()0,5的双曲线的标准方程是 .24.若双曲线C 与2219x y -=有共同渐近线,且与椭圆2214020x y +=有相同的焦点,则该双曲线C 的方程为 .25.双曲线22:12y C x -=,写出一个与双曲线C 有共同的渐近线但离心率不同的双曲线方程 .26.求与双曲线22143y x -=有共同的渐近线,且经过点()3,2M -的双曲线的标准方程.27.已知双曲线E 与双曲线221169x y -=共渐近线,且过点()3A -,若双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,试求双曲线M 的标准方程.28.已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1F ,)2F ,且过点)2P.(1)求双曲线C 的虚轴长;(2)求与双曲线C 有相同渐近线,且过点()3,6Q -的双曲线的标准方程.重难点5根据,,a b c 齐次式关系求渐近线方程29.过原点的直线l 与双曲线E :()222210,0x y a b a b-=>>交于A ,B 两点(点A 在第一象限),AC x ⊥交x轴于C 点,直线BC 交双曲线于点D ,且1AB AD k k ⋅=,则双曲线的渐近线方程为( )A .2y x =±B .12y x =±C .y =D .y x =30.双曲线2222:1(0,0)x y E a b a b-=>>,点A ,B 均在E 上,若四边形OACB 为平行四边形,且直线OC ,AB的斜率之积为3,则双曲线E 的渐近线的倾斜角为( )A .π3B .π3或2π3C .π6D .π6或5π631.已知双曲线2222:1(0,0)x y C a b a b-=>> )A .12y x =±B .2y x =±C .y =D .y =32.设12,F F 分别是双曲线22221x y a b-=()0,0a b >>的左、右焦点,若双曲线右支上存在一点P 满足212PF F F =,且124cos 5PF F ∠=,则双曲线的渐近线方程为( ) A .340x y ±= B .430x y ±= C .350x y ±= D .540x y ±=33.已知F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,过点F 作x 轴的垂线与双曲线及它的渐近线在第一象限内依次交于点A 和点B .若A B A F =,则双曲线C 的渐近线方程为( )A 0y ±=B .0x =C 0y ±=D .0x =34.如图,已知1F ,2F 为双曲线()222210,0x y a b a b-=>>的焦点,过2F 作垂直于x 轴的直线交双曲线于点P ,且1230PF F ∠=︒,则双曲线的渐近线方程为 .35.过双曲线2222:1-=y W x a b 的右焦点F 作x 轴的垂线,与两条渐近线的交点分别为A ,B ,若OAB 为等边三角形,则W 的渐近线方程为 ,W 的离心率为 .重难点6求双曲线的离心率36.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过点1F 作双曲线的一条渐近线的垂线,垂足为M .若2MF ,则双曲线C 的离心率为( )AB C .3 D37.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,平行于x 轴的直线l 分别交C 的渐近线和右支于点A ,B ,且90OAF ∠=︒,OBF OFB ∠=∠,则C 的离心率为( )A .2B C .32D38.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且121||2OP F F =,则双曲线的离心率为( )AB .2C D39.已知双曲线2222>:1(00,)>x y C a b a b -=的左右焦点12F F ,,点2F 关于一条渐近线的对称点在另一条渐近线上,则双曲线C 的离心率是( )AB C .2D .340.若0m >,双曲线1C :2212x y m -=与双曲线2C :2218x y m-=的离心率分别为1e ,2e ,则( )A .12e e 的最小值为94B .12e e 的最小值为32C .12e e 的最大值为94D .12e e 的最大值为3241.已知双曲线2222:1(0,0)y x C a b a b-=>>,过其上焦点F 的直线与圆222x y a +=相切于点A ,并与双曲线C的一条渐近线交于点(,B A B 不重合).若25FB FA =,则双曲线C 的离心率为 .42.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,过F 分别作C 的两条渐近线的平行线与C 交于A ,B 两点,若||AB =,则C 的离心率为43.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,左、右焦点分别为1F ,2F ,渐近线在第一象限的部分上存在一点P ,且1OP OF =,直线1PF ,则该双曲线的离心率为 .重难点7求双曲线离心率的取值范围44.过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴上的一个端点,且ADB ∠为钝角,则此双曲线离心率的取值范围为( )A .(B .C .)2D .)+∞45.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=- ,则双曲线离心率的最小值为( )AB C .2 D46.已知双曲线22221E y x a b-=:(0a >,0b >)的离心率为e ,若直线2y x =±与E 无公共点,则e 的取值范围是 .47.已知双曲线2222:1(0,0),x y C a b F a b-=>>为双曲线的右焦点,过点F 作渐近线的垂线()0MN MN k <,垂足为M ,交另一条渐近线于N ,若()2NM MF λλ=≥,则双曲线C 的离心率的取值范围是( )A .)+∞ B .(C .D .3⎡⎫+∞⎪⎢⎣⎭48.双曲线2221y x b-=的左焦点为F ,()0,A b -,M 为双曲线右支上一点,若存在M ,使得5FM AM +=,则双曲线离心率的取值范围为( )A .