大学物理机械波习题及答案解析

合集下载

大学物理机械波习题附答案

大学物理机械波习题附答案

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) btax A t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C)大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反y (m) y (m) - y (m) y (m)(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长(B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

(完整版)机械波习题及答案

(完整版)机械波习题及答案

(完整版)机械波习题及答案波的形式传播波的图象认识机械波及其形成条件,理解机械波的概念,实质及特点,以及与机械振动的关系;理解波的图像的含义,知道波的图像的横、纵坐标各表示的物理量.能在简谐波的图像中指出波长和质点振动的振幅,会画出某时刻波的图像一、机械波⑴机械振动在介质中的传播形成机械波.⑵机械波产生的条件:①波源,②介质.二、机械波的分类⑴)横波:质点振动方向与波的传播方向垂直的波叫横波.横波有波峰和波谷.⑵纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有疏部和密部.三、机械波的特点(1)机械波传播的是振动形式和能量,质点只在各自的平衡位置附近振动,并不随波迁移.⑵介质中各质点的振动周期和频率都与波源的振动周期和频率相同⑶离波源近的质点带动离波源远的质点依次振动⑷所有质点开始振动的方向与波源开始振动的方向相同。

四、波长、波速和频率的关系⑴波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长,对于横波:相邻的两个波峰或相邻的两个波谷之间的距离等于一个波长.对于纵波:相邻的两个密部中央或相邻的两个疏部中央之间的距离等于一个波长.⑵波速:波的传播速率叫波速.机械波的传播速率只与介质有关,在同一种均匀介质中,波速是一个定值,与波源无关.⑶频率:波的频率始终等于波源的振动频率.⑷波长、波速和频率的关系:v=λf=λ/T五、波动图像波动图象是表示在波的传播方向上,介质中各个质点在同一时刻相对平衡位置的位移,当波源做简谐运动时,它在介质中形成简谐波,其波动图象为正弦或余弦曲线.六、由波的图象可获取的信息⑴该时刻各质点的位移.⑵质点振动的振幅A.⑶波长.⑷若知道波的传播方向,可判断各质点的运动方向.如图7-32-1所示,设波向右传播,则1、4质点沿-y方向运动;2、3质点沿+y方向运动.⑸若知道该时刻某质点的运动方向,可判断波的传播方向.如图7-32-1中若质点4向上运动,则可判定该波向左传播.⑹若知波速v的大小。

《大学物理》习题册题目及答案第16单元 机械波

《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。

设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。

(B) 它的势能转换成动能。

(C) 它从相邻的一段质元获得能量其能量逐渐增大。

(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。

1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。

《大学物理学》机械波练习题

《大学物理学》机械波练习题

《大学物理学》机械波部分自主学习材料(解答)一、选择题10-1.图(a )表示0t =时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线,则图(a )中所表示的0x =处质点振动的初相位与图(b )所表示的振动的初相位分别为( C ) (A )均为2π; (B )均为π-; (C )π与π-; (D )2π-与2π。

【提示:图(b )为振动曲线,用旋转矢量考虑初相角为2π-,图(a )为波形图,可画出过一点时间的辅助波形,可见0x =处质点的振动为由平衡位置跑向负方向,则初相角为2π】10-2.机械波的表达式为0.05cos(60.06)y t x ππ=+,式中使用国际单位制,则( C ) (A )波长为5m ; (B )波速为110m s -⋅;(C )周期为13秒; (D )波沿x 正方向传播。

【提示:利用2k πλ=知波长为1003λ=m ,利用u k ω=知波速为1100u m s -=⋅,利用2T πω=知周期为13T =秒,机械波的表达式中的“+”号知波沿x 负方向传播】10-3.一平面简谐波沿x 轴负方向传播,角频率为ω,波速为u ,设4Tt =时刻的波形如图所示,则该波的表达式为( D )(A )cos[()]xy A t u ωπ=-+; (B )cos[()]2x y A t u πω=--;(C )cos[()]2x y A t u πω=+-;(D )cos[()]xy A t uωπ=++。

【提示:可画出过一点时间的辅助波形,可见在4Tt =时刻,0x =处质点的振动为由平衡位置向正方向振动,相位为2π-,那么回溯在0t=的时刻,相位应为π】10-4.如图所示,波长为λ的两相干平面简谐波在P 点相遇,波在点1S 振动的初相是1ϕ,到P 点的距离是1r 。

