2016年南京市中考模拟数学测试卷及答案(新城二模)资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年中考模拟数学测试卷(新城二模)
全卷满分120分.考试时间为120分钟.
一、选择题(本大题共6小题,每小题2分,共12分.) 1.实数a 的相反数是
A .a
B .-a
C .1a
D .|a |
2.计算a 3·(1a
)2的结果是
A .a
B .a 5
C .a 6
D .a 8
3.体积为90的正方体的棱长在
A .3 与4之间
B .4与5之间
C .5与6之间
D .6与7之间
4.小明根据演讲比赛中九位评委所给的分数制作了如下表格:
如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是
A .平均数
B .中位数
C .众数
D .方差
5.如图,以O 为圆心,任意长为半径画弧,与射线OA 交于点B ,再以B 为圆心,BO 长 为半径画弧,两弧交于点C ,画射线OC ,则sin ∠AOC 的值为
A .12
B .
33
C .
22
D .
32
6.小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分)之间的关系可以近 似地用二次函数来刻画.经测试得出部分数据如下表:
下列选项中,最接近摩天轮转一圈的时间的是 A .8分 B .7分
C .6分
D .5分
二、填空题(本大题共10小题,每小题2分,共计20分.) 7.函数y =x 1-x
中,自变量x 的取值范围是 ▲ .
(第5题)
C
A
B
O (第6题)
8.已知⎩⎨⎧x =2,
y =1
是方程3x +ay =5的解,则a = ▲ .
9.据统计,江苏省参加高考学生人数持续减少,今年再创历史新低,2016年江苏省高考报 名人数约360 400人.将360 400用科学记数法表示为 ▲ .
11.如图,一束平行太阳光照射到等边三角形上,若∠α=28°,则∠β= ▲ °. 12.如图,在平面直角坐标系中,点A (0,1)、B (0,-1),以点A 为圆心,AB 为半径 作圆,交x 轴于点C 、D ,则CD 的长是 ▲ .
13.若关于x 的方程x 2-25x +1=0的一个根为x 1=5+2,则另一个根x 2= ▲ . 14.在平面直角坐标系xOy 中,A (1,2)、B (3,2),连接AB .写出一个函数y =k
x (k
≠0),使它的图像与线段AB 有公共点,那么这个函数的表达式可能为 ▲ . 15.如图,AB =5,P 是线段AB 上的动点,分别以AP 、BP 为边,在线段AB 的同侧作正方 形APCD 和正方形BPEF ,连接CF ,则CF 的最小值是 ▲ .
16.如图,在正方形ABCD 中,AD =5,点E 、F 是正方形ABCD 外的两点,且AE =FC =3, BE =DF =
三、解答题(本大题共有11小题,共计88分.)
17.(6分)解不等式组⎩⎪⎨⎪⎧2x +4<5(x +
2),
2x 3
+1≥x ,并把它的解集在数轴上表示出来.
(第16题)
A
B
C
D
E
F
(第15题) (第11题)
(第12题)
18.(6分)先化简,再求值:a -3a -2÷(a +2-5
a -2),其中a =2016.
19.(7分)
(1)某校有A 、B 两个食堂,甲、乙、丙三位同学各自随机选择其中的一个食堂就餐, 求三位同学在相同食堂就餐的概率.
(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A 、B 、C 、D 处,每个人 都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、 丁四位同学互不相遇的概率是 ▲ .
20.(8分)“慈母手中线,游子身上衣”,为了解某校1000名学生在5月8日“母亲节” 期间对母亲表达感谢的方式,某班兴趣小组随机抽取了部分学生进行问卷调查,并将问
卷调查的结果绘制成如下不完整的统计表:
(1)本次问卷调查抽取的学生共有 ▲ 人,其中通过给母亲一个爱的拥抱表达感谢 的学生有 ▲ 人;
(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示; (3)根据抽样的结果,估计该校学生通过帮母亲做家务表达感谢的约有多少人?
某校抽取学生“母亲节”期间对母亲表达感谢的方式的统计表
21.(8分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数
与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
22.(8分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点B 作BE ∥AC ,交DC 的延长线于点E .
(1)求证:△BDC ≌△BEC ;
(2)若BE =10,CE =6,连接OE ,求OE 的值.