(B .(C .)+∞D .)+∞49.如图为陕西博物馆收藏的国宝——唐ꞏ金筐宝钿团化纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐朝金银细作的典范之作.该杯的主体部分可以近似看作是双曲线C :()222210,0x y a b a b -=>>的部分的旋转体.若该双曲线右支上存在点P ,使得直线P A ,PB (点A ,B 为双曲线的左、右顶点)的斜率之和为83,则该双曲线离心率的取值范围为 .50.已知双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点分别为1F ,2F ,若在C 上存在点P (不是顶点),使得21123PF F PF F ∠∠=,则C 的离心率的取值范围为 .重难点8根据离心率求参数51.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x 轴上,左右焦点分别为1F ,2F ,且它们在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若110PF =,双曲线的离心率的取值范围为(1,2),则该椭圆的焦距的取值范围是( )A .55,32⎛⎫ ⎪⎝⎭B .205,3⎛⎫ ⎪⎝⎭C .10,53⎛⎫ ⎪⎝⎭D .510,23⎛⎫ ⎪⎝⎭52.设双曲线2222:1y x C a b-=(0,0)a b >>的上、下焦点分别为12,F F P 是C 上一点,且12PF PF ⊥.若12PF F △的面积为4,则=a ( )A .8B .4C .2D .153.设k 为实数,已知双曲线2214x y k-=的离心率(2,3)e ∈,则k 的取值范围为54.已知1F ,2F 是双曲线C 的两个焦点,P 为C 上一点,且1260F PF ∠=︒,()121PF PF λλ=>,若C 的离2,则λ的值为 .55.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,P 是双曲线右支上一点,2120PF F F ⋅= ,O为坐标原点,过点O 作1F P 的垂线,垂足为点H ,若双曲线的离心率e =存在实数m 满足1OH m OF =,则m = .56.已知双曲线22:113x y C m m-=+-m 的取值范围是( )A .()1,1-B .()1,3-C .(),1-∞D .()0,157.点P 是双曲线C :()222210,0x y a b a b-=>>右支上一点,1F ,2F 分别是双曲线C 的左,右焦点,M 为12PF F △的内心,若双曲线C 的离心率32e =,且121MPF MPF MF F S S S λ=+ 2,则λ=( ) A .12 B .34C .1D .23重难点9双曲线的实际应用58.某中心接到其正东、正西、正北方向三个观测点的报告;正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚2s ,已知各观测点到该中心的距离是680m ,则该巨响发生在接报中心的( )处(假定当时声音传播的速度为340m/s ,相关各点均在同一平面上) A .西偏北45°方向,距离B .东偏南45°方向,距离C .西偏北45°方向,距离D .东偏南45°方向,距离59.如图,B 地在A 地的正东方向4km 处,C 地在B 地的北偏东30︒方向2km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km .现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、C 两地修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( )A .2)a 万元B .5a 万元C .1)a 万元D .3)a +万元60.如图是等轴双曲线形拱桥,现拱顶离水面5m ,水面宽30m AB =. 若水面下降5m ,则水面宽是 .(结果精确到0.1m )61.如图,一个光学装置由有公共焦点12,F F 的椭圆C 与双曲线C '构成,一光线从左焦点1F 发出,依次经过C '与C 的反射,又回到点1F .,历时m 秒;若将装置中的C '去掉,则该光线从点1F 发出,经过C 两次反射后又回到点1F 历时n 秒,若C '的离心率为C 的离心率的4倍,则mn= .62.如图1,北京冬奥会火种台以“承天载物”为设计理念,创意灵感来自中国传统青铜礼器一尊的曲线造型,基座沉稳,象征“地载万物”,顶部舒展开阔,寓意迎接纯洁的奥林匹克火种.如图2,一种尊的外形近似为某双曲线的一部分绕着虚轴旋转所成的曲面,尊高63cm ,上口直径为40cm ,底部直径为26cm ,最小直径为24cm ,则该双曲线的渐近线与实轴所成锐角的正切值为 .63.(多选)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:1F ,2F 是双曲线的左、右焦点,从2F 发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过1F ;当P 异于双曲线顶点时,双曲线在点P 处的切线平分12F PF ∠.若双曲线C 的方程为221916x y -=,则下列结论正确的是( )A .射线n 所在直线的斜率为k ,则44,33k ⎛⎫∈- ⎪⎝⎭B .当m n ⊥时,1232PF PF ⋅=C .当n 过点()7,5Q 时,光线由2F 到P 再到Q 所经过的路程为13D .若点T 坐标为()1,0,直线PT 与C 相切,则212PF =64.如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:22221x ya b-=(0a>,0b>)的左、右焦点分别为1F,2F,从2F发出的光线经过图2中的A,B两点反射后,分别经过点C和D,且5tan12CAB∠=-,AB BD⊥,则双曲线E的离心率为.参考答案重难点1已知方程求焦距、实轴、虚轴1.已知12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,则该双曲线的焦距为( )A .1B .2C .3D .4【答案】D【详细分析】根据题意列出方程组222243c a c a ⎧=⎨=+⎩进行求解即可. 