自动控制原理课后习题答案
自动控制原理课后习题与答案
目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。
本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。
1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。
图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。
(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。
(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。
给定环节:电压源0U 。
用来设定直流发电机电压的给定值。
比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。
它的作用是将偏差信号放大,使其足以带动 执行机构工作。
该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。
该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。
(完整版)自动控制原理课后习题答案
第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
自动控制原理_高等教育出版社_王万良__课后答案
G1 ( s )
R ( s) + −
G2 ( s )
C ( s)
图题 2.7 解:传递函数为:
C ( s) G2 ( s )[1 + G1 ( s)] = R( s ) 1 + G2 ( s)
2.8 简化图题 2.8 所示系统的结构图,并求传递函数 C ( s) 。 R( s )
2.4 设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。求图题 2.4 所示运算放大 电路的传递函数。其中, u i 为输入变量, u o 为输出变量。
R1
i
C
− +
ui
R2
图题 2.4
uo
解:
iR1 = u i 1 − id t = u o C ∫
整理得传递函数为:
uo (s) 1 =− ui ( s) R1CS
2.13
求图题 2.13 所示系统结构图的传递函数 C ( s) / R( s) 和 C ( s ) / N ( s ) 。
N(s) G3 (s) R(s)
⊗ −
G1 (s)
⊗
−
G2 (s) G4 (s) G5 (s)
⊗
C(s)
⊗
H(s)
图题 2.13 解:求 C ( s) / R( s) 时,令 N(s)=0,系统结构图变为
2.10 简化图题 2.10 所示系统的结构图,并求传递函数
C ( s) 。 R(s)
+
G3 (s )
R( s ) + −
G1 ( s) G 4 (s)
G 2 ( s)
自动控制原理_孟华_习题答案
自动控制原理课后习题答案第二章2.1 试分别写出图2.68中各无源电路的输入u r (t )与输出u c (t )之间的微分方程。
图2.68 习题2.1图解:(a)11r c u u i R -=,2()r c C uu i -= ,122c ui i R +=,12122121212c c r r R R R R R Cu u Cu u R R R R R R +=++++(b)11()r c C uu i -= ,121r u u i R -=,1221i i C u+= ,121c u i R u =+, 121211122112121121()()c c c r r r R R C C uR C R C R C u u R R C C u R C R C u u ++++=+++ (c)11r cu u i R -=,112()r C u u i -=,1122u i i R +=,1121cu i dt u C =+⎰, 121212222112122221()()c c c r r r R R C C u RC R C R C u u R R C C u R C R C u u ++++=+++2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中X r (t )为输入,X c (t )为输出,均是位移量。
(a) (b)图2.69 习题2.2图解:(a)11r cu u i R -=,12()r c C u u i -= ,12i i i +=,221c u idt iR C =+⎰,121211122212121122()()c c c r r r R R C C uR C R C R C u u R R C C u R C R C u u ++++=+++ (b)2121()c B xx K x -= ,1121()()()r c r c c B x x K x x B x x -+-=- , 121221212121211212()()c c c r r r B B B B B B B B Bx x x x x x K K K K K K K K K ++++=+++ 2.3 试分别求出图2.70中各有源电路的输入u r (t )与输出u c (t )之间的微分方程。
自动控制原理课后习题
分析稳定性,若稳定计
算性能指标。
G
(
s
)
(
s
1
)
1 (0
0 .
0
1
s
1
)2
1、环节特性分析
2、Bode曲线的绘制 3、性能指标计算 结论:系统稳定。
ωc≈10;
令 得
::(t gωγ111ω)88014128.02013ltt8ggωg01101c100.0c021tωg11 0.ω10c8101100
0
(-1,j0)
已知:Gk
(s)
k s(Ts 1)
得:P
1, q
1
绘制Nyquist曲线
N p 2(a b) 1 2(0 0.5) 2
结论:不稳定,右半平面有两个特征根。
0
(1)T1>T2 (-1,j0)
0 (2) T1<T2
已知:Gk
(s)
k(T2 s 1) , s 2 (T1s 1)
其中:( Ta ) 或( Ta )
2)分析两种情况下系统的稳定性.