波在点2S 振动的初相是2ϕ,到P 点的距离是2r 。

以k 代表零或正、负整数,则点P 是干涉极大的条件为( D )OO1S 2S r(A )21r r k π-=; (B )212k ϕϕπ-=; (C )212122r r k ϕϕππλ--+=;(D )122122r r k ϕϕππλ--+=。

大学物理三习题机械波

大学物理三习题机械波

1. 一平面简谐波,波速u = 5 m/s,t = 3 s时波形曲线如图, 则x = 0处质点的振动方程为 y (m)
1 1 2 y 2 10 cos( πt π) 2 2
u O x (m) 5 10 15 20 25 -2×10 2
y 2 102 cos( πt π)
X1处0时刻位移为零 ¼ 周期后 正向最大值
4. 已知波源的振动周期为 4.00 10 秒, 波的传播速度为 300m/s,波沿 x 轴正向 传播,则位于 x1 10.0 m 和 x2 16.0 m 的两质点振动位相差为_______________
2

6m 0.02s ½ 周期
5. 如图,一平面波在介质中以波速 u = 20 m/s 沿 x 轴负方向传播,已知 A 点的振动方程 为
(2) 因波速与传播方向相反,先设波动方程为 y A cos2 因为以 x 为原点,则表达形式应该为


t x , T
t x t x y A cos2 A cos[ 2 ( ) ] T T
2A/ 2
O -A 100
P x (m)
T=1/250=0.004 w=2π/0.004
1. 如图所示,两列波长为 的相干波在P点相遇.波在S1点振 动的初相是 1,S1到P点的距离是r1;波在S2点的初相是 2, S2到P点的距离是r2,以k代表零或正、负整数,则P点是干涉 极大的条件为:
r2 r1 k
S1 S2
r1 r2
P
2 1 2kπ
2 1 2π(r2 r1 ) / 2kπ
2 1 2π(r1 r2 ) / 2kπ

《大学物理学》(网工)机械波练习题(解答)

《大学物理学》(网工)机械波练习题(解答)
机械波部分-5
合肥学院《大学物理 B》(网工)自主学习材料
4.一列机械波沿 x 轴正向传播, t =0 时的波形如图所示,
已知波速为10 m/s,波长为2m,求: (1)波动方程;
(2) P 点的振动方程及振动曲线; (3) P 点的坐标; (4) P 点回到平衡位置所需的最短时间
(D)
53
53
(A) y 4sin 2 ( t x) ; (B) y 4sin 2 ( t x) ;
22
22
53
53
(C) x 4sin 2 ( t y) ; (D) x 4sin 2 ( t y) 。
22
22
【提示:找出正好方向相反的那个波】
拓展题:平面简谐波 y 4 cos(5 t 3 x) 与下面哪列波相干可形成驻波?
由波速 5m/s 知: ku 5 ,

由于是 y-t 图,可直接作旋转矢量知
2 波动方程为: y 0.1cos(5 t x ) 22
(2)将 x=0.5 代入波动方程,有:
3 y0.5 0.1cos(5 t 4 ) 则 t =0 时的波形图
2 x
4.一驻波的表达式为 y 2A cos( ) cos 2 t ,两个相邻的波腹之间的距离为


【提示:驻波相邻两波腹之间的距离为半个波长,即为 / 2 】
三、计算题
1.沿绳子传播的平面简谐波的波动方程为 y 0.05cos(10 t 4 x) ,求:(1)绳子上各质点振动时
6-7.某时刻驻波波形曲线如图所示,则 a,b 两点位相差是 (A)π; (B)π/2 ; (C)5π/4; (D) 0。
【提示:驻波波节两边的相位相反,两波节之间各点的振动相位相同】

物理机械波试题及答案

物理机械波试题及答案

物理机械波试题及答案一、选择题(每题2分,共10分)1. 机械波的传播速度取决于:A. 波源的振动速度B. 介质的密度C. 介质的弹性模量D. 波源的振动频率答案:C2. 以下哪种波不属于机械波?A. 声波B. 光波C. 地震波D. 电磁波答案:D3. 机械波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积为常数答案:B4. 波的干涉现象中,两个波源发出的波在空间某点相遇时,若该点的振动加强,则该点的振动幅度:A. 增加B. 减小C. 保持不变D. 无法确定答案:A5. 波的衍射现象发生在:A. 波遇到障碍物时B. 波遇到比波长大得多的障碍物时C. 波遇到比波长小得多的障碍物时D. 波遇到与波长相近的障碍物时答案:D二、填空题(每题2分,共10分)1. 机械波的传播需要______,而电磁波的传播不需要。