【答案详解】因为12,F F 是双曲线2221(0)3y x a a-=>的两个焦点,若双曲线的左、右顶点和原点把线段12F F 四等分,所以24c a =,即2c a =,即224c a =, 又因为223c a =+,解得2214a c ⎧=⎨=⎩,所以c =2,所以该双曲线的焦距为2224c =⨯=.故选:D2.双曲线221x y m-=的实轴长是虚轴长的3倍,则m 的值为( )A .9B .-9C .19D .19-【答案】C【详细分析】根据双曲线的方程,求得1,a b ==,结合题意,列出方程,即可求解.【答案详解】由双曲线221x y m-=,可得0m >,且1,a b ==,因为双曲线的实轴长是虚轴长的3倍,可得3a b =,即1=19m =. 故选:C.3.已知双曲线C :()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,焦距为6,点M 在双曲线C 上,且MF AF ⊥,2MF AF =,则双曲线C 的实轴长为( )A .2B .4C .6D .8【答案】A【详细分析】运用代入法,结合已知等式进行求解即可.【答案详解】把x c =代入22221x y a b -=中,得2b y a =±,即2bMF a=,因为AF a c =+,2MF AF =, 所以()22b a c a=+⇒22222c a ac a -=+,又3c =,所以2230a a +-=,解得1a =,3a =-舍去,则22a =. 故选:A4.如图,这是一个落地青花瓷,其外形被称为单叶双曲面,可以看成是双曲线C :22221x y a b -=的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为8cm ,瓶高等于双曲线C 的虚轴长,则该花瓶的瓶口直径为( )A .cmB .24cmC .32cmD .cm【答案】D【详细分析】求出4a =,设出(),M r b ,代入双曲线方程,求出r =. 【答案详解】因为该花瓶横截面圆的最小直径为8cm ,所以4a =.设M 是双曲线C 与瓶口截面的一个交点,该花瓶的瓶口半径为r ,则(),M r b ,所以222214r b b -=,解得r =2r =.故选:D5.若实数m 满足05m <<,则曲线221155x y m -=-与曲线221155x y m -=-的( )A .离心率相等B .焦距相等C .实轴长相等D .虚轴长相等【答案】B【详细分析】根据双曲线的性质逐一详细分析判断即可. 【答案详解】因为05m <<,所以50,150m m ->->,所以曲线221155x y m -=-与曲线221155x y m -=-都是焦点在x 轴上的双曲线,15520155m m m +-=-=-+,所以两曲线的焦点和焦距都相同,故B 正确; 因为20201515m m m--≠-,所以离心率不相等,故A 错误; 因为1515m ≠-,所以实轴长不相等,故C 错误; 因为55m -≠,所以虚轴长不相等,故D 错误. 故选:B.6.等轴双曲线2221(0)x y a a-=>的焦距为 .【答案】【详细分析】根据等轴双曲线定义得到221a b ==,进而求出c =.【答案详解】由题意得,221a b ==,故2222c a b =+=,故c =2c =.故答案为:7.已知椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,M 是1C 上任意一点,12MF F △的面积的1C 的焦距为2,则双曲线22222:1y x C a b-=的实轴长为 .【答案】4【详细分析】根据椭圆焦点三角形的性质即可列方程求解2,a b =⎧⎪⎨=⎪⎩,进而可求解.【答案详解】由于12MF F △的面积为122M c y cb ⨯⨯≤,由题意知22222,,c b c a b c ⎧⋅=⎪=⎨⎪=+⎩所以2,a b =⎧⎪⎨=⎪⎩故双曲线2C 的方程为22143y x -=,则2C 的实轴长为4.故答案为:4重难点2已知方程求双曲线的渐近线8.双曲线()22102y x a a a-=≠的渐近线方程为( )A .2y x =±B .12y x =±C.y =D.2y x =±【答案】C【详细分析】利用双曲线渐近线方程定义计算即可.【答案详解】由题意可得:双曲线()22102y x a a a -=≠渐近线斜率为k ==则其渐近线方程为:y =. 故选:C9.已知双曲线22221(0,0)x y a b a b-=>>的离心率为e,若点(与点(),2e 都在双曲线上,则该双曲线的渐近线方程为( ) A .y x =± B.y = C.y =D .2y x =±【答案】B【详细分析】根据给定条件,列出方程组,结合离心率的意义求出,a b 作答.【答案详解】由点,2)e 在双曲线22221x y a b -=上,得2222241461e a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,则222420e a b --=,即2222214b e e a==--,整理得42560e e -+=,解得22e =或23e =, 当22e =时,22a b =,此时方程22461a b -=无解, 当23e =时,222b a =,而22461a b -=,解得1,a b ==,所以该双曲线的渐近线方程为y =. 故选:B10.双曲线22139x y -=的两条渐近线的夹角为( )A .30︒B .45︒C .60︒D .120︒【答案】C【详细分析】根据题意求得双曲线的渐近线方程,进而求得其夹角.【答案详解】由双曲线22139x y -=,可得3a b =,所以双曲线的渐近线的方程为by x a=±=,所以两渐近线y =的夹角为60︒. 故选:C.11.在平面直角坐标系xOy 中,双曲线2221x y -=的渐近线方程为( )A.2y x =± B.y = C .y x =±D.4y x =±【答案】B【详细分析】化简双曲线的方程为标准方程,求得,a b 的值,结合双曲线的几何性质,即可求解. 