3、某最小相位系统的如图所示。
1)求传递函数 2)求剪切频率和相角裕量
G k( s )
k(10s 1)2
s2 s 1(Ts 1)
(10s 1)2
s2 s 1(0.003 s
1)
c 100 , 73.76
4、已知单位反馈系统的
(-1,j0)
0
(2)
(1)
0
(-1,j0)
已知:P 2, q 0
已知:G(s) k , p 1,q 0,绘制Nyquist曲线,系统1: k 1;系统2 : k 1。 (Ts 1)
(完整版)自动控制原理课后习题及答案
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
(完整版)自动控制原理课后习题答案
第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
自动控制原理课后参考答案
第一章1-1图1-2是液位自动控制系统原理示意图。
在任意情况下,希望液面高度c维持不变, 试说明系统工作原理并画岀系统方块图。
图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位U r(表征液位的希望值C r);比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。
工作原理:当电位电刷位于中点(对应U r)时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度C r,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度C r。
当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r。
反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度C r。
系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输岀量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统?2c(t) =5 r2(t) t d2(^(1) dt ;3 2d c(t) 3d c(t) 6dc(t) --- 3 3 ---- 2 6 — dt dt dt xdc(t) dr(t)t c(t) =r(t) 3 dt dtc(t) = r(t)cos t 5 ;dr (t) tc(t) =3r(t)6 5 r(.)d. (5) dt =;(6)c(t)訂 2 ⑴;0, t ::: 6c(t)= “r(t), t 畠 6.(7) -解:(1)因为c(t)的表达式中包含变量的二次项 『(t),所以该系统为非线性系统。
(2) 因为该微分方程不含变量及其导数的高次幕或乘积项,且各项系数均为常数,所以该 系统为线性定常系统。
(完整版)自动控制原理习题及答案.doc
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
自动控制原理课后习题答案
第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
自动控制原理课后习题答案
R1R2C1C2d2du22(tt)(R1C1R2C2R1C2)dd2u(tt)u2(t) v(t)
R1C1ddV (tt)V(t)
输入
(b) 以电压u3(t)为输出量,列写微分方程为:
u1(t)
C1
R1 R2
C2
R1R2C 1C2d2d u32(tt)(R1C 1R2C2)dd3u (t)t(R1C21)u3(t)
y=x3+x4=G2x2+G4x2=(G2+G4)G1x1
y=(G2+G4)G1x1
G(s)=Y(s)/U(s)=(G2+G4)G1/(1+G3G2G1)
作业:2.59题 把图2.75改画为信号流图,并用Mason公式求u到y传递函数
方框图
u(S)
__
G1(s)
G5(s)
—
y(S)
G2(s)
—
G3(s)
essfls i0m se(s)1K K21K2
(b)当r(t)=1(t),f(t)=1(t)时的ess。 解:求输入误差传递函数,直接代数计算法:
根据电路定律写出单体微分方程式(2.2.2)和 (2.2.3)。把特征受控量uc(t)选作输出量,依 据式(2.2.2)和(2.2.3),消除中间量i(t) , 则可得到输入输出微分方程(2.2.4)。
3、利用Laplace变换求出传递函数
R
L
+
+
u(t) i(t)
输入
_
+ uc(t) _
y
输出
_
U(t)Ld dtiR i uC
自动控制原理课后习题答案
第二章作业 概念题:传递函数定义:
单输入输出线性定常系统的传递函数,定义为零初始条件下,系统输出 量的拉氏变换像函数与输入量的拉氏变换像函数之比。
自动控制原理课后答案
自动控制原理课后答案1. 根据反馈控制原理,系统的控制目标是通过比较输出信号与参考信号之间的差异,对系统的输入进行调整,使系统达到期望的状态或行为。
2. 控制系统一般包括传感器、执行器和控制器三个基本组成部分。
传感器用于收集系统的实时数据,执行器用于执行调整系统输入的指令,控制器则根据传感器采集的数据来计算和调整控制信号。
3. 反馈控制系统中,控制器根据系统的输出信号和参考信号之间的差异进行调整。
比例控制器(P控制器)只根据差异的大小,线性比例地调整控制信号;积分控制器(I控制器)不仅考虑差异的大小,还考虑差异的累积量;微分控制器(D控制器)则考虑差异的变化率。