答案:介质2. 波的反射现象中,反射波的频率与入射波的频率______。

答案:相同3. 波的折射现象中,折射角与入射角的关系取决于______。

答案:介质的折射率4. 波的多普勒效应是指波源与观察者之间存在相对运动时,观察者接收到的波的频率与波源发出的频率______。

答案:不同5. 波的干涉现象中,当两个波的相位差为______时,会发生相长干涉。

答案:0度或整数倍的360度三、简答题(每题10分,共20分)1. 请简述机械波的传播过程。

答案:机械波的传播过程是指波源振动时,通过介质中的分子或原子的相互作用,使振动能量从一个分子传递到另一个分子,从而形成波动。

波源的振动使得介质中的分子或原子产生周期性的位移,这些位移又通过介质中的弹性力和惯性力传递给相邻的分子或原子,形成连续的波动。

波的传播速度取决于介质的性质,如密度和弹性模量。

2. 什么是波的衍射现象?请举例说明。

答案:波的衍射现象是指波在遇到障碍物或通过狭缝时,波的传播方向发生偏离直线传播的现象。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

大学物理课后习题答案第五章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示.[解答](1)与标准波动方程2cos()xy A t πωλ=-比较得:2π/λ = 0.6,因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1). 且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:cos[()]Ax x y A t uωϕ-=-+;即 0.050.03cos[4()]0.22x y t ππ-=--= 0.03cos[4π(t – 5x ) + π/2].(2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt - π/2).5.3 已知平面波波源的振动表达式为20 6.010sin 2y t π-=⨯(m).求距波源5m处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:26.010sin ()2xy t u π-=⨯- 50.06sin()24t ππ=-,位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少?[解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m . 由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π.当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2.原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:0.03cos[50()]2x y t u ππ=-+= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:(1)P 点的振动表达式; (2)波动方程; (3)画出O 点的振动曲线. [解答](1)设P 点的振动方程为 y P = A cos(ωt + φ),其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m), 所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程; (2)画出x = λ/2处质点的振动曲线; (3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为:图5.5cos[2()]t xy A T πϕλ=++,当t = T /4时的波形方程为:cos(2)2x y A ππϕλ=++sin(2)xA πϕλ=-+.在x = 0处y = 0,因此得sin φ = 0, 解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0.因此波动方程为:cos 2()t xy A T πλ=+.(2)在x = λ/2处质点的振动方程为:cos(2)cos 2t t y A A T Tπππ=+=-, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为 cos(2)2a t y A T ππ=+; x b = λ处的质点的振动方程为 cos(22)b t y A Tππ=+. 波线上a 和b 两点的位相差φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点( 2)画出t = 4.2s 时的波形曲线. [解答]波的波动方程可化为:y = A cos2π(2t – x ), 与标准方程cos[2()]t xy A T πϕλ=-+比较, 可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1.(1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…),各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示.(1)写出时x = 0处质点的振动方程; (2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1). (1)设x = 0处的质点的振动方程为y = A cos(ωt + φ),其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3). (2)波的表达式为:cos[2()]t xy A T πϕλ=-+ cos[()]23t x ππ=-+. (3)t = 1s 时刻的波形方程为 5cos()26y x ππ=-,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:cos[2()]t xy A T πϕλ=-+,那么A 和B 两点的振动方程分别为:cos[2()]A A xt y A T πϕλ=-+,cos[2()]B B xt y A T πϕλ=-+.两点之间的位相差为:2(2)6B A x x πππλλ---=-,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程; (2)如以距A 点5m 处的B 点为坐标原点,写出波动方程;(3)写出传播方向上B ,C ,D 点的振动方程.[解答](1)以A 点为坐标原点,波动方程为3cos 4()3cos(4)5x xy t t u πππ=+=+.(2)以B 点为坐标原点,波动方程为3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-.(3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为3cos 4()3cos(4)B B xy t t u πππ=+=-,33cos 4()3cos(4)5C C x y t t u πππ=+=-,93cos 4()3cos(4)5D D x y t t u πππ=+=+.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1),波的平均能量密度为:2212w A ρω== 158(J·m -3),平均能流密度为:I wu == 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强此时声强相当于多少分贝已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),声波的平均能量密度为:2212w A ρω== 6.37×10-6(J·m -3),平均能流密度为:I wu == 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2),图5.10此声强的分贝数为:010lgIL I == 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为BB S Su u u u νν-=-,其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为33060033030B S S u u u νν==--= 660(Hz).火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为33060033030B S S u u u νν==-+= 550(Hz).(2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν-+==--= 680(Hz).当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为3301060033030B B S S u u u u νν--==-+= 533(Hz).[注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m);在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m);在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为1033165108033130B S u u u u νν++==⨯--= 1421(Hz). 将反射面作为波源,其频率为ν1,反射声音的频率为`11331142133165B u u u νν==⨯--= 1768(Hz).反射声音的波长为`1111331651421B B uu u u λννν--=-===0.1872(m).或者 `1`13311768u λν=== 0.1872(m).[注意]如果用下式计算波长`111650.27871768B u λλν=-=-=0.2330(m),结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为 1cos[2()]t xy A T πϕλ=++, 那么S 2在S 1左侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为1cos[2()]t xy A T πϕλ=-+,那么S 2在其右侧产生的波的波动方程为2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为1 2121/2cos[2()]x l y A t u πνϕ+=-+ 5cos(2)24A t x πππνϕ=-+-,那么S 2在其左侧产生的波的波动方程为2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-.两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17 设入射波的表达式为1cos 2()t xy A T πλ=+,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为2cos 2()t xy A T πλ=-.(2)合成波为y = y 1 + y 2,将三角函数展开得222cos cos y A x t Tππλ=,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:1 6.0cos (0.028.0)2y x t π=-,2 6.0cos(0.028.0)2y x t π=+,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:1 6.0cos 2()0.5200t x y π=-,2 6.0cos 2()0.5200t xy π=+,可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).。