【答案详解】由双曲线2221x y -=,可得其标准方程为22112x y -=,所以,12a b ==,则双曲线的渐近线方程为by x a=±=. 故选:B.12.已知双曲线()2222:10,0x y C a b a b-=>>的一个焦点是F ,点F 到C 的渐近线的距离为d ,则d ( )A .与a 有关B .与a 无关C .与b 有关D .与b 无关【答案】BC【详细分析】根据双曲线标准方程可求得焦点坐标,再利用点到直线距离即可求出d b =,便可得出结论. 【答案详解】设双曲线C 的焦距为2c ,不妨取右焦点F 的坐标为(),0c ,如下图所示:双曲线C 的渐近线方程是by x a=±,即bx ay ±=0,所以===bcd b c, 所以d 与a 无关,与b 有关. 故选:BC.13.双曲线2221(0)36x y a a -=>的渐近线方程为2y x =±,则=a .【答案】3【详细分析】根据双曲线的渐近线方程即可求解.【答案详解】2221(0)36x y a a -=>的渐近线方程为6y x a =±,所以623a a =⇒=,故答案为:314.已知双曲线()22:10y C x n n-=>的一条渐近线为0nx =,则C 的离心率为.2n =⇒=,进而求出双曲线的离心率.【答案详解】双曲线的一条渐近线方程为0nx =,即y =,2n =⇒=,故双曲线22:12y C x -=,所以双曲线的离心率为1e ==重难点3由双曲线的几何性质求标准方程15.已知双曲线2222:1y x C a b-=的一条渐近线斜率为2-,实轴长为4,则C 的标准方程为( )A .2214x y -=B .221416y x -=C .2214y x -=D .221164y x -=【答案】C【详细分析】根据双曲线的基本量关系,结合渐近线方程求解即可.【答案详解】由题意双曲线2222:1y x C a b-=的焦点在y 轴上,则24a =,2a =,又2a b -=-,则1b =,故C 的标准方程为2214y x -=.故选:C16倍,且一个顶点的坐标为()2,0,则双曲线的标准方程为( )A .22144x y -=B .22144-=y xC .2214y x -=D .2214x y -=【答案】A【详细分析】根据条件列关于a ,b ,c 的方程组求解即可.【答案详解】设双曲线的标准方程为22221x y a b-=,由已知得222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得22a b =⎧⎨=⎩, 所以双曲线的标准方程为22144x y -=故选:A.17.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦点到渐近线的距离为4,实轴长为6,则C 的方程为( )A .22149x y -=B .22194x y -=C .221169x y -=D .221916x y -=【答案】D【详细分析】由距离公式得出4b =,进而由双曲线的性质得出方程. 【答案详解】右焦点2(,0)F c 到渐近线0bx ay -=4b ==,因为实轴长为26a =,所以3a =,即C 的方程为221916x y -=.故选:D18.求双曲线以椭圆22185x y +=的焦点为顶点,且以椭圆的顶点为焦点,则双曲线的方程是 ( )A .22135x y -=B .22153x y -=C .22135y x -=D .22153y x -=【答案】A【详细分析】根据椭圆22185x y +=方程,可得出其焦点坐标、顶点坐标,进而得到双曲线的焦点坐标、顶点坐标,即可得到双曲线的方程.【答案详解】在椭圆22185x y +=中,c =,椭圆的焦点坐标为,(,左右顶点坐标分别为,()-,则双曲线的顶点坐标为,(,焦点坐标为,()-,且双曲线的焦点在x 轴上,所以a =c =222835b c a =-=-=,所以双曲线的方程为:22135x y -=.故选:A.19.已知双曲线C :22221x y a b-=(0a >,0b >)的实轴长为4.若点()P m 是双曲线C位于第一象限内的一点,则m =( )A.2 B .1CD 【答案】B【详细分析】根据已知条件求得,a b ,从而求得双曲线的方程,代入P 点坐标,由此求得m 的值. 【答案详解】法一:双曲线的几何性质由题知22224,2,a c e abc a =⎧⎪⎪==⎨⎪⎪=-⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以双曲线C :2214x y -=.又点()P m 是双曲线C 位于第一象限内的一点, 所以2814m -=(0m >),解得1m =. 法二:由题知24a c e a =⎧⎪⎨===⎪⎩21a b =⎧⎨=⎩, 所以双曲线C :2214x y -=.又点()P m 是双曲线C 位于第一象限内的一点, 所以2814m -=(0m >),解得1m =.故选:B20.双曲线()2210,0x y m n m n -=>>的渐近线方程为2y x =±,实轴长为2,则m n -为( )A .14- B.1C .12 D.1【答案】A【详细分析】根据渐近线方程、实轴长求得,m n ,由此求得m n -.【答案详解】依题意222222a m ab n a m ⎧⎪⎪=⎪=⎨⎪⎪==⎪⎝⎭⎩,解得511,,44m n m n ==-=-. 故选:A21.如果中心在原点,对称轴在坐标轴上的等轴双曲线的一个焦点为()10,6F -,那么此双曲线的标准方程为 .【答案】2211818y x -=【详细分析】根据焦点坐标及题意,设方程为22221(0)y x a a a-=>,根据焦点坐标,可求得2a ,即可得答案.【答案详解】因为一个焦点是()10,6F -,所以6c =,且焦点在y 轴,所以设等轴双曲线方程为22221(0)y x a a a-=>,所以22236c a a =+=,解得218a =,所以双曲线标准方程为2211818y x -=,故答案为:2211818y x -=.重难点4求共渐近线的双曲线方程22.若双曲线C 与双曲线2211612x y -=有相同的渐近线,且经过点(,则双曲线C 的标准方程是 . 【答案】221912y x -=【详细分析】设双曲线C 的方程为221612x y λ-=,根据双曲线C 经过的点求得λ,从而求得双曲线C 的标准方程.