大学物理下答案习题14
大学物理第十四章波动光学课后习题答案及复习内容
第十四章波动光学一、基本要求1. 掌握光程的概念以及光程差和相位差的关系。
2. 理解获得相干光的方法,能分析确定杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置,了解迈克尔逊干涉仪的工作原理。
3. 了解惠更斯-菲涅耳原理; 掌握用半波带法分析单缝夫琅和费衍射条纹的产生及其明暗纹位置的计算,会分析缝宽及波长对衍射条纹分布的影响。
4. 掌握光栅衍射公式。
会确定光栅衍射谱线的位置。
会分析光栅常数及波长对光栅衍射谱线分布的影响。
5. 了解自然光和线偏振光。
理解布儒斯特定律和马吕斯定律。
理解线偏振光的获得方法和检验方法。
6. 了解双折射现象。
二、基本内容1. 相干光及其获得方法只有两列光波的振动频率相同、振动方向相同、振动相位差恒定时才会发生干涉加强或减弱的现象,满足上述三个条件的两束光称为相干光。
相应的光源称为相干光源。
获得相干光的基本方法有两种:(1)分波振面法(如杨氏双缝干涉、洛埃镜、菲涅耳双面镜和菲涅耳双棱镜等);(2)分振幅法(如薄膜干涉、劈尖干涉、牛顿环干涉和迈克耳逊干涉仪等)。
2. 光程和光程差(1)光程把光在折射率为n的媒质中通过的几何路程r折合成光在真空x中传播的几何路程x,称x为光程。
nr(2)光程差在处处采用了光程概念以后就可以把由相位差决定的干涉加强,减弱等情况用光程差来表示,为计算带来方便。
即当两光源的振动相位相同时,两列光波在相遇点引起的振动的位相差πλδϕ2⨯=∆ (其中λ为真空中波长,δ为两列光波光程差) 3. 半波损失光由光疏媒质(即折射率相对小的媒质)射到光密媒质发生反射时,反射光的相位较之入射光的相位发生了π的突变,这一变化导致了反射光的光程在反射过程中附加了半个波长,通常称为“半波损失”。
4. 杨氏双缝干涉经杨氏双缝的两束相干光在某点产生干涉时有两种极端情况:(1)位相差为0或2π的整数倍,合成振动最强;(2)位相差π的奇数倍,合成振动最弱或为0。
其对应的光程差()⎪⎩⎪⎨⎧-±±=212λλδk k ()()最弱最强 ,2,1,2,1,0==k k 杨氏的双缝干涉明、暗条纹中心位置:dD k x λ±= ),2,1,0( =k 亮条纹 d D k x 2)12(λ-±= ),2,1( =k 暗条纹 相邻明纹或相邻暗纹间距:λd D x =∆ (D 是双缝到屏的距离,d 为双缝间距) 5. 薄膜干涉以21n n <为例,此时反射光要计“半波损失”, 透射光不计“半波损失”。
大学物理第十四章相对论习题解答
§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。
14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。
分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。
14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。
令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。
求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。
根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。
本题主要考察两个惯性系的选取,并注意速度的方向(正负)。
本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。
那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。
14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。
昆明理工大学物理习题集(下)第十四章元答案
S 1S 2 第十四章 光学一、选择题1. 有三种装置(1)完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2)同一盏钠光灯,用黑纸盖住其中部,将钠光灯分成上下两部分,同时照射到屏上;(3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行,且间距很小的两条狭缝,此二亮缝的光照射到屏上。
以上三种装置,能在屏上形成稳定干涉花样的是:[ A ](A )装置(3) (B )装置(2) (C )装置(1)、(3) (D )装置(2)(3)2. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为:[ A ](A )1.5λ (B )1.5λ/n (C )1.5n λ (D )3λ3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中:[ C ](A )传播的路程相等,走过的光程相等; (B )传播的路程相等,走过的光程不相等;(C )传播的路程不相等,走过的光程相等; (D )传播的路程不相等,走过的光程不相等。
4. 如图,如果S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分为真空,光沿这两条路径的光程差等于:[ B ](A ) 222111()();r n t r n t +-+(B ) 222111[(1)][(1)];r n t r n t +--+- (C ) 222111()();r n t r n t ---(D ) 2211n t n t -5. 双缝干涉实验中,入射光波长为λ,用玻璃纸遮住其中一缝,若玻璃纸中光程比相同厚度的空气大λ5.2,则屏上原0级明纹中心处 [ B ](A ) 仍为明纹中心 (B ) 变为暗纹中心(C ) 不是最明,也不是最暗 (D ) 无法确定6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为:[ B ](A ) 5.0×10-4cm (B ) 6.0×10-4cm(C ) 7.0×10-4cm (D ) 8.0×10-4cm7. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。
江苏大学 物理练习册答案14
练习 14知识点:麦克斯韦速率分布律、三个统计速率、平均碰撞频率和平均自由程一、选择题1. 在一定速率υ附近麦克斯韦速率分布函数 f (υ)的物理意义是:一定量的气体在给定温度下处于平衡态时的 ( )(A )速率为υ的分子数; (B )分子数随速率υ的变化;(C )速率为υ的分子数占总分子数的百分比;(D )速率在υ附近单位速率区间内的分子数占总分子数的百分比。
解:(D) NdvdN v f =)(,速率在v 附近单位速率区间内的分子数占总分子数的百分比2. 如果氢气和氦气的温度相同,摩尔数也相同,则 ( )(A )这两种气体的平均动能相同; (B )这两种气体的平均平动动能相同; (C )这两种气体的内能相等; (D )这两种气体的势能相等。
解:(B) 平均动能=平均平动动能+转动动能,氦气为单原子分子,3=i ;氢气为双原子(刚性)分子, 5=i3. 在恒定不变的压强下,理想气体分子的平均碰撞次数z 与温度T 的关系为 ( )(A )与T 无关; (B )与T 成正比; (C )与T 成反比; (D )与T 成正比; (E )与T 成反比。
解:(C)TM R pd d kT p M RT d n v z mol mol πππππ82822222=== 4. 根据经典的能量按自由度均分原理,每个自由度的平均能量为( )(A )kT /4; (B )kT /3; (C )kT /2; (D )3kT /2; (E )kT 。
解:(C) 5. 在20℃时,单原子理想气体的内能为 ( )(A )部分势能和部分动能; (B )全部势能; (C )全部转动动能; (D )全部平动动能; (E )全部振动动能。
解:(D)单原子分子的平动自由度为3,转动自由度0, 振动自由度为06. 1mol 双原子刚性分子理想气体,在1atm 下从0℃上升到100℃时,内能的增量为( )(A )23J ; (B )46J ; (C )2077.5J ; (D )1246.5J ; (E )12500J 。
大学物理 马文蔚 第五版 下册 第十四章 课后答案