大学物理机械波习题及答案解析

大学物理机械波习题及答案解析

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为(SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [ ] 3.3411:若一平面简谐波的表达式为 ,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B [ ]4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) (B)(C) (D) [ ]5.3479:在简谐波传播过程中,沿传播方向相距为(λ 为波长)的两点的振动速度必定]2)42(2cos[10.0π+-π=x t y )cos(Cx Bt A y -=)cos(),(bt ax A t x f +=)cos(),(bt ax A t x f -=bt ax A t x f cos cos ),(⋅=bt ax A t x f sin sin ),(⋅=λ21 x u A y B C D Ox (m) O 2 0.1 0y (m) ( A ) x (m) O 2 0.1 0 y (m) ( B )x (m) O 2- 0.1 0 y (m) ( C ) x (m)O 2 y (m)( D ) - 0.1 0(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

大学物理机械波习题附答案

大学物理机械波习题附答案

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt axA t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反y (m) y (m) - y (m) y (m)[ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

大学物理 第五章机械波 课后习题 参考答案

大学物理 第五章机械波 课后习题 参考答案

对于 O 点:∵ y O 0, vO 0 ,∴ O
对于 A 点:∵ y A A, v A 0 ,∴ A 0 对于 B 点:∵ y B 0, v B 0 ,∴ B
.k
2 3 对于 C 点:∵ y C 0, vC 0 ,∴ C 2 (取负值:表示 A、B、C 点位相,应落后于 O 点的位相) (2)波沿 x 轴负向传播,则在 t 时刻,有 0, vO 0 ,∴ O 对于 O 点:∵ y O
2
2 代入上式,即得 C

( x 2 x1 )
Cd .
2

v max A 10 0.05 0.5 m s 1
a max 2 A (10 ) 2 0.05 5 2 m s 2
.c
x)
B 2 ,波速 u , C C 1 2 波动周期 T . B (2)将 x l 代入波动方程即可得到该点的振动方程
如题 5-11(c)图所示. 5-12 如题5-12图所示,已知 t =0时和 t =0.5s时的波形曲线分别为图中曲线(a)和(b) ,波沿 x 轴正向传播,试根据图中绘出的条件求: (1)波动方程; (2) P 点的振动方程.
hd aw
题 5-11 图(c)
y 0.1cos(5t
5 0.5 3 ) 0.1cos(5t ) m 0.5 2
此介质中任一质元离开平衡位置的位移既是坐标位置 x , 又是时间 t 的函数, 即 y f ( x, t ) . (2)在谐振动方程 y f (t ) 中只有一个独立的变量时间 t ,它描述的是介质中一个质元偏离
平衡位置的位移随时间变化的规律;平面谐波方程 y f ( x, t ) 中有两个独立变量,即坐标

物理-机械波习题库(含答案)