【答案详解】由双曲线C 与双曲线2211612x y -=有相同的渐近线,可设双曲线C 的方程为221612x y λ-=,又C 过点(,所以34λ=-,22316124x y -=-,整理得双曲线C 的标准方程是221912y x -=.故答案为:221912y x -=23.与双曲线221169x y -=渐近线相同,且一个焦点坐标是()0,5的双曲线的标准方程是 .【答案】221916y x -=【详细分析】设所求双曲线的方程为22221y x a b -=,由题意有2225a b +=且34a b =,解出22,a b 即可.【答案详解】双曲线221169x y -=的渐近线方程为34y x =?,由焦点坐标是()0,5,可设所求双曲线的方程为22221y x a b-=(0,0)a b >>,得2225a b +=,双曲线渐近线的方程为a y x b =±,由题意有34a b =, 解得29a =,216b =,所以双曲线的方程为221916y x -=.故答案为:221916y x -=.24.若双曲线C 与2219x y -=有共同渐近线,且与椭圆2214020x y +=有相同的焦点,则该双曲线C 的方程为 . 【答案】221182x y -=【详细分析】根据双曲线与椭圆的标准方程,求得渐近线方程与焦点坐标,由双曲线标准方程,建立方程,可得答案.【答案详解】由方程2219x y -=,则其渐近线方程为13y x =±,由椭圆2214020x y +=,则其焦点为()±,由题意可知,双曲线C 的标准方程设为22221x y a b -=,则221320b a a b ⎧=⎪⎨⎪+=⎩,解得22182a b ⎧=⎨=⎩,则双曲线C 的标准方程为221182x y -=,故答案为:221182x y -=.25.双曲线22:12y C x -=,写出一个与双曲线C 有共同的渐近线但离心率不同的双曲线方程 .【答案】2212y x -=(答案不唯一)【详细分析】根据有共同渐近线的双曲线方程的性质进行求解即可.【答案详解】与双曲线C 有共同的渐近线的双曲线方程可设为222y x λ-=,当1λ=-时,得到双曲线方程为2212y x -=,显然该双曲线与双曲线C 有共同的渐近线但离心率不同,故答案为:2212y x -=26.求与双曲线22143y x -=有共同的渐近线,且经过点()3,2M -的双曲线的标准方程.【答案】22168x y -=【详细分析】利用待定系数法即可得到所求双曲线的标准方程.【答案详解】与双曲线22143y x -=有相同的渐近线的双曲线可设为22(0)43y x λλ-=≠又所求双曲线过点()3,2M -,则()222343λ--=,则2λ=- 则所求双曲线的方程为22243y x -=-,即22168x y -=.27.已知双曲线E 与双曲线221169x y -=共渐近线,且过点()3A -,若双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,试求双曲线M 的标准方程.【答案】221944x y -= 【详细分析】设双曲线E 的方程为()220169-=≠x y t t ,代入点A 可得双曲线E 的标准方程,从而得到双曲线双曲线M 的标准方程.【答案详解】由题意,设双曲线E 的方程为()220169-=≠x y t t ,∵点()3A -在双曲线E上,∴(()223169--=t ,∴14t =-,∴双曲线E 的标准方程为221944y x -=, 又双曲线M 以双曲线E 的实轴为虚轴,虚轴为实轴,∴双曲线M 的标准方程为221944x y -=. 28.已知双曲线()2222:10,0x y C a b a b-=>>的两个焦点分别为()1F,)2F,且过点)2P.(1)求双曲线C 的虚轴长;(2)求与双曲线C 有相同渐近线,且过点()3,6Q -的双曲线的标准方程. 【答案】(1)(2)221189y x -= 【详细分析】(1)由双曲线的定义可知,12||||2PF PF a -=,又222+=a b c,求得b =即可.(2)设与双曲线C 有相同渐近线的双曲线的方程为22(0)2y x λλ-=≠,将点()3,6Q -的坐标代入上述方程得λ即可.【答案详解】(1)由题意,易知22PF =,12F F =212PF F F ⊥.在21Rt PF F △中,14PF ==由双曲线的定义可知,122PF PF a -=,22a =,即1a =. ∵双曲线C的两个焦点分别为()1F,)2F,∴c =又∵222+=a b c,∴b = 故双曲线C的虚轴长为(2)由(1)知双曲线C 的方程为2212y x -=.设与双曲线C 有相同渐近线的双曲线的方程为()2202y x λλ-=≠将点()3,6Q -的坐标代入上述方程,得9λ=-故所求双曲线的标准方程为221189y x -=重难点5根据,,a b c 齐次式关系求渐近线方程29.过原点的直线l 与双曲线E :()222210,0x y a b a b-=>>交于A ,B 两点(点A 在第一象限),AC x ⊥交x轴于C 点,直线BC 交双曲线于点D ,且1AB AD k k ⋅=,则双曲线的渐近线方程为( )A .2y x =±B .12y x =±C.y = D.2y x =±【答案】D【详细分析】由题可设,000011(,),(,),(,)A x y B x y D x y --,0(,0)C x ,分别表示出,,AB BC AD k k k ,逐步转化,即可求得本题答案.【答案详解】因为,A B 直线过原点,所以,A B 关于原点对称,设000011(,),(,),(,)A x y B x y D x y --, 因为AC 与x 轴垂直,所以0(,0)C x , 设123,,AB BC AD k k k k k k ===, 则00121001,22y y k k k x x ===, 而222222210101012232222222101010101(1)(1)y y y y y y x x b k k b b x x x x x x x x a a a⎡⎤+--⋅=⋅==---=⎢⎥+---⎣⎦所以,213232221b k k k k a⋅=⋅==,所以,222,a b a ==所以渐近线方程为y =. 故选:D30.