大学物理马文蔚第五版下册第十四章课后答案第十四章相对论14 -1 下列说法中(1) 两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关; (3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同. 其中哪些说法是正确的?( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的 (C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m·s-1 .迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,故选(C).14 -2 按照相对论的时空观,判断下列叙述中正确的是( ) (A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件 (B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件 (D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地 (E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δx,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为Δt?Δt??vΔxΔx?vΔtc2 和Δx??221?β1?β讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt=0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S系中发生的地点是同地(Δx=0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt=0)不同地(Δx≠0)事件,在S′系中一定是既不同时(Δt′≠0)也不同地(Δx′≠0),但是在S系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.14 -3 有一细棒固定在S′系中,它与Ox′轴的夹角θ′=60°,如果S′系以速度u 沿Ox 方向相对于S系运动,S系中观察者测得细棒与Ox 轴的夹角( ) (A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿Ox 正方向运动时大于60°,而当S′系沿Ox 负方向运动时小于60°分析与解按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox 轴夹角将会大于60°,此结论与S′系相对S系沿Ox 轴正向还是负向运动无关.由此可见应选(C).14 -4 一飞船的固有长度为L,相对于地面以速度v1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)LLLL (B) (C) (D)2v1?v2v2-v1v2v11??v1/c?分析与解固有长度是指相对测量对象静止的观察者所测,则题中L、v2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C). 讨论从地面测得的上述时间间隔为多少?建议读者自己求解.注意此处要用到相对论时空观方面的规律了.14 -5 设S′系以速率v=0.60c相对于S系沿xx′轴运动,且在t=t′=0时,x =x′=0.(1)若有一事件,在S系中发生于t=2.0×107s,x=50m处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t=3.0×10-7 s,x=10m处,在S′系中测得这两个事件的时间间隔为多少?分析在相对论中,可用一组时空坐标(x,y,z,t)表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为-vx21c??t1?1.25?10?7s 1?v2/c2t1? (2) 同理,第二个事件发生的时刻为vx22c??t2?3.5?10?7s 1?v2/c2t2?所以,在S′系中两事件的时间间隔为??t1??2.25?10?7s Δt??t214 -6 设有两个参考系S和S′,它们的原点在t=0和t′=0时重合在一起.有一事件,在S′系中发生在t′=8.0×108 s,x′=60m,y′=0,z′=0处若S′系相对于S系以速率v=0.6c 沿xx′轴运动,问该事件在S系中的时空坐标各为多少?分析本题可直接由洛伦兹逆变换将该事件从S′系转换到S系. 解由洛伦兹逆变换得该事件在S系的时空坐标分别为-x?x??vt?1?v/c22?93my =y′=0 z =z′=0vx?2ct??2.5?10?7s 1?v2/c2t??14 -7 一列火车长0.30km(火车上观察者测得),以100km·h-1 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt=t2-t1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx′=x′2 -x′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为t2?t1???t1????t2v??x1???x22c (1) 221?v/c??t1??t2?t2?t1??v?x2?x1?2c (2) 221?v/c将已知条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中x2?x1为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运??x1??1?v/c.考虑这一关系方可利用式(2)动物体(火车)有长度收缩效应,即x2?x1??x222求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为??t1??t2v??x1????9.26??14s ?x22c负号说明火车上的观察者测得闪电先击中车头x′2 处.??x1??1?v/c 代入式(2)亦可得解2 根据分析,把关系式x2?x1??x222??x1?=0.30km这一与解1 相同的结果.相比之下解1 较简便,这是因为解1中直接利用了x2已知条件.14 -8 在惯性系S中,某事件A发生在x1处,经过2.0 ×106s后,另一事件B发生在x2处,已知x2-x1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿x 轴正向运动,因在S系中两事件的时空坐标已知,由洛伦兹时空变换式,可得-??x1??x2?x2?x1??v?t2?t1? (1)1?v2/c2??t1??t2?t2?t1??v2?x2?x1?c1?v2/c2 (2)两事件在S′系中发生在同一地点,即x′2-x′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt′为固有时间间隔(原时),由时间延缓效应关系式Δt??Δt1?v/c可直接求得结果.22解 (1) 令x′2-x′1=0,由式(1)可得v?x2?x1?1.50?108m?s-1?0.50ct2?t1 (2) 将v值代入式(2),可得??t1??t2?t2?t1??v2?x2?x1?c1?v2/c2??t2?t1?1?v2/c2?1.73?10?6s这表明在S′系中事件A先发生.14 -9 设在正负电子对撞机中,电子和正电子以速度0.90c 相向飞行,它们之间的相对速度为多少?分析设对撞机为S系,沿x 轴正向飞行的正电子为S′系.S′系相对S系的速度v=0.90c,则另一电子相对S系速度ux=-0.90c,该电子相对S′系(即沿x轴正向飞行的电子)的速度u′x即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.解按分析中所选参考系,电子相对S′系的速度为u?x?ux?u?x??0.994c v1?2uxc式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行. 讨论若按照伽利略速度变换,它们之间的相对速度为多少?14 -10 设想有一粒子以0.050c 的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.分析这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v=0.050c.题中所给的电子速率是电子相对衰变粒子的速率,故u′x =0.80c. 解根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为ux?u?x?v?0.817c v1?2u?xc14 -11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1 i.同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为。