4. P控制器适用于稳态差异较大的系统,可以快速调整系统输出至参考信号附近,但容易产生超调现象;I控制器适用于存在稳态差异的系统,可以逐渐消除稳态差异,但容易产生震荡现象;D控制器适用于存在瞬态差异的系统,可以抑制系统的瞬态响应,但无法消除稳态差异。
5. 比例积分微分控制器(PID控制器)是一种综合了P、I和D控制器的控制器。
通过合理地调整比例、积分和微分系数,可以实现系统的快速响应和稳定。
6. 开环控制系统和闭环控制系统都可以实现对系统的控制,但闭环控制系统更加稳定和鲁棒。
开环控制系统中,控制器不根据系统的反馈信号来调整控制信号,容易受到外部干扰和参数变化的影响。
7. 可以使用根据控制对象的动态特性设计的控制器来提高系统的控制性能。
常见的控制器设计方法包括根据稳态误差的允许范围来选取比例、积分和微分系数,以及根据系统传递函数进行校正和补偿。
8. 多变量控制系统可以同时控制多个输入和多个输出。
常见的多变量控制系统包括串级控制、并联控制和内模控制等。
9. 控制系统的稳定性是指当系统接受一定的输入时,输出是否趋于稳定。
稳定性的判断可以通过判断系统的传递函数的极点位置来确定。
10. 控制系统的仿真和实验可以通过使用计算机软件进行模拟仿真,或搭建实际的物理实验平台进行。
自动控制原理完整版课后习题答案
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
(西安电子科技大学出版社)自动控制原理课后习题答案
.( 西安电子科技大学出版社 )习题2-1试列写题2-1 图所示各无源网络的微分方程。
CR1LR1u i (t )R2u0 (t ) u i (t)C R2u0(t)( a)(b)题 2-1 图无源网络2-2试列写题2-2 图所示各有源网络的微分方程。
题 2-2图有源网络2-3 机械系统如题2-3 图所示,其中x r(t )是输入位移, x c (t ) 是输出位移。
试分别列写各系统的微分方程。
题 2-3 机械系统题 2-3 图机械系统2-4试证明题2-4( a)图的电网络系统和(b)图机械系统有相同的数学模型。
.x if 2K 2f1x0K1题2-4图电网络与机械系统2-5用拉氏变换法求解下列微分方程。
( 1)2c(t )7c(t )5c(t )r , r (t)R 1(t ) , c(0)0 , c(0) 0( 2)2c(t )7c(t )5c(t )0 , c(0)c0, c(0) c02-6如题 2-6图所示电路,二极管是一个非线性元件,其电流i d和电压id RU d之间的关系为 i d10 6 (e u d0.026 1) 。
假设系统工作点在u u du 02.39V ,i 0 2.19 10 3 A ,试求在工作点(0,0 )附近id d)的u i f (u线性化方程。
题2-6图2-7设晶闸管三相桥式全控整流电路的输入量为控制角,输出量为空载整流电压u d,它们之间的关系为u d U d 0 cos式中, U d 0是整流电压的理想空载值,试推导其线性化方程式。
2-8已知一系统由如下方程组组成,其中X r (s) 为输入, X 0 (s) 为输出。
试绘制系统结构图,并求出闭环传递函数。
X1( s)X r (s)G1(s) G1 (s) G7 (s) G8 (s) X0 (s)X 2 (s)G2 (s) X1( s) G6 ( s) X3 ( s)X 3 (s)X 2 (s)X c ( s)G5 ( s) G3 (s)X 0 (s)G4 (s)X 3(s)2-9系统的微分方程组如下. x1 (t )r (t)c(t)x2 (t )dx1(t)K 1 x1 (t) dtx3 (t)K 2 x2 (t )x4 (t )x3 (t )x5 (t )K 5 c(t)dx5 (t )dt K 3 x4 (t)K 4 x5(t) T dc(t )c(t )dt其中、K1、K 2、 K3、K 4、K 5、T均为正常数。
自动控制原理课后习题答案(王建辉、顾树生)
2-1 什么是系统的数学模型?在自动控制系统中常见的数学模型形式有哪些? 用来描述系统因果关系的数学表达式,称为系统的数学模型。
常见的数学模型形式有:微分方程、传递函数、状态方程、传递矩阵、结构框图和信号流图。
2-2 简要说明用解析法编写自动控制系统动态微分方程的步骤。
2-3 什么是小偏差线性化?这种方法能够解决哪类问题?在非线性曲线(方程)中的某一个工作点附近,取工作点的一阶导数,作为直线的斜率,来线性化非线性曲线的方法。
2-4 什么是传递函数?定义传递函数的前提条件是什么?为什么要附加这个条件?传递函数有哪些特点?传递函数:在零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比。
定义传递函数的前提条件:当初始条件为零。
为什么要附加这个条件:在零初始条件下,传递函数与微分方程一致。
传递函数有哪些特点:1.传递函数是复变量S 的有理真分式,具有复变函数的所有性质;n m 且所有系数均为实数。
2.传递函数是一种有系统参数表示输出量与输入量之间关系的表达式,它只取决于系统或元件的结构和参数,而与输入量的形式无关,也不反映系统内部的任何信息。
3.传递函数与微分方程有相通性。
4.传递函数)(s W 的拉氏反变换是系统的单位脉冲响应。
2-5 列写出传递函数三种常用的表达形式。
并说明什么是系统的阶数、零点、极点和放大倍数。