双曲线2222:1(0,0)x y E a b a b -=>>,点A ,B 均在E 上,若四边形OACB 为平行四边形,且直线OC ,AB的斜率之积为3,则双曲线E 的渐近线的倾斜角为( )A .π3B .π3或2π3 C .π6D .π6或5π6【答案】B【详细分析】利用点差法,结合双曲线渐近线方程、平行四边形的性质、中点坐标公式进行求解即可.【答案详解】设()()1122,,,A x y B x y ,显然线段AB 的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,因为四边形OACB 为平行四边形,所以线段OC 的中点坐标和线段AB 的中点坐标相同,即为1212,22x x y y ++⎛⎫⎪⎝⎭,因此C 点坐标为()1212,x x y y ++, 因为直线OC ,AB 的斜率之积为3,所以221212122212121233y y y y y y x x x x x x +--⋅=⇒=+--, 因为点A ,B 均在E 上,所以2222112222221,1x y x y a b a b-=-=,两式相减得:22212222123y y b bx x a a-==⇒=- 所以两条渐近线方程的倾斜角为π3或2π3, 故选:B【点睛】关键点睛:本题的关键是应用点差法和平行四边形的性质.31.已知双曲线2222:1(0,0)x y C a b a b-=>> )A .12y x =±B .2y x =±C .y =D .3y x =±【答案】B【详细分析】由离心率求得ba即得渐近线方程.【答案详解】c e a ==,222225c a b a a +==,2b a =, 故选:B32.设12,F F 分别是双曲线22221x y a b -=()0,0a b >>的左、右焦点,若双曲线右支上存在一点P 满足212PF F F =,且124cos 5PF F ∠=,则双曲线的渐近线方程为( ) A .340x y ±= B .430x y ±= C .350x y ±=D .540x y ±=【答案】B【详细分析】结合双曲线的定义,以及条件,得到425a c c +=,再根据222c ab =+,即可求解双曲线渐近线的斜率.【答案详解】作21F Q PF ⊥于点Q ,如图所示,因为122F F PF =,所以Q 为1PF 的中点,由双曲线的定义知|122PF PF a -=,所以122PF a c =+,故1FQ a c =+,因为124cos 5PF F ∠=,所以11212cos FQ PF F F F =∠,即425a c c +=,得35c a =,所以5a =,得43b a =,故双曲线的渐近线方程为43y x =±,即430x y ±=. 故选:B33.已知F 为双曲线C :22221x y a b -=(0a >,0b >)的右焦点,过点F 作x 轴的垂线与双曲线及它的渐近线在第一象限内依次交于点A 和点B .若A B A F =,则双曲线C 的渐近线方程为( )A 0y ±=B .0x =C 0y ±=D .0x =【答案】B【详细分析】分别求出点A,B 的坐标,利用线段相等建立方程求出ba即可得解. 【答案详解】由题意得(),0F c ,双曲线C 的渐近线方程为by x a=±.设点A ,B 的纵坐标依次为1y ,2y ,因为221221c y a b -=,所以21b y a =,所以2b AF a =.因为2bc y a=,所以bcBF a =.因为A B A F =,所以22bc ba a=,得2c b =,所以a =,故b a =C 的渐近线方程为y x =,即0x =, 故选:B .34.如图,已知1F ,2F 为双曲线()222210,0x y a b a b-=>>的焦点,过2F 作垂直于x 轴的直线交双曲线于点P ,且1230PF F ∠=︒,则双曲线的渐近线方程为 .【答案】y =【详细分析】利用点在双曲线上及直角三角形中30︒所对的直角边等于斜边的一半,结合双曲线的定义和渐近线方程即可求解.【答案详解】设()()2,00F c c >,()0,P c y ,则220221y c a b -=,解得20b y a=±,∴22b PF a=.在21Rt PF F △中,1230PF F ∠=︒,则122PF PF =①. 由双曲线的定义,得122PF PF a -=②. 由①②得22PF a =.∵22b PF a =,∴22b a a=,即222b a =.∴ba=∴双曲线的渐近线方程为y =.故答案为:y =.35.过双曲线2222:1-=y W x a b 的右焦点F 作x 轴的垂线,与两条渐近线的交点分别为A ,B ,若OAB 为等边三角形,则W 的渐近线方程为 ,W 的离心率为 .【答案】 3y x =±3【详细分析】根据图形则得到tan 30b a== ,再利用离心率公式即可. 【答案详解】双曲线渐近线方程为by x a =±,因为OAB 是等边三角形,则tan 30b a== y =,即3e ===,故答案为:3y x =±重难点6求双曲线的离心率36.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过点1F 作双曲线的一条渐近线的垂线,垂足为M .若2MF ,则双曲线C 的离心率为( )AB C .3 D 【答案】A【详细分析】根据题意,先求得焦点1F 到渐近线的距离为b ,在直角1MOF △中,求得1cos bOF M c∠=,再在12MF F △中,利用余弦定理求得222343b c b =-,结合222b c a =-和离心率的定义,即可求解.【答案详解】由双曲线2222:1(0,0)x y C a b a b -=>>,可得1(,0)F c -,渐近线方程为b y x a=±,如图所示,则焦点1F 到渐近线by x a =-的距离为1MF b ==, 在直角1MOF △中,可得111cos MF bOF M OF c∠==, 在12MF F △中,由余弦定理得222212112112cos MF F F MF F F MF OF M =+-∠,即22222342243bb c b cb c b c=+-⨯⨯=-,所以2223c b =, 又由222b c a =-,所以22223()c c a =-,可得223c a =,所以双曲线的离心率为==ce a. 故选:A.。