(第22题)
A
B C D
E
O
23.(8分)如图,在△ABC 中,∠C =90°,∠A =α,D 是边AC 上一点,且∠BDC =β,AD =a ,求BC 的长.(用含a 、α、β的式子表示)
24.(9分)小明从家骑车出发,沿一条直路到相距2400m 的书店买书,同时,小明的爸爸 以80m/min 速度从书店沿同一条路步行回家,小明在书店停留3分钟后沿原路以原速 返回.设他们出发x min 后,小明与爸爸分别到达离家y 1 m 、y 2
m 的地方,图中的折线 OABC 、线段DE 分别表示y 1、y 2与x 之间的函数关系. (1)求点P 的坐标,并解释点P 的实际意义;
(2)求线段BC 所在直线的函数表达式;
(3)小明从书店返回,从开始到追上爸爸需要多长时间?这时他与爸爸离家还有多远?
25.(8分)已知二次函数y=x2+(m-3)x+1-2m.
求证:(1)此二次函数的图像与x轴有两个交点;
(2)当m取不同的值时,这些二次函数的图像都会经过一个定点,求此定点的坐标.
26.(9分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,交CA的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若∠C=30°,EF=3,求EB的长.
B
(第26题)
27.(11分)定义:如图①,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、 BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点. (1)已知点M 、N 是线段AB 的勾股分割点,若AB =12,AM =3,求BN 的长. (2)如图②,在菱形ABCD 中,点E 、F 分别在BC 、CD 上,BE =12BC ,DF =1
3CD ,
AE 、AF 分别交BD 于点M 、N . 求证:M 、N 是线段BD 的勾股分割点.
(3)如图3,点M 、N 是线段AB 的勾股分割点,MN >AM ≥BN ,△ABC 、△MN 分别 是以AB 、MN 为斜边的等腰直角三角形,且点C 与点D 在AB 的同侧,若MN =4, 连接CD ,则CD = ▲ .
A B
C
D
M N 图③
A
B
C D
E
F
M
N
图② A
B
M 图①
N
(第27题)
2016年中考模拟数学测试卷(新城二模)
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计12分)
二、填空题(每小题2分,共计20分)
7. x ≠1 8.-1 9.3 .604×105 10.3 11.32 12. 2 3 13.5-2 14. y =2
x (答案不惟一) 15. 5 16.7 2
三、解答题(本大题共11小题,共计88分) 17.(本题6分)
解:解不等式①,得x >-2. ····································································· 2分
解不等式②,得x ≤3. ········································································ 4分 解集数轴表示. ················································································· 5分 所以不等式组的解集是-2<x ≤3. ························································ 6分
18.(本题6分)
解:原式=(a -3a -2)÷a 2-4-5
(a -2)
······································································· 2分
=1a +3. ······················································································· 4分 当a =2016时, 原式=
1 2016+3=1
2019
. ···································································· 6分
19.(本题7分)
解:(1)甲、乙、丙选择A ,B 两个食堂的事件有(A ,A ,A ),(A ,A ,B ),(A ,B ,
A ),(A ,
B ,B ),(B ,A ,A ),(B ,A ,B ),(B ,B ,A ),(B ,B ,B ). 一共有8种可能的结果,它们是等可能的,其中符合要求的有2种. P (甲、乙、丙选择相同食堂)= 28 = 1
4
.
答:甲、乙、丙选择相同食堂的概率为 1
4. ······································· 5分
(2)18
. ···························································································· 7分
20.(本题8分)
解:(1)50,4. ······················································································ 2分 (2)选择条形图或扇形统计图,画图正确. ············································· 5分 (3)1 000×16%=160人.
答:估计该校1 000名学生中通过帮母亲做家务表达感谢的约有160人. · 8分
21.(本题8分)
解:设每消耗1千卡能量需要行x 步.
根据题意,得12000x +10=9000x , ································································· 4分
解得x =30. ····················································································· 6分 经检验:x =30是原方程的解.
答:每消耗1千卡能量需要行30步. ····················································· 8分
22.(本题8分)
(1)证明:∵ 四边形ABCD 为矩形,
∴ AB =CD ,AB ∥DC .∴∠BCD =∠BCE =90°. ∵ AC ∥BE ,
∴ 四边形ABEC 为平行四边形. ∴ AB =CE .∴ DC =EC . 在△BCD 和△BCE 中,
DC =EC ,∠BCD =∠BCE ,BC =BC .