物理-机械波习题库(含答案)

y (m)机械波一、选择题:1.横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 [ D ]2.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m [ C ]3.图中画出一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是 (A)]31)2(cos[01.0π+-π=t y P (SI) (B)]31)2(cos[01.0π++π=t y P (SI) (C) ]31)2(2cos[01.0π+-π=t y P(SI) (D)]31)2(2cos[01.0π--π=t y P (SI) C ]4中:(A) 它的势能转换成动能 (B) 它的动能转换成势能(C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小 [ C ]5.如图所示,两列波长为λ 的相干波在P 点相遇。

波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为: (A) λk r r =-12 (B) π=-k 212φφ (C) π=-π+-k r r 2/)(21212λφφ(D) π=-π+-k r r 2/)(22112λφφ [ D ]6.一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ).(A) 810 Hz (B) 699 Hz (C) 805 Hz (D) 695 Hz [ B ]二、填空题:1.一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其角频率ω =125 rad/s ,波速u = 338m/s ,波长λ = 17.0m 。

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答

大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。

发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。

什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。

物理机械波各地方试卷集合及解析

物理机械波各地方试卷集合及解析

物理机械波各地方试卷集合及解析一、机械波 选择题1.一简谐横波沿水平绳向右传播,波速为v ,周期为T ,振幅为A .绳上两质点M 、N 的平衡位置相距四分之三波长,N 位于M 右方.设向上为正,在t =0时刻M 位移为2A +,且向上运动;经时间t (t T <),M 位移仍为2A+,但向下运动,则( ) A .在t 时刻,N 恰好在波谷位置 B .在t 时刻,N 位移为负,速度向上 C .在t 时刻,N 位移为负,速度向下 D .在2t 时刻,N 位移为2A-,速度向下 2.如图所示,实线是沿x 轴传播的一列简谐横波在t ="=" 0时刻的波形图,虚线是这列波在t ="=" 0.2 s 时刻的波形图.已知该波的波速是0.8 m /s ,则下列说法正确的是A .这列波的波长是14 ㎝B .这列波的周期是0.125 sC .这列波可能是沿x 轴正方向传播的D .t =0时,x = 4 ㎝处的质点速度沿y 轴负方向3.一列简谐横波在t =0时刻的波形如图中的实线所示,t =0.02s 时刻的波形如图中虚线所示.若该波的周期T 大于0.02s ,则该波的传播速度可能是( )A .2m/sB .3m/sC .4m./sD .5m/s4.一列简谐横波沿x 轴负方向传播,波速v =4m/s ,已知坐标原点(x =0)处质点的振动图象如图所示,在下列幅图中能够正确表示t =0.15s 时波形的图是A .B .C .D .5.一列简谐横波在t =13s 时的波形图如图a 所示,P 、Q 是介质中的两个质点,图b 是质点Q 的振动图象。

则( )A .该列波沿x 轴负方向传播B .该列波的波速是1.8m/sC .在t =13s 时质点Q 的位移为3A D .质点P 的平衡位置的坐标x =3cm6.如图所示,两列简谐横波分别沿x 轴正方向和负方向传播。

已知两波源分别位于0.2m x =-和 1.0m x =处,振幅均为0.5cm A =,波速均为0.2m/s v =。

大学物理-机械波习题思考题及答案

大学物理-机械波习题思考题及答案

习题88-1.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,振动周期为2.0s ,求波长和波速。

解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ, 而m 242=⇒∆=∆λλπϕx ,m/s 12==T u λ 8-2.一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:〔1〕平面波的波动式;〔2〕假设波沿x 轴负向传播,波动式又如何"解:〔1〕设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为: 10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比拟, 有:10x uωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+; 〔2〕假设波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]x y A t uωϕ=++(),则P 点的振动式为: 10cos[]P x y A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比拟, 有:10x uωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++。

8-3.一平面简谐波在空间传播,如下图,A 点的振动规律为cos(2)y A t πνϕ=+,试写出: 〔1〕该平面简谐波的表达式;〔2〕B 点的振动表达式〔B 点位于A 点右方d 处〕。

解:〔1〕仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]x y A t uπνϕ=++(),则A 点的振动式:0cos[2]A l y A t uπνϕ-=++() 题设A 点的振动式cos(2)y A t πνϕ=+比拟,有:02l u πνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(ux u l t A y 〔2〕B 点的振动表达式可直接将坐标x d l =-,代入波动方程:8-4.一沿x 正方向传播的平面余弦波,s 31=t 时的波形如下图,且周期T 为s 2。