双曲线练习题(含标准答案)

双曲线练习题(含标准答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 []14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1D .x 2-y 24=17.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 11.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1.5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0.6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1.7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。

双曲线试题及答案

双曲线试题及答案

双曲线试题及答案1. 已知双曲线的方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中 \(a = 3\),\(b = 4\),求双曲线的焦点坐标。

答案:双曲线的焦点坐标为 \((\pm\sqrt{a^2 + b^2}, 0)\),代入 \(a = 3\) 和 \(b = 4\),得到焦点坐标为 \((\pm 5, 0)\)。

2. 双曲线 \(\frac{x^2}{9} - \frac{y^2}{16} = 1\) 的渐近线方程是什么?答案:双曲线的渐近线方程为 \(y = \pm\frac{b}{a}x\),代入\(a = 3\) 和 \(b = 4\),得到渐近线方程为 \(y =\pm\frac{4}{3}x\)。

3. 如果一个双曲线的中心在原点,且通过点 \((2, 3)\),并且其一条渐近线方程为 \(y = 2x\),求双曲线的方程。

答案:设双曲线方程为 \(\frac{x^2}{a^2} - \frac{y^2}{b^2}= 1\),由于渐近线方程为 \(y = 2x\),可知 \(\frac{b}{a} = 2\)。

将点 \((2, 3)\) 代入方程得 \(\frac{4}{a^2} - \frac{9}{b^2} =1\)。

联立 \(b = 2a\) 解得 \(a = 1\),\(b = 2\),因此双曲线方程为 \(x^2 - \frac{y^2}{4} = 1\)。

4. 已知双曲线 \(\frac{x^2}{16} - \frac{y^2}{9} = 1\) 与直线\(y = mx + 1\) 相交,求直线的斜率 \(m\) 的取值范围。