∴△BCD ≌△BCE . ············································································ 4分 (2)解:过点O 作OF ⊥CD 于点F . ∵四边形ABEC 为平行四边形, ∴ AC =BE .∴ BE =BD =10. ∵△BCD ≌△BCE , ∴ CD =CE =6.
易得CF =DF =1
2CD =3. ··································································· 6分
∴EF =9.
在Rt △BCE 中,由勾股定理可得BC =8. ∵ OB =OD ,
∴ OF 为△BCD 的中位线, ∴ OF =1
2
BC =4.
∴在Rt △OEF 中,由勾股定理可得OE =OF 2+EF 2=42+92=97. ······· 8分 23.(本题8分)
解:在Rt △ABC 中,由tan α=
BC AC ,得AC =BC
tan α
, ··········································· 2分 在Rt △DBC 中,由tan β=BC DC ,得DC =BC
tan β, ·········································· 4分
∵AD =a ,∴BC tan α-BC
tan β=a , ································································ 6分
∵BC =a ⋅tan α⋅tan β
tan β-tan α
. ············································································ 8分
24.(本题9分)
A
B
C
D E
O F
解:(1)∵2400-80×12=2400-960=1440,∴点P 的坐标为(12,1440). ······ 1分
P 的实际意义:小明的爸爸从书店出发12分钟后,离家1440米. ········· 3分 (2)由题意得C 点坐标为(27,0),
设线段BC 所在直线的函数表达式为y =kx +b ,∴⎩⎨⎧15k +b =2400,
27k +b =0.
········ 4分
解之得⎩⎨
⎧k =-200,b =5400.
∴线段BC 所在直线的函数表达式为y =-200x +5400.6分
(3)线段BC 所在直线的函数表达式为y =-80x +2400,
∴⎩⎨⎧y =-200x +5400,y =-80x +2400, ···································································· 7分 解之得⎩⎨⎧x =25,y =400.
············································································ 8分
25-15=10. ················································································ 9分
答:小明从书店返回,从开始到追上爸爸需要10分钟.这时他与爸爸离家还有400米.
25.(本题8分)
证明:(1)b 2-4ac =(m -3)2-4(1-2m )= m 2+2m +5=(m +1)2+4,
∵(m +1)2≥0,∴(m +1)2+4>0,
∴二次函数图像与x 轴有两个交点. ············································· 3分 (2)当x =2时,y =22+(m -3)×2+1-2m =4+2m -6+1-2m =-1. · 6分
∴当m 取不同的值时,这些二次函数的图像都会经过(2,-1). ······· 8分
26.(本题9分)
(1)证明:连接OD 、AD ,
∵AC 为⊙O 的直径,∴∠ADC =90°. 又∵AB =AC ,∴CD =DB .又CO =AO , ∴OD ∥AB .∵DE ⊥AB , ∴OD ⊥DF .
又∵OD 为⊙O 的半径,
∴DF 是⊙O 的切线. ·········································································· 4分 (2)解:∵∠C =30°,∴∠AOD =60°,在Rt △ODF 中,∠ODF =90°, ∴∠F =30°,∴OA =OD =12
OF .
在Rt △AEF 中,∠AEF =90°,∵EF =3,∴AE =1.
∵OD ∥AB ,OA =OC =AF .∴OD =2AE =2,
∴AB =2OD =4.
∴EB =3. ························································································ 9分 27.(本题11分)
解:(1)∵AB =12,AM =3,∴BM =9,
设BN =x ,由题意得32+x 2=(9-x )2,∴x =4. ······························ 2分
2016年中考模拟数学测试卷(新城二模)
初三数学 第 11 页 共 11 页
或32+(9-x )2= x 2,∴x =5. ····················································· 4分 答:BN 的长为4或5.
证明:(2)∵菱形ABCD ,∴AB =BC =CD =DA ,BC ∥DA .∴△AMD ∽△EMB .
∴AD EB =MD MB .∵BE =12BC ,∴DM =2BM ,∴BM =13
BD . ··················· 5分 同理DN =14
BD . ······································································· 6分 ∴MN =BD -13BD -14BD =512
BD . ················································· 7分 ∵BM 2+DN 2=(13BD)2+(14BD)2=25144BD 2=(512
BD)2=MN 2. ∴M 、N 是线段BD 的勾股分割点. ·············································· 9分
(3)22. ·················································································· 11分。