nn n nm m m m a s a sa s ab s b sb sb s W 11101110)(nj j mi i s T s T Ks W 1111)(其中nm a b Knj jmi igp sz s K s W 11)(其中00a b K g传递函数分母S 的最高阶次即为系统的阶数,i z 为系统的零点,j p 为系统的极点。
K 为传递函数的放大倍数,g K 为传递函数的根轨迹放大倍数。
2-6 自动控制系统有哪几种典型环节?它们的传递函数是什么样的?1.比例环节R 0R 1- +u ru c2.惯性环节R 01/Cs- +u ru cR 03.积分环节R 01/Cs- +u ru c4.微分环节R1/Cs- +u ru c5.振荡环节6.时滞环节2-7 二阶系统是一个振荡环节,这种说法对么?为什么?当阻尼比10时是一个振荡环节,否则不是一个振荡环节。
《自动控制原理》课后习题答案
掌握自动控制系统的一般概念(控制方式,分类,性能要求)6.(1)结构框图:Ug U Udn Uc UUr给定输入量: 给定值Ug 被控制量: 加热炉的温度扰动量: 加热炉内部温度不均匀或坏境温度不稳定等外部因素 被控制对象:加热器控制器: 放大器、发动机和减速器组成的整体 (2)工作原理:给定值输入量Ug 和反馈量Ur 通过比较器输出 U , 经放大器控制发动机的转速n ,再通过减速器与调压器调节加热器的电压U 来控制炉温。
T Ur U Ud n Uc U T7.(1)结构框图 略给定输入量:输入轴θr 被控制量: 输出轴θc扰动量: 齿轮间配合、负载大小等外部因素 被控制对象:齿轮机构 控制器: 液压马达 (2)工作原理:θc Ue Ug i θm θc比较器 放大器 减速器 调压器 电动机 加热器 热电偶干扰量实际温度掌握系统微分方程,传递函数(定义、常用拉氏变换),系统框图化简;1.(a)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdu C i R u i i u iR u t ct ct t r )(02)(0)(01)()2......()1(.......... 将(2)式带入(1)式得:)()(01)(021)(0t r t t t u dtdu C R u R R u =++拉氏变换可得)()(01)(0221s r s s U CsU R u R R R =+⎪⎪⎭⎫ ⎝⎛+整理得 21212)()(0)(R R Cs R R R U U G S r S s ++==1.(b)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdi L u R u i i u iR u Lt o t Lt t r )(2)(0)(01)()2........()1......(.......... 将(2)式代入(1)式得)()(0221)(01t r t t u u R R R dt u L R =++⎰ 拉氏变换得)()(0221)(01s r s s U U R R R U Ls R =++ 整理得LsR R R R LsR U U G s r s s )(21212)()(0)(++==2.1)微分方程求解法⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-31224203221211111Rudt du c Ruu R u R u Rudt du c R u u c c c c c c c c r中间变量为1c u,2c u及其一阶导数,直接化简比较复杂,可对各微分方程先做拉氏变换⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-3122423221211111RUU sc R U U RU R U RUU sc R U U c c c c c c c c r移项得⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++=2432432211211)11()111(c c c c rUR R sc RU R RU U U R R sc R U可得11121432432143214320)111()11(RR sc R R R R sc R R R R R R R R sc R R sc Ur U ++++=++++=2)复阻抗法⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+++=++=2211232223234212121111*11*11sc R sc z U sc R sc z U sc R sc R R z sc R sc R R z r解得:1112143243RR sc R R R R sc R R Ur U ++++=3.分别以m 2,m 1为研究对象(不考虑重力作用)⎪⎪⎩⎪⎪⎨⎧--=---=11212121121222222)()()(ky dty y d c dt y d m dty y d cdt dy c t f dt y d m 中间变量含一阶、二阶导数很难直接化简,故分别做拉氏变换⎪⎩⎪⎨⎧--=---=112112112122222)()()(kY Y Y s c Y s m Y Y s c sY c s F Y s m 消除Y1中间变量21211222))1(()(Yk s c s m sc s c s c s m s F s++-++=10.