答案:将直线方程代入双曲线方程,得到 \(\frac{x^2}{16} -\frac{(mx + 1)^2}{9} = 1\)。

整理得 \((9 - 16m^2)x^2 - 32mx -70 = 0\)。

(完整版)打印双曲线基础训练题(含答案),推荐文档

(完整版)打印双曲线基础训练题(含答案),推荐文档

a2 k b2 k
a2 b2
A.相同的虚轴 B.相同的实轴 C.相同的渐近线 D. 相同的焦点
x2
7.过双曲线
16
y2 9
1 左焦点 F1 的弦 AB 长为 6,则 ABF2 (F2 为右焦点)的周长
是( A )
A.28
B.22
C.14
D.12
8.双曲线方程为 x 2 y 2 1,那么 k 的取值范围是 | k | 2 5 k
(D )
A.k>5
传承文明
B.2<k<5 C.-2<k<2 D.-2<k<2 或 k>5
爱心教育
1
用思维去演绎你的学海生涯
传文教育高中部数学专用资料
版权所有 翻印必究 1 5 3 9 3 6 5 6 8 0 5
9.双曲线的渐近线方程是 y=±2x,那么双曲线方程是
(D)
A.x2-4y2=1 B.x2-4y2=1
一个顶点到它的一条渐近线的距离是
( D)
a
A.
c
b
B.
c
a
C.
e
b
D.
e
13.双曲线 x 2 y 2 1(n 1) 的两焦点为 F1,F2,P 在双曲线上,且满足 n
|PF1|+|PF2|= 2 n 2, 则△PF1F2 的面积为
(B)
1
A.
B.1
C.2
D.4
2
x2
14.二次曲线
y2
1, m [2,1] 时,该曲线的离心率 e 的取值范围是
传文教育高中部数学专用资料
版权所有 翻印必究 1 5 3 9 3 6 5 6 8 0 5
双曲线基础训练题(一)
1.到两定点 F1 3,0、 F2 3,0的距离之差的绝对值等于 6 的点 M 的轨迹

双曲线基础练习题(后附答案)

双曲线基础练习题(后附答案)

双曲线基础练习题(后附答案)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0)5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C. 191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y xB .122=+-y xC .122=-y x D. 1222=+-y x 8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( ) A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________.14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________. 16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题 1. 求以椭圆18522=+y x 的焦点为顶点,且以椭圆的顶点为焦点的双曲线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线
1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )
A .椭圆
B .线段
C .双曲线
D .两条射线
2.方程1112
2=-++k y k x 表示双曲线,则k 的取值范围是
( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k
3. 双曲线14122
2
22=--+m y m x 的焦距是
( ) A .4 B .22 C .8 D .与m 有关
4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2
=mn 所表示的 曲线可能是 ( )
5.焦点为()6,0,且与双曲线12
2=-y 有相同的渐近线的双曲线方程是( )
A .1241222=-y x
B .1241222=-x y
C .1122422=-x y
D .112
242
2=-y x
6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线122
22=-b
y a x 有 ( )
A .相同的虚轴
B .相同的实轴
C .相同的渐近线
D . 相同的焦点
7.过双曲线19
162
2=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A ) A .28 B .22
C .14
D .12 8.双曲线方程为
152||2
2=-+-k
y k x ,那么k 的取值范围是 ( )
A .k >5
B .2<k <5
C .-2<k <2
D .-2<k <2或k >5 9.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( )
A .x 2-4y 2=1
B .x 2-4y 2=1
C .4x 2-y 2=-1
D .4x 2-y 2=1
10.设P 是双曲线192
22=-y a
x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( )
A .1或5
B . 6
C . 7
D . 9
11.已知双曲线22
221,(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,
且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( )
A .
4
3
B .
5
3
C .2
D .
73
12.设c 、e 分别是双曲线的半焦距和离心率,则双曲线122
22=-b
y a x (a>0, b>0)的一个顶点到
它的一条渐近线的距离是 ( )
A .
c
a
B .
c b
C .
e
a D .
e
b 13.双曲线)1(122
>=-n y n
x 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( )
A .
2
1 B .1 C .
2 D .4
14.二次曲线142
2=+m
y x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是 ( )
A .]2
3,22[
B .]2
5,23[
C .]2
6,25[
D .]2
6,23[
15.直线1+=x y 与双曲线13
22
2=-y x 相交于B A ,两点,则AB =_____
16.设双曲线122
22=-b
y a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB
为直径的圆恰好过F 点,则离心率为
17.双曲线12
2=-by ax 的离心率为5,则a :b=
18.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离
心率.
19.(本题12分)已知双曲线122
22=-b
y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的
距离是
.2
3
求双曲线的方程;
一, 选择题
DDCCB DADDC BDBC 二,填空题, 15.6
4
16.2 17.4或4
1
18.[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,
0),0>∴λ
双曲线方程化为:25
481616
9
116
9
222=⇒=+⇒=-λλλλ
λ
y x ,
∴双曲线方程为:
125
1442525622=-y x ∴455
164=
=
e 19.[解析]∵(1)
,3
3
2=a c 原点到直线AB :1=-b
y a x 的距离
.
3,1.23
2
2=
=∴==+=
a b c ab b a ab d .
故所求双曲线方程为 .
13
22
=-y x。

相关文档
最新文档