大学物理第14章习题解答
第十四章习题解答1选择题:⑴ B ;⑵ B ;⑶ D ;⑷ B ;⑸ B 。
2填空题:⑴ /sin λθ;⑵ 4;⑶ 变疏,变疏;⑷ 3.0nm ;⑸ N 2,N 。
3计算题:1 用波长为nm 3.589=λ的单色平行光,垂直照射每毫米刻有500条刻痕的光栅.问最多能看到第几级明纹?总共有多少条明纹?解:5001=+b a mm 3100.2-⨯= mm 由λϕk b a =+sin )(知,最多见到的条纹级数k max 对应的2πϕ=, 所以有3max 2.010 3.39589.3a bk λ+⨯==≈,即实际见到的最高级次为3max =k 总共可见7条明纹。
2 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级? (1) a+b=2a ;(2)a+b=3a ;(3)a+b=4a 。
解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )( k k a k k b a λϕλϕ 可知,当k ab a k '+=时明纹缺级. (1) a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2) a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.3 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1) 零级明条纹能否分开不同波长的光? (2) 在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什么因素有关?解:(1)不能。
(2)红光。
与波长有光。
4 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为480nm 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1) 中央明纹宽度为:60480105010220.02l f a λ-⨯⨯⨯==⨯mm 4.2=cm (2) 由缺级条件:λϕk a '=sin ,λϕk b a =+sin )(知:k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k 即⋅⋅⋅=,15,10,5k 缺级. 中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.5 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求:(1) 光栅常数a +b(2) 波长λ2解:(1)()sin a b k θλ+=,01()sin 303a b λ+=,6()=3.3610a b m -+⨯(2)12()sin 34a b θλλ+==,2=420nm λ6某种单色光垂直入射到每厘米有8000条刻线的光栅上,如果第一级谱线的衍射角为30°那么入射光的波长是多少?能不能观察到第二级谱线? 解:41() 1.25108000cm a b cm -+==⨯,0=(a+b)sin30625nm λ= 22sin 1()()k a b a b λλθ===++,02=90θ故不能观察到。
大学物理下答案习题14
习题1414.1 选择题(1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ](A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变.[答案:B](2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。
今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ](A)2m. (B)1m. (C)0.5m.(D)0.2m. (E)0.1m[答案:B](3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ](A) N a sin=k. (B) a sin=k.(C) N d sin=k. (D) d sin=k.[答案:D](4)设光栅平面、透镜均与屏幕平行。
则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ](A)变小。
(B)变大。
(C)不变。
(D)的改变无法确定。
[答案:B](5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ](A) a=0.5b (B) a=b(C) a=2b (D)a=3b[答案:B]14.2 填空题(1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________.λθ][答案:/sin(2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。
大学物理第四版下册课后题答案(供参考)
习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。
解:1q 在C 点产生的场强:11204ACq E i r πε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V mR πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强。
大学物理(吴百诗)习题答案14光的衍射
大学物理练习册—光的衍射—光的衍射14-1 解:a f x l 20=D ,nm 625mm 10625.0100.220.15.22330=´=´´´=´D =-f a x l 14-2 解:2)12(sin 11l q +=k a ,2)12(sin 22l q +=k a ,A 42861326000)122(12)12(1221=+´´+´=++=k k l l 14-3 解:l j q k a a =-sin sin 时为暗条纹,j l q sin sin +=a k ,)sin (sin 1j l q +=-ak 14-4 解:(1)2)12(sin l q +=k a ,mm 12102.4400)12(4.16.0212sin 23+´=´+´´»+=-k k k a q l 3=k ,A 60001=l ;或;或4=k ,A 46672=l(2)3=k 或 4=k(3)半波带数为)12(+k ,即7或9。
(4)l l q k k a ==22sin ,mm 101.24004.16.0sin 3k k k a -´=´==q l 3=k ,A 70001=l ;4=k ,A 52502=l ;5=k ,A 42002=l 14-5 解:d R l q q q 22.1sin 11=»=,LD »1q ,m 109.81055022.11052.122.1393´=´´´´==\--l Dd L 14-6 解:(1)双缝干涉第k 级明纹满足级明纹满足 l q k d =sin第k 级明纹在屏上的位置级明纹在屏上的位置d k f f f x k l q q =»=sin tan m 104.2101.01048001050331021----+´=´´´´==-=D \d f x x x k k l (2)m 104.21002.01048001050222tan 223102110----´=´´´´´==»=D a f f f x l q q (3)l q k d =sin ,l q k a ¢=sin ,k k k a d k ¢=¢=¢=502.01.0,1=¢k 时,5=k 缺级。
大学物理答案第14章