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)---++G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---+G 1(s)/(1+G 1(s)H 1(s))G 2(s)G 3(s)/(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)-G 1(s)G 2(s)G 3(s)/(1+G 1(s)H 1(s))(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)- +1.综合点前移,分支点后移G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---++2.交换综合点,交换分支点3.化简1231133221231133221133()()()()()(1()())(1()())()()()()()1()()()()()()()()()()o i X s G s G s G s X s G s H s G s H s G s H s G s G s G s G s H s G s H s G s H s G s H s G s H s =+++=++++11.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)-++ 1.综合点前移,分支点后移2.交换综合点,合并并联结构H 4(s)G 4(s)H 2(s)H 3(s)++--G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)/G 1(s)G 4(s)-+H 4(s)/G 1(s)G 2(s)G 4(s)H 2(s)/G 4(s)H 3(s)++--+-G 1(s)G 2(s)G 3(s)X i (s)X o (s)+-G 4(s)H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)3.化简G 1(s)G 2(s)G 3(s)G 4(s)X i (s)X o (s)+-H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)12341234243114412123123212343231344()()()()()()1()()()()(()/()()()/()()()/()())()()()1()()()()()()()()()()()()()()(o i X s G s G s G s G s X s G s G s G s G s H s G s H s H s G s G s H s G s G s G s G s G s G s G s G s H s G s G s G s G s H s G s G s H s G s G s H =+--+=+--+)s第三章掌握时域性能指标,劳斯判据,掌握常用拉氏变换-反变换求解时域响应,误差等2.(1)求系统的单位脉冲响应12()()()TsY(s)+Y(s)=KX(s)X(s)=1Y(s)=1()=20e t tTT y t y t Kx t K Ts k w t e T∙--+=+=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位脉冲信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应2.(2)求系统的单位阶跃响应,和单位斜坡响应22()()()TsY(s)+Y(s)=KX(s)X(s)=5Y(s)=1111110()10-10e ;1X(s)=Y(s)=t T y t y t Kx t KTK Ts Ts Ts sK s s s y t s∙-+=+++=-=-=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:22222110550111()510t+5e ;t K K KT T K Ts s s s Ts s s Ts y t -=-+=-++++=-+进行拉式反变换得到系统的时域相应9.解:由图可知该系统的闭环传递函数为22()(22)2b kG s s k s kτ=+++ 又因为:2122%0.20.512222r n n n e t k kπξξσπβωξξωτω--⎧⎪==⎪-⎪==⎨-⎪=+⎪⎪=⎩ 联立1、2、3、4得0.456; 4.593;10.549;0.104;n K ξωτ==== 所以0.76931.432p ds nt s t sπωξω====10.解:由题可知系统闭环传递函数为210()1010b kG s s s k=++ 221010n nk ξωω=⎧⎪⎨=⎪⎩ 当k=10时,n ω=10rad/s; ξ=0.5;所以有2/12%16.3%0.36130.6p n s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当k=20时,n ω=14.14rad/s; ξ=0.35;所以有2/12%30.9%0.24130.6pn s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当0<k<=2.5时,为过阻尼和临界阻尼,系统无超调,和峰值时间;其中调整时间不随k 值增大而变化; 当k>2.5时,系统为欠阻尼,超调量σ%随着K 增大而增大,和峰值时间pt 随着K 增大而减小;其中调整时间s t 不随k 值增大而变化;14.