大学物理_机械波答案

大学物理_机械波答案

机械波1.提示:1(,)cos[2()]t xy x t A T πϕλ=-+,2012(,)cos[2()]x t y x t A T λπϕλ+=-+,1sin[2()],dy t xv A dtTωπϕλ==--+2112sin[2()]x dy t v A v dtTλωπϕλ+==--+=-2.提示:波速取决于媒质的性质,振动速度是媒质中质元的运动速度3.提示:由图可知O 点处质元的运动方向向下,00,0,,t t y v A ω===-sin[2],dy t v A dtTωπϕ==-+0sin(0),2v A A πωϕωϕ=-+=-=4.提示:由图可知:8,160/,3,m u m s A m λ===则120,240uH Z v T νωππλ=====由图可知O 点处质元的运动方向向上,则当0,0,sin[2()],dy t xt x v A A dtT ωπϕωλ====--+=时可得2πϕ=-5.提示:在最大位移处,胁变最小,它的速度为0,因此动能为0,对于简谐波动能等于势能。

6.提示:对于A 点的上下运动可当作机械振动,在其偏离平衡位置最大位移处其动能为0,因此A 点在向平衡位置方向运动,则可知波沿X 轴负方向传播 7.提示:12,2πϕϕ-=2121122224r r πϕϕπϕπππλλ⎛⎫⎛⎫∆=---=--⨯=- ⎪ ⎪⎝⎭⎝⎭8.提示:由波腹条件22xk k x πλπλ=±⇒=±二、填空题 1.CB ,Bπ2,Cπ2,lC ,lC -提示:将已知波的方程与波的标准方程2(,)cos[]xy x t A t πωϕλ=-+或(,)cos[()]xy x t A t uωωϕ=-+对比可得波长和波速,位相差为:222[()][]t r d t r d cdπππωϕωϕλλλ-++--+==2.Lλπϕ2-;Nk k x x ∈±=,1λ;zk k x x ∈++=,)21(1λ。

大学物理机械波习题附问题详解

大学物理机械波习题附问题详解

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻(A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动(D) D 点振动速度小于零 [3.3411:若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B []4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f += (B) )cos(),(bt ax A t x f -=(C) bt ax A t x f cos cos ),(⋅= (D) bt axA t x f sin sin ),(⋅= [ ]5.3479:在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同(D) 大小不同,而方向相反y (m) y (m) - y (m) y (m)[ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ] 8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

物理机械波各地方试卷集合及解析

物理机械波各地方试卷集合及解析

物理机械波各地方试卷集合及解析一、机械波 选择题1.一列简谐横波沿x 轴正方向传播,在12m x =处的质元的振动图线如图1所示,在18m x =处的质元的振动图线如图2所示。

下列说法正确的是( )A .该波的周期为12sB .12m x =处的质元在平衡位置向上振动时,18m x =处的质元在波峰C .在04s ~内12m x =处和18m x =处的质元通过的路程均为6cmD .该波的波长不可能为8m2.一列简谐波某时刻的波形如图中实线所示。

经过0.5s 后的波形如图中的虚线所示。

已知波的周期为T ,且0.25s <T <0.5s ,则( )A .不论波向x 轴哪一方向传播,在这0.5s 内,x =1m 处的质点M 通过的路程都相等B .当波向+x 方向传播时,波速等于10m/sC .当波沿+x 方向传播时,x =1m 处的质点M 和x =2.5m 处的质点N 在这0.5s 内通过的路程相等D .当波沿﹣x 方向传播时,经过0.1s 时,质点M 的位移一定为零3.一列波长大于3m 的横波沿着x 轴正方向传播,处在和的两质点A 、B的振动图象如图所示,由此可知( )A .波长为4mB .波速为2m/sC .3s 末A 、B 两质点的位移相同D .1s 末A 点的速度大于B 点的速度4.甲、乙两列横波在同一介质中分别从波源M 、N 两点沿x 轴相向传播,波速为2m/s ,振幅相同,某时刻的图像如图所示,则( )A .甲乙两波的起振方向相同B .甲乙两波的频率之比为3∶2C .再经过3s 时,平衡位置在x =7m 处的质点振动方向向上D .再经过3s 时,平衡位置在x =2m 处的质点将向右运动到x =8m 处的位置。

E.再经过3s 时,平衡位置在x =1m 处的质点将第二次出现在波峰5.一列简谐横波沿x 轴传播,在x =0和x =0.6m 处的两个质点A 、B 的振动图象如图所示。