第十四章 波 动 光 学14-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏 上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.故选(B ).题14-1 图14-2 如图所示,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束的光程差是( )()()()()2222222D 2C 22B 2A n e n e n e n e n λλλ---题14-2 图 分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上表面的反射光有半波损失,下表面的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为(B ).14-3 如图(a )所示,两个直径有微小差别的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干涉条纹,如果滚柱之间的距离L 变小,则在L 范围内干涉条纹的( )(A ) 数目减小,间距变大 (B ) 数目减小,间距不变(C ) 数目不变,间距变小 (D ) 数目增加,间距变小题14-3图 分析与解 图(a )装置形成的劈尖等效图如图(b )所示.图中 d 为两滚柱的直径差,b 为两相邻明(或暗)条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为(C )14-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为( )(A ) 3 个 (B ) 4 个 (C ) 5 个 (D ) 6 个分析与解 根据单缝衍射公式()()(),...2,1 212 22sin =⎪⎪⎩⎪⎪⎨⎧+±±=k λk λk θb 明条纹暗条纹因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.故选(B ).14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为( )(A ) 4 (B ) 3 (C ) 2 (D ) 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为()82.1/2dsin max =≤λπk 即只能看到第1 级明纹,正确答案为(D ).14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为( )(A ) 3I 0/16 (B ) 3I 0/8 (C ) 3I 0/32 (D ) 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为(C ).14-7 自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为( )(A ) 完全线偏振光,且折射角是30°(B ) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°(C ) 部分偏振光,但须知两种介质的折射率才能确定折射角(D ) 部分偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为部分偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.故选(D ).14-8 在双缝干涉实验中,两缝间距为0.30 mm ,用单色光垂直照射双缝,在离缝1.20m 的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78 mm .问所用光的波长为多少,是什么颜色的光分析与解 在双缝干涉中,屏上暗纹位置由()212λ+'=k d d x 决定,式中d ′为双缝到屏的距离,d 为双缝间距.所谓第5条暗纹是指对应k =4 的那一级暗纹.由于条纹对称,该暗纹到中央明纹中心的距离mm 27822.=x ,那么由暗纹公式即可求得波长λ. 此外,因双缝干涉是等间距的,故也可用条纹间距公式λdd x '=∆求入射光波长.应注意两个第 5 条暗纹之间所包含的相邻条纹间隔数为9(不是10,为什么),故mm 97822.=∆x . 解1 屏上暗纹的位置()212λ+'=k d d x ,把m 102782243-⨯==.,x k 以及d 、d ′值代入,可得λ= nm ,为红光.解2 屏上相邻暗纹(或明纹)间距'd x d λ∆=,把322.7810m 9x -∆=⨯,以及d 、d ′值代入,可得λ= nm .14-9 在双缝干涉实验中,用波长λ= nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离.分析 双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx ,则由中央明纹两侧第五级明纹间距x 5 -x -5 =10Δx 可求出Δx .再由公式Δx =d ′λ/d 即可求出双缝间距d .解 根据分析:Δx =(x 5 -x -5)/10 =×10-3m双缝间距: d =d ′λ/Δx = ×10-4 m14-10 一个微波发射器置于岸上,离水面高度为d ,对岸在离水面h 高度处放置一接收器,水面宽度为D ,且,D d D h ??,如图所示.发射器向对面发射波长为λ的微波,且λ>d ,求接收器测到极大值时,至少离地多高分析 由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d ,缝屏间距为D 的双缝干涉相似,如图(b )所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/sin 2λθd +,而不是θd sin 2.题14-10 图 解 由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()d k D D D h 412sin tan -=≈≈λθθ取k =1 时,得dD h 4min λ=. 14-11 如图所示,将一折射率为的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为.试问该膜的正面呈现什么颜色分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ= nm ,L = ×10-2m ,测得30 条条纹的总宽度为 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.xn N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ= 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对 nm 激光的折射率为)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…)取k =10,得薄膜厚度e 10 =n210λ= ×10-6m . 14-15 折射率为的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600 nm 的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n = 的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小Δl =0.5 mm ,那么劈尖角θ 应是多少分析 劈尖干涉中相邻条纹的间距l ≈θλn 2,其中θ 为劈尖角,n 是劈尖内介质折射率.由于前后两次劈形膜内介质不同,因而l 不同.则利用l ≈θλn 2和题给条件可求出θ.解 劈形膜内为空气时,θλ2=空l 劈形膜内为液体时,θλn l 2=液 则由θλθλn l l l 22-=-=∆液空,得 ()rad 107112114-⨯=∆-=./l n λθ14-16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为 ×10-2m ,用λ= nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λN l =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得 T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl Nλα K 1- 14-17 在利用牛顿环测未知单色光波长的实验中,当用已知波长为 nm 的钠黄光垂直照射时,测得第一和第四暗环的距离为Δr = ×10-3 m ;当用波长未知的单色光垂直照射时,测得第一和第四暗环的距离为Δr ′= ×10-3 m ,求该单色光的波长.分析 牛顿环装置产生的干涉暗环半径λkR r =,其中k =0,1,2…,k =0,对应牛顿环中心的暗斑,k =1 和k =4 则对应第一和第四暗环,由它们之间的间距λR r r r =-=∆14,可知λ∝∆r ,据此可按题中的测量方法求出未知波长λ′.解 根据分析有λλ'=∆'∆r r 故未知光波长 λ′=546 nm14 -18 如图所示,折射率n 2 = 的油滴落在n 3 = 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m = μm,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环 (2) 整个油膜可看到几个完整的暗环题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足()(),...,,/21021222=+==∆k k d n λ令d =d m ,解得k =,可知油膜上暗环的最高级次为3,故油膜上出现的完整暗环共有4 个,即k =0,1,2,3.14-19 把折射率n = 的薄膜放入迈克耳孙干涉仪的一臂,如果由此产生了 条条纹的移动,求膜厚.