(1)解,由题可知系统的闭环传递函数为32560-1403256000056014014k 00()1440kb k k k s s s ks kG s s s s k->><<∴=+++∴⎧⎨⎩∴劳斯表系统稳定的充要条件为:14.(2)解,由题可知系统的闭环传递函数为320.60.8832430.60.80010.20.80.210.8k 00(1)()(1)k b k k k kk s s s ks k s G s s s k s k-->>>>-∴+=++-+∴⎧⎪⎨⎪⎩∴劳斯表系统稳定的充要条件为:20.解:由题可知系统的开环传递函数为(2)()(3)(1)k k s G s s s s +=+-当输入为单位阶跃信号时,系统误差的拉氏变换为11()111()lim limlim ()0k ss k ssss s s k s ss G s E G s ssE G s e →→→+=+===∞∴=又根据终值定理e 又因为25.解:由题可知系统的开环传递函数为1212()(1)(1)k k k G s T s T s =++当输入为给定单位阶跃信号时1()i X s s=,系统在给定信号下误差的拉氏变换为111211211()111()lim limlim ()11k ss k ss ss s s k s ss G s E G s ssE G s k k e k k →→→+=+===∴=+又根据终值定理e 又因为当输入为扰动信号时1()N s s=,系统扰动信号下误差的拉氏变换为22121122212212121()111()lim limlim ()111k ss k ss ss s s k s ss ss ss ss k G s k T s E G s ssE G s k k k e k k k e e e k k →→→-+-+=+===-∴=+-∴=+=+又根据终值定理e 又因为第四章 根轨迹法掌握轨迹的概念、绘制方法,以及分析控制系统4-2 (2)G(s)=)15.0)(12.0(++s s s K;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s 1=0,s 2=-2,s 3=-5。
自动控制原理_课后习题答案
系统方框图如图解 1-5 所示。 1-6 摄像机角位置自动跟踪系统如图 1-20 所示。当光点显示器对准某个方向时,摄像 机会自动跟踪并对准这个方向。试分析系统的工作原理,指出被控对象、被控量及给定量, 画出系统方框图。
图 1-20 摄像机角位置随动系统原理图
解 控制系统的任务是使摄像机自动跟踪光点显示器指示的方向。
器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以
2
下的控制过程:
控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 → T ° C ↓ → u f ↓ → ue ↑ → u1 ↑ → ua ↑ →θ ↑ → uc ↑ → T ° C ↑
图(a)系统,当 u 低于给定电压时,其偏差电压经放大器 K 放大后,驱动电机 D 转动, 经减速器带动电刷,使发电机 F 的激磁电流 I j 增大,发电机的输出电压会升高,从而使偏
差电压减小,直至偏差电压为零时,电机才停止转动。因此,图(a)系统能保持 110 伏不变。
图(b)系统,当 u 低于给定电压时,其偏差电压经放大器 K 后,直接使发电机激磁电流
图 2-33 系统原理图
解. (a)以平衡状态为基点,对质块 m 进行受力分析(不再
自动控制原理-孟华-习题答案
自动控制原理课后习题答案 第二章2.1 试分别写出图2.68中各无源电路的输入u r (t )与输出u c (t )之间的微分方程。
图2.68 习题2.1图解: (a)11r c u u i R -=,2()r c C u u i -=,122c u i i R +=,12122121212c c r r R R R R R Cu u Cu u R R R R R R +=++++ (b) 11()r c C u u i -=,121r u u i R -=,1221i i C u +=,121c u i R u =+, 121211122112121121()()c c c r r r R R C C u R C R C R C u u R R C C u R C R C u u ++++=+++(c)11r cu u i R -=,112()r C u u i -=,1122u i i R +=,1121c u i dt u C =+⎰, 121212222112122221()()c c c r r r R R C C u R C R C R C u u R R C C u R C R C u u ++++=+++2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中X r (t )为输入,X c (t )为输出,均是位移量。