下列说法正确的是( )A .t =0.15s 时A 、B 的加速度相同B .该波的波速可能为1.2m/sC .若该波向x 轴负方向传播,波长可能为2.4mD .若该波的波长大于0.6m ,则其波速一定为2m/s6.如图所示,坐标原点处的波源0t =时开始从平衡位置沿y 轴做简谐运动,0.5s t =时在0cm x =和7cm x =之间第一次出现了如图所示的波形,7cm x >部分的波形图没有画出,则下列说法正确的是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:1.3147:一平面简谐波沿Ox 正方向传播,波动表达式为(SI),该波在t = 0.5 s 时刻的波形图是[ B ]2.3407:横波以波速u 沿x 轴负方向传播。

t 时刻波形曲线如图。

则该时刻 (A) A 点振动速度大于零 (B) B 点静止不动(C) C 点向下运动(D) D 点振动速度小于零 [ ] 3.3411:若一平面简谐波的表达式为 ,式中A 、B 、C 为正值常量,则:(A) 波速为C (B) 周期为1/B (C) 波长为 2π /C (D) 角频率为2π /B [ ]4.3413:下列函数f (x 。

t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量。

其中哪个函数表示沿x 轴负向传播的行波?(A) (B)(C) (D) [ ]5.3479:在简谐波传播过程中,沿传播方向相距为(λ 为波长)的两点的振动速度必定]2)42(2cos[10.0π+-π=x t y )cos(Cx Bt A y -=)cos(),(bt ax A t x f +=)cos(),(bt ax A t x f -=bt ax A t x f cos cos ),(⋅=bt ax A t x f sin sin ),(⋅=λ21 x u A y B C D Ox (m) O 2 0.1 0y (m) ( A ) x (m) O 2 0.1 0 y (m) ( B )x (m) O 2- 0.1 0 y (m) ( C ) x (m)O 2 y (m)( D ) - 0.1 0(A) 大小相同,而方向相反 (B) 大小和方向均相同(C) 大小不同,方向相同 (D) 大小不同,而方向相反 [ ]6.3483:一简谐横波沿Ox 轴传播。

若Ox 轴上P 1和P 2两点相距λ /8(其中λ 为该波的波长),则在波的传播过程中,这两点振动速度的(A) 方向总是相同 (B) 方向总是相反(C) 方向有时相同,有时相反 (D) 大小总是不相等 [ ]7.3841:把一根十分长的绳子拉成水平,用手握其一端。

维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则 (A) 振动频率越高,波长越长 (B) 振动频率越低,波长越长(C) 振动频率越高,波速越大 (D) 振动频率越低,波速越大 [ ]8.3847:图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形。

若波的表达式以余弦函数表示,则O 点处质点振动的初相为:(A) 0 (B) (C) (D)[ ]9.5193:一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是:(A) A ,0,-A (B) -A ,0,A (C) 0,A ,0 (D) 0,-A ,0. [ ]10.5513:频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为,则此两点相距(A) 2.86 m (B) 2.19 m (C) 0.5 m (D) 0.25 m [ ]11.3068:已知一平面简谐波的表达式为 (a 、b 为正值常量),则(A) 波的频率为a (B) 波的传播速度为 b/a(C) 波长为 π / b (D) 波的周期为2π / a [ ]12.3071:一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示。

则坐标原点O 的振动方程为(A)(B) π21ππ23π31)cos(bx at A y -=]2)(cos[π+'-=t t b u a y ]2)(2cos[π-'-π=t t b u a y x u ab yO 5193图x y Ou3847图y (m)(C)(D)13.3072:如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为则波的表达式为(A)(B)(C) (D) [ ] 14.3073:如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点。