设入射光的波长为589 nm .分析 迈克耳孙干涉仪中的干涉现象可以等效为薄膜干涉(两平面镜相互垂直)和劈尖干涉(两平面镜不垂直)两种情况,本题属于后一种情况.在干涉仪一臂中插入介质片后,两束相干光的光程差改变了,相当于在观察者视野内的空气劈尖的厚度改变了,从而引起干涉条纹的移动.解 插入厚度为d 的介质片后,两相干光光程差的改变量为2(n -1)d ,从而引起N 条条纹的移动,根据劈尖干涉加强的条件,有2(n -1)d =Nλ,得()m 101545126-⨯=-=.n N d λ 14-20 如图所示,狭缝的宽度b =0.60 mm ,透镜焦距f =0.40m ,有一与狭缝平行的屏放置在透镜焦平面处.若以波长为600 nm 的单色平行光垂直照射狭缝,则在屏上离点O 为x =1.4 mm 处的点P 看到的是衍射明条纹.试求:(1) 点P 条纹的级数;(2) 从点P 看来对该光波而言,狭缝的波阵面可作半波带的数目.分析 单缝衍射中的明纹条件为()212sin λϕ+±=k b ,在观察点P 位置确定(即衍射角φ确定)以及波长λ确定后,条纹的级数k 也就确定了.而狭缝处的波阵面对明条纹可以划分的半波带数目为(2k +1)条.解 (1) 设透镜到屏的距离为d ,由于d >>b ,对点P 而言,有dx =≈ϕϕtan sin .根据分析中的条纹公式,有 ()212λ+±=k d bx 将b 、d (d ≈f )、x , λ的值代入,可得k =3(2) 由分析可知,半波带数目为7.题14-20 图14-21 一单色平行光垂直照射于一单缝,若其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比较法来确定波长.对应于同一观察点,两次衍射的光程差相同,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长已知的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得()nm 642812121221.=++=k k λλ 14-22 已知单缝宽度b = ×10-4 m ,透镜焦距f =0.50 m ,用λ1 =400 nm 和λ2 =760 nm 的单色平行光分别垂直照射,求这两种光的第一级明纹离屏中心的距离,以及这两条明纹之间的距离.若用每厘米刻有1000条刻线的光栅代替这个单缝,则这两种单色光的第一级明纹分别距屏中心多远 这两条明纹之间的距离又是多少分析 用含有两种不同波长的混合光照射单缝或光栅,每种波长可在屏上独立地产生自己的一组衍射条纹,屏上最终显示出两组衍射条纹的混合图样.因而本题可根据单缝(或光栅)衍射公式分别计算两种波长的k 级条纹的位置x 1和x 2 ,并算出其条纹间距Δx =x 2 -x 1 .通过计算可以发现,使用光栅后,条纹将远离屏中心,条纹间距也变大,这是光栅的特点之一.解 (1) 当光垂直照射单缝时,屏上第k 级明纹的位置()f b k x 212λ+= 当λ1 =400 nm 和k =1 时, x 1 = ×10-3m 当λ2 =760 nm 和k =1 时, x 2 = ×10-3 m其条纹间距 Δx =x 2 -x 1 = ×10-3m(2) 当光垂直照射光栅时,屏上第k 级明纹的位置为 f dk x λ=' 而光栅常数 m 10m 1010532--==d 当λ1 =400 nm 和k =1 时, x 1 = ×10-2m当λ2 =760 nm 和k =1 时, x 2 = ×10-2 m 其条纹间距 m 1081212-⨯='-'='∆.x x x14-23 老鹰眼睛的瞳孔直径约为6 mm ,问其最多飞翔多高时可看清地面上身长为5cm 的小鼠 设光在空气中的波长为600 nm .分析 两物体能否被分辨,取决于两物对光学仪器通光孔(包括鹰眼)的张角θ 和光学仪器的最小分辨角θ0 的关系.当θ≥θ0 时能分辨,其中θ=θ0 为恰能分辨.在本题中D λθ2210.=为一定值,这里D 是鹰的瞳孔直径.而h L /=θ,其中L 为小鼠的身长,h 为老鹰飞翔的高度.恰好看清时θ=θ0.解 由分析可知 L /h =λ/D ,得飞翔高度h =LD /(λ) =409.8 m .14-24 一束平行光垂直入射到某个光栅上,该光束中包含有两种波长的光:λ1 =440 nm 和λ2 =660 nm .实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数.分析 根据光栅衍射方程λϕk d ±=sin ,两种不同波长的谱线,除k =0 中央明纹外,同级明纹在屏上位置是不同的,如果重合,应是它们对应不同级次的明纹在相同衍射角方向上重合.故由d sin φ=k λ =k ′λ2 可求解本题.解 由分析可知21sin λλϕk k d '==, 得得 2312///=='λλk k上式表明第一次重合是λ1 的第3 级明纹与λ2 的第2级明纹重合,第二次重合是λ1 的第6 级明纹与λ2 的第4级明纹重合.此时,k =6,k ′=4,φ=60°,则光栅常数μm 05.3m 1005.3/sin 61=⨯==-ϕλk d*14-25 波长为600 nm 的单色光垂直入射在一光栅上,其透光和不透光部分的宽度比为1:3,第二级主极大出现在200sin .=ϕ处.试问(1) 光栅上相邻两缝的间距是多少(2) 光栅上狭缝的宽度有多大 (3) 在-90°<φ<90°范围内,呈现全部明条纹的级数为哪些.分析 (1) 利用光栅方程()λϕϕk b b d ±='+=sin sin ,即可由题给条件求出光栅常数b b d '+=(即两相邻缝的间距).这里b 和b '是光栅上相邻两缝透光(狭缝)和不透光部分的宽度,在已知两者之比时可求得狭缝的宽度(2) 要求屏上呈现的全部级数,除了要求最大级次k 以外,还必须知道光栅缺级情况.光栅衍射是多缝干涉的结果,也同时可看成是光透过许多平行的单缝衍射的结果.缺级就是按光栅方程计算屏上某些应出现明纹的位置,按各个单缝衍射计算恰是出现暗纹的位置.因此可以利用光栅方程()λϕϕk b b d ='+=sin sin 和单缝衍射暗纹公式'sin b k ϕλ=可以计算屏上缺级的情况,从而求出屏上条纹总数.解 (1)光栅常数 μm 6m 106sin 6=⨯==-ϕk λd (2) 由 ⎪⎩⎪⎨⎧='='+=31μm 6b b b b d 得狭缝的宽度b = μm .(3) 利用缺级条件()()()⎩⎨⎧±=''=±=='+,...1,0sin ,...1,0sin k k b k k b b λϕλϕ 则(b +b ′)/b =k /k ′=4,则在k =4k ′,即±4, ±8, ±12,…级缺级.又由光栅方程()λϕk b b ±='+sin ,可知屏上呈现条纹最高级次应满足()10='+<λ/b b k ,即k =9,考虑到缺级,实际屏上呈现的级数为:0, ±1, ±2, ±3,±5, ±6, ±7, ±9,共15 条.*14-26 以波长为 nm 的X 射线照射岩盐晶体,实验测得X 射线与晶面夹角为°时获得第一级反射极大.(1) 岩盐晶体原子平面之间的间距d 为多大 (2) 如以另一束待测X 射线照射,测得X 射线与晶面夹角为°时获得第一级反射光极大,求该X 射线的波长.分析 X 射线入射到晶体上时,干涉加强条件为2d sin θ =k λ(k =0,1,2,…)式中d 为晶格常数,即晶体内原子平面之间的间距(如图).解 (1) 由布拉格公式(),...,,210sin 2==k k d λθ第一级反射极大,即k =1.因此,得 nm 276.0sin 211==θλd(2) 同理,由2d sin θ2 =kλ2 ,取k =1,得nm 166.0sin 222==θλd题14-26图14-27 测得一池静水的表面反射出来的太阳光是线偏振光,求此时太阳处在地平线的多大仰角处 (水的折射率为)题14-27 图分析 设太阳光(自然光)以入射角i 入射到水面,则所求仰角i θ-=2π.当反射光起偏时,根据布儒斯特定律,有120arctann n i i ==(其中n 1 为空气的折射率,n 2 为水的折射率).解 根据以上分析,有 120arctan 2πn n θi i =-== 则 o 129.36arctan 2π=-=n n θ 14-28 一束光是自然光和线偏振光的混合,当它通过一偏振片时,发现透射光的强度取决于偏振片的取向,其强度可以变化5 倍,求入射光中两种光的强度各占总入射光强度的几分之几.分析 偏振片的旋转,仅对入射的混合光中的线偏振光部分有影响,在偏振片旋转一周的过程中,当偏振光的振动方向平行于偏振片的偏振化方向时,透射光强最大;而相互垂直时,透射光强最小.分别计算最大透射光强I max 和最小透射光强I min ,按题意用相比的方法即能求解.解 设入射混合光强为I ,其中线偏振光强为xI ,自然光强为(1-x )I .按题意旋转偏振片,则有最大透射光强 ()I x x I ⎥⎦⎤⎢⎣⎡+-=121max 最小透射光强 ()I x I ⎥⎦⎤⎢⎣⎡-=121min 按题意5min max =I I /,则有 ()()x x x -⨯=+-1215121 解得 x =2/3即线偏振光占总入射光强的2/3,自然光占1/3.。