(a) (b)图2.69 习题2.2图解: (a)11r cu u i R -=,12()r c C u u i -=,12i i i +=,221c u idt iR C =+⎰, 121211122212121122()()c c c r r r R R C C u R C R C R C u u R R C C u R C R C u u ++++=+++(b) 2121()c B x x K x -=,1121()()()r c r c c B x x K x x B x x -+-=-,121221212121211212()()c c c r r r B B B B B B B B Bx x x x x x K K K K K K K K K ++++=+++2.3 试分别求出图2.70中各有源电路的输入u r (t )与输出u c (t )之间的微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2根据题1.2图所示的电动机速度控制系统工作原理 (1)将a,b 与c,d 用线连接成负反馈系统; (2)画出系统框图。
c d+-发电机解:(1) a 接d,b 接c.(2) 系统框图如下1.3题1.3图所示为液位自动控制系统原理示意图。
在任何情况下,希望页面高度c 维持不变,说明系统工作原理并画出系统框图。
解:工作原理:当打开用水开关时,液面下降,浮子下降,从而通过电位器分压,使得电动机两端出现正向电压,电动机正转带动减速器旋转,开大控制阀,使得进水量增加,液面上升。
同理,当液面上升时,浮子上升,通过电位器,使得电动机两端出现负向电压,从而带动减速器反向转动控制阀,减小进水量,从而达到稳定液面的目的。
系统框图如下:2.1试求下列函数的拉式变换,设t<0时,x(t)=0: (1) x(t)=2+3t+4t 2解:X(S)=s 2 +23s +38s(2) x(t)=5sin2t-2cos2t解:X(S)=5422+S -242+S S=42102+-S S(3) x(t)=1-et T1-解:X(S)=S1-TS 11+=S 1-1+ST T=)1(1+ST S(4) x(t)=et4.0-cos12t解:X(S)=2212)4.0(4.0+++S S2.2试求下列象函数X(S)的拉式反变换x(t): (1) X(S)=)2)(1(++s s s解:=)(S X )2)(1(++s s s=1122+-+S St t e e t x ---=∴22)((2) X(S)=)1(15222++-s s s s 解:=)(S X )1(15222++-s s s s =1512+-+S S S=1151122+-++S S S S t t t u t x sin 5cos )()(-+=∴(3) X(S)=)42)(2(82322+++++s s s s s s解:=)(S X )42)(2(82322+++++s s s s s s =2)1(12212+++++-S S S S t e e t x t t 2c o s 21)(2--+-=∴2.3已知系统的微分方程为)()(2)(2)(22t r t y dt t dy dt t y d =++式中,系统输入变量r(t)=δ(t),并设y(0)=)0(y .=0,求系统输出y(t).解:)()(2)(2)(22t r t y dt t dy dt t y d =++且y(0)=)0(y .=0 两边取拉式变换得∴1)(2)(2)(2=++S Y S SY S Y S 整理得Y(S)=1)1(122122++=++S S S 由拉式反变换得y(t)=t t sin e -2.4列写题2.4图所示RLC 电路的微分方程。
其中,u i 为输入变量,u o 为输出变量。
LR解:由基尔霍夫电压定律,可列写回路方程o L R i u u u u ++=设回路电流为i ,又因为dtdu Ci o =,所以,i o u u dt diL iR =++,所以代入电流可得其微分方程i o oo u u dt du RC dtu d LC =++222.5列写题2.5图所示RLC 电路的微分方程。
其中,u i 为输入变量,u o 为输出变量。
u )(t L解:设流过L 的电流为i ,流过R 的电流为1i ,流过C 的电流为2i 。
有dt t du C i i i o )(21==-,R t u i o )(1=。
所以有=+=21i i i dtt du C R t u o o)()(+ 且o L i u u u +=所以,o o o o i u dt du R L dtt u d LC u dt diL u ++=+=22)(2.6设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。
求题2.6图所示运算放大电路的传递函数。
其中,u i 为输入变量,u o为输出变量。
C解:由dt du C R u o i -1=两边进行拉式变换得)(-)(1s CSU R s U o i = 所以其传递函数为CSR s U S U i O 11-)()(= 2.7简化题2.7图系统的结构图,并求传递函数)()(S R S C 。
解:设G1后为X ,H1后为Y ,由结构图写线性代数方程XS G C X C S H Y X Y S H S R S G )()(])()()[(2211=-==-消去中间变量X ,Y,得传递函数为)()()()()()(1)()()()(11212121S H S G S H S H S G S G S G S G S R S C -+=2.8简化题 2.8图系统的结构图,并求传递函数)()(S R S C 。
解:设G 1(S)前为Y ,G2(s)前为X 。