已知P 点的振动方程为 ,则: (A) O 点的振动方程为 (B) 波的表达式为(C) 波的表达式为(D) C 点的振动方程为 [ ]15.3152:图中画出一平面简谐波在t = 2 s 时刻的波形图,则平衡位置在P 点的质点的振动方程是 (A)(SI) (B)(SI) (C)(SI) (D)[ ]16.3338:图示一简谐波在t = 0时刻的波形图,波速 u = 200 m/s ,则图中O点的振动加速度的表达式为 (A)(SI) (B)(SI) (C)(SI) ]2)(cos[π+'+π=t t b u a y ]2)(cos[π-'-π=t t b u a y )cos(0φω+=t A y }]/)([cos{0φω+--=u l x t A y })]/([cos{0φω+-=u x t A y )/(cos u x t A y -=ω}]/)([cos{0φω+-+=u l x t A y t A y ωcos =)/(cos u l t A y -=ω)]/()/([cos u l u l t A y --=ω)]/()/([cos u x u l t A y -+=ω)/3(cos u l t A y -=ω]31)2(cos[01.0π+-π=t y P ]31)2(cos[01.0π++π=t y P ]31)2(2cos[01.0π+-π=t y P ]31)2(2cos[01.0π--π=t y P )21cos(4.02π-ππ=t a )23cos(4.02π-ππ=t a )2cos(4.02π-ππ-=t a x O u2l l yCP (m)(D)(SI) 17.3341:图示一简谐波在t = 0,则P 处质点的振动速度表达式为: (A) (SI)(B) (SI) (C) (SI)(D) (SI) [ ]18.3409:一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取-π 到π (A) O 点的初相为 (B) 1点的初相为(C) 2点的初相为(D) 3点的初相为 [ ] 19.3412:一平面简谐波沿x 轴负方向传播。

已知 x = x 0处质点的振动方程为:,若波速为u ,则此波的表达式为(A) (B) (C)(D)[ ]20.3415:一平面简谐波,沿x 轴负方向传播。

角频率为ω ,波速为u 。

设 t = T/4 时刻的波形如图所示,则该波的表达式为:(A)(B)(C)(D) [ ]21.3573:一平面简谐波沿x 轴负方向传播。

已知x = b 处质点的振动方程为:,波速为u ,则波的表达式为:(A)(B)(C)(D) [ ]22.3575:一平面简谐波,波速u = 5 m/s ,t = 3 s 时波形曲线如图,则x = 0)212cos(4.02π+ππ-=t a )2cos(2.0π-ππ-=t v )cos(2.0π-ππ-=t v )2/2cos(2.0π-ππ=t v )2/3cos(2.0π-ππ=t v 00=φπ-=211φπ=2φπ-=213φ)cos(0φω+=t A y }]/)([cos{00φω+--=u x x t A y }]/)([cos{00φω+--=u x x t A y }]/)[(cos{00φω+--=u x x t A y }]/)[(cos{00φω+-+=u x x t A y )(cos xu t A y -=ω]21)/(cos[π+-=u x t A y ω)]/(cos[u x t A y +=ω])/(cos[π++=u x t A y ω)cos(0φω+=t A y ]cos[0φω+++=u x b t A y }][cos{0φω++-=u xb t A y }][cos{0φω+-+=u b x t A y }][cos{0φω+-+=u xb t A yy (m)处质点的振动方程为:(A)(SI) (B)(SI) (C)(SI) (D) (SI) 23.3088:一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大 (B) 动能为零,势能为零(C) 动能最大,势能最大 (D) 动能最大,势能为零 [ ]24.3089:一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中:(A) 它的势能转换成动能 (B) 它的动能转换成势能 (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小 [ ]25.3287:当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?(A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同 (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等(D) 媒质质元在其平衡位置处弹性势能最大 [ ]26.3289:图示一平面简谐机械波在t 时刻的波形曲线。

若此时A 点处媒质质元的振动动能在增大,则:(A) A 点处质元的弹性势能在减小 (B) 波沿x 轴负方向传播(C) B 点处质元的振动动能在减小(D) 各点的波的能量密度都不随时间变化 [ ]27.3295:如图所示,S 1和S 2为两相干波源,它们的振动方向均垂直于图面,发出波长为λ 的简谐波,P 点是两列波相遇区域中的一点,已知 ,,两列波在P 点发生相消干涉。

若S 1的振动方程为S 2的振动方程为(A)(B) )2121cos(1022π-π⨯=-t y )cos(1022π+π⨯=-t y )2121cos(1022π+π⨯=-t y )23cos(1022π-π⨯=-t y λ21=P S λ2.22=P S 211=A y )212cos(2π-π=t A y )2cos(2π-π=t A y S(C)(D)28.3433:如图所示,两列波长为λ 的相干波在P 点相遇。

波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) (B) (C)(D) [ ] 29.3434:两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是: (A) 0 (B) (C) π (D)30.3101:在驻波中,两个相邻波节间各质点的振动(A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [ ]31.3308在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4 (B) λ /2 (C) 3λ /4 (D) λ [ ]32.3309:在波长为λ 的驻波中两个相邻波节之间的距离为:(A) λ (B) 3λ /4 (C) λ /2 (D) λ /4 [ ]33.3591:沿着相反方向传播的两列相干波,其表达式为 和 。

相关文档
最新文档