大学物理习题(下)答案解析
一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ](4)题(5)题2153(A),or ;A;(B),;A;332663223(C),or ;A;(D),;A4433ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ](A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理(机械工业出版社)第14章课后答案
第十四章 波动#14-1 如本题图所示,一平面简谐波沿ox 轴正向传播,波速大小为u ,若P 处质点振动方程为)cos(ϕ+ω=t A y P ,求:(1)O 处质点的振动方程;(2)该波的波动方程;(3)与P 处质点振动状态相同质点的位置。
解:(1)O 处质点振动方程:y 0 = A cos [ ω(t + L / u )+φ] (2)波动方程y 0 = A cos { ω[t - (x - L )/ u +φ} (3)质点位置x = L ± k 2πu / ω (k = 0 , 1, 2, 3……)14-2 一简谐波,振动周期T =1/2s ,波长λ=10m ,振幅A =0.1m ,当t =0时刻,波源振动的位移恰好为正方向的最大值,若坐标原点和波源重合,且波沿ox 轴正方向传播,求:(1)此波的表达式;(2)t 1=T/4时刻,x 1=λ/4处质点的位移;(3)t 2 =T/2时刻,x 1=λ/4处质点的振动速度。
解:(1) y = 0.1 cos ( 4πt - 2πx / 10 )= 0.1 cos 4π(t - x / 20 ) (SI) (2) 当 t 1 = T / 4 = 1 / 8 ( s ) , x 1 = λ/ 4 = 10 / 4 m 处质点的位移y 1 = 0.1cos 4π(T / 4 - λ/ 80 )= 0.1 cos 4π(1 / 8 - 1 / 8 ) = 0.1 m (3) 振速 )20/(4sin 4.0x t tyv --=∂∂=ππ t 2 = T / 2 = 1 / 4 (S) ,在x 1 = λ/ 4 = 10 / 4( m ) 处质点的振速v 2 = -0.4πsin (π-π/ 2 ) = - 1.26 m / s14-3 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。
设4Tt =时刻的波形如本题图所示,求该波的表达式。
解:由图可看出,在t=0时,原点处质点位移y 0=-A ,说明原点处质点的振动初相πϕ=0,因而波动方程为])(cos[πω++=uxt A y14-4 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求: (1) 坐标原点处介质质点的振动方程;(2) 该波的波方程。
武工大大学物理习题答案-14分子热运动
求和,其总动量变化为 得
此式包含 分子受器壁 和 作用的平均冲力为 (负射向分量) 应用动量定理, 的分子。只有 的分子才能与 相碰。
壁对气
因平衡态中两者各占一半,故
器壁 受气体分子作用的平均冲力 能与 碰撞的所有分子的总动量变化为
气对壁 壁对气
器壁 碰撞的所有分子的总动量变化为 受气体分子作用的平均冲力 能与
统计平均值
测量值 …
对某量 出现次数 …
进行
次测量,
测量值乘 以出现次数 ……
的统计平均值
… …
若
值可连续变化
则
连续变量的平均值等于该量与概率密度函数乘积的积分。
气体微观模型 气体的压强与温度的统计意义
一、理想气体的微观模型
气体分子的大小与分子间的平均距离相 比可以忽略。 分子除碰撞瞬间外,无其它相互作用。
平均速率(算术平均速率)
根据某连续变量 x 的平均值等于该 量与概率密度函数乘积的积分的定义。
注意到
类似
也有 或
方均根速率 方均根速率 ( 的统计平均值的开平方)
即 作为参与统计平均的连续变量
则
注意到
得
回忆 联系
类似
也有
或
速率小结
特征速率例题 氧气摩尔质量 3.20 10
温度
mol
27 C
处于平衡态
假设有大量的某种粒子,总数目为N,其速率分布函数为
续上概率分布函数应满足 归一化条件
本题
均为正常数,且
为已知
画出该速率分布函数曲线 根据概率分布函数应满足的基本条件,确定系数 求速率在 区间的粒子数
要求
抛物线方程
+
得
大学物理习题14
习题1414.1 选择题(1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ](A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变.[答案:B](2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。
今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ](A)2m. (B)1m. (C)0.5m.(D)0.2m. (E)0.1m[答案:B](3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ](A) N a sin=k. (B) a sin=k.(C) N d sin=k. (D) d sin=k.[答案:D](4)设光栅平面、透镜均与屏幕平行。
则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ](A)变小。
(B)变大。
(C)不变。
(D)的改变无法确定。
[答案:B](5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ](A) a=0.5b (B) a=b(C) a=2b (D)a=3b[答案:B]14.2 填空题(1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________.λθ][答案:/sin(2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角ϕ=30°,单缝处的波面可划分为______________个半波带。
大学物理黄新民下册课后习题答
习题解答14-1 将一无限长直载流导线,中部弯成一个半径为R 的半圆形,求圆心处的B。
解:设电流为I ,O 点的磁场由两半无限长载流导线和载流半圆形产生。
321B B B B++=021==B B载流圆环在圆心处产生的磁场为R I20μ,则载流半圆环在圆心O 处产生的磁场为R IB 40μ= 方向如图14-2 电流2a面上,距板面为x 的一点P 处磁感应强度B ;(2)当∞→a ,但维持a Ii 2=(称线电流密度)不变时,P 点处的B。
解:(1)如图 dy idy dIaI 2==, 则 2/12200)(22x y dIrdIdB +==πμπμ⎰===0sin cos x y x dB dB dB dB dB θθx a a I x y xdy a I a a y y arctg dB B Bπμπμ2)(220220====+-⎰⎰(2)∞→a 代入 xa a I arctg Bπμ20= 取极限得 2400iaIB μμ==14-3 半径为R 的圆片上均匀带电,电荷面密度为e σ,令该圆片以角速度ω绕中心轴旋转,求轴线上磁场分布。
解:圆盘每秒转动次数为πω2,圆盘上电荷面密度为2R qeπσ=,在圆盘上取一半径为r ,宽度为dr 的环带,此环带所带电量rdr dqe πσ2⋅=此环带转动相当于一圆电流,其电流大小为πω2dq dI =,它在x 处产生的磁感应强度为dy ydr dBx r r x r dIr e 2/3)(2)(222302/32220++==ωσμμ, 方向沿x 轴,故x 处的总磁感应强度大小为 ⎰⎥⎦⎤⎢⎣⎡-==+++R x R x R x r r x dr B e e 0)(22)(222/1222202/32230ωσμωσμ 14-4 一磁场的磁感应强度为)(T ck bj ai B ++=则通过一半径为R ,开口向Z 正方向的半球壳表面的磁通量为多少。