由结构图写线性代数方程)()()()()()()()()(22112S C S XG XS H S C S YG YS H S H S C S R ==-=- 消去中间变量X ,Y,得传递函数为)()()()()()(1)()()()(22212121S H S G S H S H S G S G S G S G S R S C ++=2.9简化题 2.9图系统的结构图,并求传递函数)()(S R S C 。
(S R 解:设第一环后为X ,第二环后为Y ,由结构图写线性代数方程)()()()()()(21S C SYG Y X S G S R XS C S R ==+=- 消去中间变量X ,Y ,得传递函数为 )(1))(1)(()()(212S G S G S G S R S C ++=2.10简化题 2.10图系统的结构图,并求传递函数)()(S R S C 。
解:设第一环后为X ,第三环后为Y ,由结构图写线性代数方程YS YG S C S C S G S G S R X X S YG S G S R =+=+=-)()()()())()(()()()(43142 消去中间变量X ,Y,得传递函数为)()()(1))(1)(())()(()()(4434321S G S G S G S G S G S G S G S R S C -+-=3.1已知系统特征方程如下,试用劳斯判据判别系统稳定性,并指出位于右半S 平面和虚轴上的特征根的数目。
(1)D (S )=012442345=+++++S S S S S5S 1 4 2 4S 1 4 1 3Sε 1 0 2Sε14-1 01S14142---εεε 0 00S 1 0 0系统不稳定,有2个特征根在右半S 平面。
(2)D(S)=046895323456=++++++S S S S S S 解:劳斯表构成如下6S 1 5 8 45S 3 9 6 4S 2 6 4 3S 8 12 2S 3 4 1S 4/30S4因为劳斯表第一列数符号相同,所以系统是稳定的。
有4个根在虚轴上。
(3)D(S)=02535201232345=+++++S S S S S5S 1 12 35 4S 3 20 25 3S 16/3 80/3 2S 5 25 1S 100S25因为劳斯表第一列数符号相同,所以系统是稳定的。
有2个根在虚轴上。
(4)D(S)=04473223456=-----+S S S S S S 解:劳斯表构成如下6S 1 -2 -7 -45S 1 -3 -4 4S 1 -3 -4 3S 4 -6 2S -3 -8 1S -500S-4因为劳斯表第一列数符号变化1次,所以系统是不稳定的,有1个特征根在右半S 平面。
求解辅助方程043)(24=--=S S S F ,可得系统对称于原点的特征根为j S S ±=±=4,32,1,2。
3.3已知单位负反馈控制系统的开环传递函数为)2()(222n n vn S S S K S G ωζωω++= 当n ω=901-S ,阻尼比2.0=ζ时,试确定v K 为何值时系统是稳定的。
解:系统开环传递函数为)2()(222n n vn S S S K S G ωζωω++=,特征方程为 02)(2223=+++=v n n n K S S S S D ωωζω劳斯表构成如下 3S1 2n ω 2S n ζω2 v n K 2ω1Sζωζω222nv n K -0Sv n K 2ω由劳斯稳定判据,系统稳定的充分必要条件为ζωζω222nv n K ->0v n K 2ω>0又因为n ω=901-S ,阻尼比2.0=ζ,所以可得0<v K <36时,系统是稳定的,当v K =36时系统临界稳定。
3.5已知反馈控制系统的传递函数为)1(10)(-=S S S G ,H(S)=s K h +1 ,试确定闭环系统临界稳定时h K 的值。
解:开环特征方程 )1()1(10)1()1(10)()(-+=+-=S S S K S K S S S H S G h h 闭环特征方程 0)1(10)1(=++-S K s s h 即010)110(2=+-+S K S h2S 1 101S 110-h K 0S 10当110-h K >0,即h K >0.1稳定,当h K =0.1时,系统临界稳定。
3.7在零初始条件下,控制系统在输入信号r(t)=1(t)+t1(t)的作用下的输出响应为c(t)=t1(t),求系统的传递函数,并确定系统的调节时间s t 。
解:对输入输出信号求拉式变换得r(S)=211S S +,c(S)= 21S。
所以系统的传递函数为 11)()()(+==Φs s r s c s ,系统的时间常数为T=1s,所以系统的调节时间s t =⎩⎨⎧=∆=∆2453。
3.9要求题3.9图所示系统具有性能指标:s t p p 5.0%,10%==σ。
确定系统参数K 和A ,并计算rt ,st 。
解:系统的闭环传递函数为K S KA S K AS S S K S S KS R S C +++=++++=)1()1()1(1)1()()(2,可见,系统为典型二阶系统:KA K n n+==122ζωω,,由p σ%=%10%10021=⨯--ζζπe 得21ζζπ-=1.01ln=2.30 所以ζ=0.698 由s t n p 5.012=-=ζωπ 得1277.815.0-=-=s n ζπω ,则91.762n==ωK 144.012=-=KA n ζω 211cos ζωζπ--=-n r t =0.34s s ns 65.04t ==ζω (2=∆)s ns 49.03t ==ζω (5=∆)3.11设典型二阶系统的单位阶跃响应曲线如题3.11图所示。