解:⎰⎰=⋅=Φc R S d B m 2π14-5 均匀磁场的磁感应强度B 与半径为r 的圆形平面的法线n的夹角为a ,今以圆周为边界,作一半球面S ,S 与圆形平面组成封闭面,如图所示。
大学物理下第14章习题详解
第14章习题解答14-1 定体气体温度计的测温气泡放入水的三相点的管槽内时,气体的压强为6.65×103Pa.(1)用此温度计测量373.15K 的温度时,气体的压强是多大? (2)当气体压强为2.20×103Pa 时,待测温度是多少K ?是多少℃? 解:(1)对定体气体温度计,由于体积不变,气体的压强与温度成正比,即:1133T PT P = 由此331133373.15 6.65109.0810(Pa)273.16T P P T ⨯⨯===⨯ (2)同理312333 2.2010273.1690.4182.8()6.6510P T T K C P ⨯⨯====-⨯ 14-2 一氢气球在20℃充气后,压强为1.2atm ,半径为1.5m 。
到夜晚时,温度降为10℃,气球半径缩为1.4m ,其中氢气压强减为1.1atm 。
求已经漏掉了多少氢气。
解:漏掉的氢气的质量112212123335()210 1.24 1.5/3 1.44 1.4/3() 1.01108.312932830.32mol M PV PVm m m R T T ππ-∆=-=-⨯⨯⨯⨯⨯=⨯-⨯⨯= (kg )14-3 某柴油机的气缸内充满空气,压缩前其中空气的温度为47℃,压强为8.61×104 Pa 。
当活塞急剧上升时,可把空气压缩到原体积的1/17,此时压强增大到4.25×106Pa ,求这时空气的温度(分别以K 和℃表示)。
解:压缩过程中气体质量不变,所以有112212PV PV T T = 设62211241114.25103209296568.611017PV T V T K PV V ⨯⨯⨯====⨯⨯⨯(℃) 14-4 求氧气在压强为10.0×1.01×105 Pa ,温度为27℃时的分子数密度。
解:由理想气体状态方程的另一种形式,p nkT =,可得分子数密度52632310.0 1.0110 2.4410()1.3810300p n m kT --⨯⨯===⨯⨯⨯14-5 从压强公式和温度公式出发,推证理想气体的物态方程为molMpV RT M =。
大学物理第十四章波动光学习题+答案
D k 0,1, 2 明纹中心位置
暗纹中心位置
k 1, 2,3
D 相邻两明纹(或暗纹)中心间距离: Δx d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间的厚度差: e
C R
2n 相邻明纹(暗纹)中心间距离: l 2n
牛顿环
r 2Re
(2) 屏幕上主极大位置由光栅公式决定
(a b)sin k
(3) 缺级现象 (a b)sin k
k 0,1, 2, 3 ——主极大
k 1, 2, 3
k 1, 2, 3
干涉明纹 衍射暗纹
a sin k
ab k k k 1, 2, 3 a (4) 重级现象 k11 k2 2
波 动 光 学 习 题 课
一、基本概念
1、相干光的获得 把由光源上同一点发出的光设法分成两部分,再叠 加起来。
分波阵面法
分振幅法
2、光程与光程差
n2 r2 n1r1
3、半波损失
2 2 (n2 r2 n1r1 )
当光从光疏媒质射向光密媒质时,反射光有位相 的突变,相当于 的附加光程差,叫半波损失。
x tan 5 103 f
a sin 0.2 5 10 mm 1000 nm 4 2
3
a
x
f
暗纹,4个半波带
4-5 某元素的特征光谱中含有波长分别为1=450nm 和2=750nm的光谱线。在光栅光谱中,这两种波长的 谱线有重叠现象,重叠处2的谱线的级数将是 (A) 2,3,4,5…… (C) 2,4,6,8……
大学物理课后习题答案(第十四章) 北京邮电大学出版社
习题十四14-1 自然光是否一定不是单色光?线偏振光是否一定是单色光?答:自然光不能说一定不是单色光.因为它只强调存在大量的、各个方向的光矢量,并未要求各方向光矢量的频率不一样.线偏振光也不一定是单色光.因为它只要求光的振动方向同一,并未要求各光矢的频率相同.14-2 用哪些方法可以获得线偏振光?怎样用实验来检验线偏振光、部分偏振光和自然光? 答:略.14-3 一束光入射到两种透明介质的分界面上时,发现只有透射光而无反射光,试说明这束光是怎样入射的?其偏振状态如何?答:这束光是以布儒斯特角入射的.其偏振态为平行入射面的线偏振光.14-4 什么是光轴、主截面和主平面?什么是寻常光线和非常光线?它们的振动方向和各自的主平面有何关系?答:略.14-5 在单轴晶体中,e 光是否总是以e n c /的速率传播?哪个方向以0/n c 的速率传播? 答:e 光沿不同方向传播速率不等,并不是以0/n c 的速率传播.沿光轴方向以0/n c 的速率传播.14-6是否只有自然光入射晶体时才能产生O 光和e 光?答:否.线偏振光不沿光轴入射晶体时,也能产生O 光和e 光.14-7投射到起偏器的自然光强度为0I ,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过130°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是0I 的几倍?解:由马吕斯定律有0o 2018330cos 2I I I ==0ο2024145cos 2I I I ==0ο2038160cos 2I I I ==所以透过检偏器后光的强度分别是0I 的83,41,81倍. 14-8 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为1I ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与1I 之比为多少?解:由马吕斯定律ο20160cos 2I I =80I =32930cos 30cos 20ο2ο20I I I == ∴ 25.2491==I I14-9 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少?解:(1) max 120131cos 2I I I ==α又20max I I = ∴,601I I = 故 'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α∴'ο221635,32cos ==αα 14-10 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少?(2)折射角为多少?解:(1),140.1tan 0=i ∴'ο02854=i(2) 'ο0ο323590=-=i y14-11 利用布儒斯特定律怎样测定不透明介质的折射率?若测得釉质在空气中的起偏振角为58°,求釉质的折射率. 解:由158tan οn =,故60.1=n 14-12 光由空气射入折射率为n 的玻璃.在题14-12图所示的各种情况中,用黑点和短线把反射光和折射光的振动方向表示出来,并标明是线偏振光还是部分偏振光.图中.arctan ,00n i i i =≠题图14-12解:见图.题解14-12图题14-13图*14-13如果一个二分之一波片或四分之一波片的光轴与起偏器的偏振化方向成30°角,试问从二分之一波片还是从四分之一波片透射出来的光将是:(1)线偏振光?(2)圆偏振光?(3)椭圆偏振光?为什么?解:从偏振片出射的线偏振光进入晶(波)片后分解为e o ,光,仍沿原方向前进,但振方向相互垂直(o 光矢垂直光轴,e 光矢平行光轴).设入射波片的线偏振光振幅为A ,则有 A.2130sin ,A 2330cos οο====A A A A o e ∴e o A A ≠ e o , 光虽沿同一方向前进,但传播速度不同,因此两光通过晶片后有光程差.若为二分之一波片,e o ,光通过它后有光程差2λ=∆,位相差πϕ=∆,所以透射的是线偏振光.因为由相互垂直振动的合成得ϕϕ∆=∆-+22222sin cos 2e o e o A A xy A y A x∴ 0)(2=+e o A y A x即 x A A y o e -= 若为四分之一波片,则e o ,光的,4λ=∆位相差2πϕ=∆,此时1sin ,0cos =∆=∆ϕϕ∴ 12222=+e o A y A x即透射光是椭圆偏振光.*14-14 将厚度为1mm 且垂直于光轴切出的石英晶片,放在两平行的偏振片之间,对某一波长的光波,经过晶片后振动面旋转了20°.问石英晶片的厚度变为多少时,该波长的光将完全不能通过?解:通过晶片的振动面旋转的角度ϕ与晶片厚度d 成正比.要使该波长的光完全不能通过第二偏振片,必须使通过晶片的光矢量的振动面旋转ο90.∴ 1212::d d =ϕϕ mm 5.412090οο1122=⨯==d d ϕϕ。
大学物理答案第十四章 干涉习题答案
A. e k
2n2
C. e (2k 1)
4n1
B. e k
2 n1
D.
e (2k 1) 4n2
3.双缝干涉实验中,入射光波长为λ , 用玻璃纸遮住其中一缝,若玻璃纸中 光程比相同厚度的空气大2.5 ,则屏上 原0级明纹处( )
A.仍为明条纹 B.变为暗条纹 C.非明非暗 D.无Fra bibliotek确定是明纹还是暗纹
A.有一凹陷的槽,深入 / 4 B. 有一凹陷的槽,深入 / 2 C.有一凸起的埂,深入 / 4 D. 有一凸起的埂,深入
6. 一束白光以300的入射角照射平静的湖水 (水的折射率为4/3)表面的一层透明液体 (折射率为 10 / 2 )的薄膜,若反射光中 波长600nm的光显得特别明亮,则该透明液 体薄膜的最小厚度为( )
定之外,还必须满足两个附加条件 两相干光 的振幅不可相差太大 , 两相干光的光程差 不能太大 。
三、计算题
2. 双缝干涉实验装置如图所示,双缝与屏之间的距离
D=120cm,两缝之间的距离d=0.50mm , 用波长=5000Å的单色
光垂直照射双缝。
(1)求原点O(零级明条纹所在处)上方的第五级明条纹
干涉条纹间距 大 ,
若在光源S2右侧光路上放 置一薄玻璃片,则中央明
纹将向 下 移动
3.波长为λ的平行单色光垂直地照射到劈尖薄 膜上,劈尖薄膜的折射率为n,第二级明纹与第 五条明纹所对应的薄膜厚度之差是 3λ/2n 。
4.光强均为I0的两束相干光相遇而发生干涉时, 在相遇区域内有可能出现的最大光强是 4I0 。
(1).
空气劈尖的暗条纹:
2e(2k1)
22
第四条暗纹k=3 e3,50 n0 ,m etg
大学物理课后题答案14
习题十四14-1沿轴向磁化的介质棒,直径为25mm ,长为75mm ,其总磁矩为24m A 102.1⋅⨯。
求棒中的磁化强度和棒侧表面上的磁化面电流密度。
[解]根据磁化强度的定义V∑=m P M 可得m A 103.3107510225102.183234m ⨯=⨯⨯⎪⎭⎫⎝⎛⨯⋅⨯==--∑πVP M磁化面电流密度设为j ',θcos M j =' 由于表面//M ,因此m A 103.38⨯=='M J14-2如图所示,将一直径为10cm 的薄铁圆盘放在T 1040.040-⨯=B 的均匀磁场中,使磁力线垂直于盘面。
已知盘中心的磁感应强度T 10.0c =B ,假设盘被均匀磁化,磁化面电流可视为沿盘边缘流动的一圆电流。
求:(1)磁化面电流的大小;(2)盘轴线上距盘中心0.40m 处的磁感应强度。
[解](1)圆盘中心处的磁感应强度C B 可看成是沿盘边缘流动的圆电流(磁化面电流产生)。
由载流圆线圈在圆心处磁感应强度公式,有RI B 2s0c μ=所以A 1096.71.021.02104237c 0s ⨯=⨯⨯⨯⨯=⋅=-πμI RB II(2)s I 在轴线上产生的磁感应强度()()c232222322s20222B RxRR xRI R B μμμ⋅+⋅=+⋅='()()T 109.1T 1.04.005.005.0423223c 23223-⨯=⨯+=+=B xRR所以T 103.2104.0109.14440---⨯=⨯+⨯=+'=B B B14-3下列的几种说法是否正确,试说明理由。
(1)若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零;(2)若闭合曲线上各点H 均为零,则该曲线所包围传导电流的代数和为零;(3)H 仅与传导电流有关;(4)不论抗磁质还是顺磁质B 总与H 同向;(5)以闭合曲线L 为边界的各个曲面的B 通量均相等;(6)以闭合曲线L 为边界的各个曲面的H 通量均相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1414.1 选择题(1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ](A) 对应的衍射角变小. (B) 对应的衍射角变大.(C) 对应的衍射角也不变. (D) 光强也不变.[答案:B](2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。
今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ](A)2m. (B)1m. (C)0.5m.(D)0.2m. (E)0.1m[答案:B](3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ](A) N a sin=k. (B) a sin=k.(C) N d sin=k. (D) d sin=k.[答案:D](4)设光栅平面、透镜均与屏幕平行。
则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ](A)变小。
(B)变大。
(C)不变。
(D)的改变无法确定。
[答案:B](5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b(C) a=2b (D)a=3b[答案:B]14.2 填空题(1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________.λθ][答案:/sin(2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。
[答案:4](3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。
(填疏或密)[答案:变疏,变疏](4)在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(nm )中央明条纹为 4.0nm ,则nm (1nm=10-9m )的蓝紫色光的中央明纹宽度为 nm 。
[答案:3.0nm ](5)在透光缝数为N 的平面光栅的衍射实验中,中央主极大的光强是单缝衍射中央主极大光强的 倍,通过N 个缝的总能量是通过单缝的能量的 倍。
[答案:N 2,N ]14.3 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.14.4 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.14.5 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a14.6 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.14.7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.14.8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.14.9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )(ΛΛk k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级; (3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.14.10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强. (2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞.14.11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与600nm 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为)12(sin +=k a ϕ 2λ 当600=λnm 时,2=kx λλ=时,3=k重合时ϕ角相同,所以有)132(2600)122(sin +⨯=+⨯=ϕa 2x λ 得 6.42860075=⨯=x λnm14.12 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长; (2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得6003=λnm4=k ,得4704=λnm(2) 若6003=λnm ,则P 点是第3级明纹;若4704=λnm ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.14.13 用590=λnm 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯= mm 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.3590100.23max≈⨯=+=λb a k ,即实际见到的最高级次为3max =k .14.14 波长600=λnm 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin 2=ϕ与30.0sin 3=ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1) 由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:9106002)(20.0-⨯⨯=+b a 9106003)(30.0-⨯⨯=+b a得 6100.6-⨯=+b a m(2) 因第四级缺级,故此须同时满足λϕk b a =+sin )( λϕk a '=sin解得 k k ba a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m(3) 由λϕk b a =+sin )(λϕsin )(b a k +=当2πϕ=,对应max k k =∴ 1010600100.696max=⨯⨯=+=--λb a k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).14.15 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为480nm 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹? 解:(1)中央明纹宽度为02.01050104802260⨯⨯⨯⨯==-f a l λmm 4.2=cm(2)由缺级条件λϕk a '=sin λϕk b a =+sin )(知k k a b a k k '='=+'=502.01.0 ⋅⋅⋅=',2,1k即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.14.16 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为500nm ,求在透镜焦平面处屏幕上呈现的艾里斑半径. 解:由爱里斑的半角宽度46105.302.01050022.122.1--⨯=⨯⨯==D λθ∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f dmm14.17 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为550nm 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式Dλθ22.1=∴ 86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm14.18 已知入射的X 射线束含有从0.095~1.3nm 范围内的各种波长,晶体的晶格常数为0.275nm ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得kd ϕλsin 2=时满足干涉相长 当1=k 时, 389.045sin 75.22=⨯⨯=︒λnm2=k 时,191.0245sin 75.22=⨯⨯=︒λnm 3=k 时,130.0389.3==λnm 4=k 时, 097.0489.3==λnm 故只有130.03=λnm 和097.04=λnm 的X 射线能产生强反射.。