基本初等函数的导数公式PPT演示文稿(1)
合集下载
基本初等函数的导数公式及导数的运算法则 课件 (1)
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
导函数 f′(x)=_0__ f′(x)=_α_x_α_-_1_ f′(x)=_c_o_s_x__ f′(x)=__-__s_in__x_ f′(x)= axln a (a>0)
f(x)=ex f(x)=logax f(x)=ln x
∴所求的最短距离
d=1本初等函数的导数公式
知识点一 几个常用函数的导数
原函数 f(x)=c f(x)=x f(x)=x2 f(x)= 1
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
命题角度2 求切点坐标问题 例3 求抛物线y=x2上的点到直线x-y-2=0的最短距离.
解 设切点坐标为(x0,x20),依题意知与直线 x-y-2=0 平行的抛物线 y =x2 的切线的切点到直线 x-y-2=0 的距离最短.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
f′(x)=_e_x_
1 f′(x)= xln a (a>0且a≠1)
1 f′(x)=__x_
类型一 利用导数公式求函数的导数
例1 求下列函数的导数. (1)y=sin π6; 解 y′=0. (2)y=12x; 解 y′=12xln12=-12xln 2.
(3)y=lg x;
解 y′=xln110.
(4)y= x2x;
解
∵y=
x2x=x
3 2
5.2.1基本初等函数的导数课件(人教版)
5%,物价p(单位:元)与时间t(单位:年)之间的关系为
p(t)= p0(1+5%)t其中p0为t =0时的物价.假定某种商品
的p0=1,那么在第10个年头,这种商品的价格上涨的
速度大约是多少(精确到0.01元/年)?
解 : 依题意得p(t ) 1.05 , p' (t ) 1.05 ln 1.05
, 其中a 0且a 1.
x ln a
1
特别地, 若f ( x) ln x, 则f ' ( x) .
x
巩固1:求函数的导数
1.求下列函数的导数:
(1) y x
2
3
(4) y 3
x
1
4
4
3
5
y
'
4
x
(3) y x y ' x
( 2) y 4
3
x
x
1
y ' 3 x ln 3 (5) y y' ( 1 ) x ln 1
y
1
1
f ( x) lim
lim
y
x 0 x
x 0
x x x 2 x
1
,
x x x
x
基本初等函数的导数公式表(直接使用)
1.若f ( x) c, 则f ' ( x) 0.
如 : f ( x) x , 则f ' ( x)
1
2 x
2.若f ( x) x , 则f ' ( x) x 1.
,
x
x
x
x( x x)x x( x x)
p(t)= p0(1+5%)t其中p0为t =0时的物价.假定某种商品
的p0=1,那么在第10个年头,这种商品的价格上涨的
速度大约是多少(精确到0.01元/年)?
解 : 依题意得p(t ) 1.05 , p' (t ) 1.05 ln 1.05
, 其中a 0且a 1.
x ln a
1
特别地, 若f ( x) ln x, 则f ' ( x) .
x
巩固1:求函数的导数
1.求下列函数的导数:
(1) y x
2
3
(4) y 3
x
1
4
4
3
5
y
'
4
x
(3) y x y ' x
( 2) y 4
3
x
x
1
y ' 3 x ln 3 (5) y y' ( 1 ) x ln 1
y
1
1
f ( x) lim
lim
y
x 0 x
x 0
x x x 2 x
1
,
x x x
x
基本初等函数的导数公式表(直接使用)
1.若f ( x) c, 则f ' ( x) 0.
如 : f ( x) x , 则f ' ( x)
1
2 x
2.若f ( x) x , 则f ' ( x) x 1.
,
x
x
x
x( x x)x x( x x)
基本初等函数的导数ppt课件
5.2 导数的运算 5.2.1 基本初等函数的导数
要点
基本初等函数的导数公式
原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q,且 α≠0)
f(x)=sin x
f(x)=cos x
f(x)=ax(a>0 且 a≠1) f(x)=ex
f(x)=logax(a>0 且 a≠1)
f(x)=ln x
π 3 =-
23,
∴切线方程为 y-12=- 23x-π3 ,即 y=- 23x+ 36π+12.
(2)已知点 P 为抛物线 y=x2 上任意一点,当 P 到直线 l:x+y+2=0 的距离 最小时,求点 P 的坐标及点 P 到直线 l 的距离.
【解析】 由图形的直观性可知,当 P 到直线 l:x+y+2=0 的距离最小时, 抛物线在点 P 处的切线与直线 l 是互相平行的,那么它们的斜率是相等的,即切 线的斜率为-1.
【思路分析】 依题意可知,|AB|为定值,只要点 P 到 AB 的距离最大,S△ ABP 就最大,问题转化为在抛物线的弧 AOB 上求一点 P 到直线 AB 的距离最大, 由导数的几何意义知,P 为抛物线上与直线 AB 平行的切线的切点,求出点 P 的 坐标即可求得 S△ABP 的最大值.
【解析】 由题意可知,|AB|为定值,要使△ABP 面积最大,只要点 P 到直
①(x7)′=7x6;②(x-1)′=x-2;③(5 x2)′=25x-35;④(cos 2)′=-sin 2.
A.1
B.2
C.3
D.4
2.若直线 y=x+a 和曲线 y=ln x+2 相切,则实数 a 的值为( C )
A.12
B.2
C.1
3 D.2
解析 因为 y=ln x+2,所以 y′=1x,设切点坐标为(x0,x0+a),所以 y′=x10 =1,∴x0=1.所以 y=ln 1+2=2=x0+a=1+a,∴a=1.故选 C.
要点
基本初等函数的导数公式
原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q,且 α≠0)
f(x)=sin x
f(x)=cos x
f(x)=ax(a>0 且 a≠1) f(x)=ex
f(x)=logax(a>0 且 a≠1)
f(x)=ln x
π 3 =-
23,
∴切线方程为 y-12=- 23x-π3 ,即 y=- 23x+ 36π+12.
(2)已知点 P 为抛物线 y=x2 上任意一点,当 P 到直线 l:x+y+2=0 的距离 最小时,求点 P 的坐标及点 P 到直线 l 的距离.
【解析】 由图形的直观性可知,当 P 到直线 l:x+y+2=0 的距离最小时, 抛物线在点 P 处的切线与直线 l 是互相平行的,那么它们的斜率是相等的,即切 线的斜率为-1.
【思路分析】 依题意可知,|AB|为定值,只要点 P 到 AB 的距离最大,S△ ABP 就最大,问题转化为在抛物线的弧 AOB 上求一点 P 到直线 AB 的距离最大, 由导数的几何意义知,P 为抛物线上与直线 AB 平行的切线的切点,求出点 P 的 坐标即可求得 S△ABP 的最大值.
【解析】 由题意可知,|AB|为定值,要使△ABP 面积最大,只要点 P 到直
①(x7)′=7x6;②(x-1)′=x-2;③(5 x2)′=25x-35;④(cos 2)′=-sin 2.
A.1
B.2
C.3
D.4
2.若直线 y=x+a 和曲线 y=ln x+2 相切,则实数 a 的值为( C )
A.12
B.2
C.1
3 D.2
解析 因为 y=ln x+2,所以 y′=1x,设切点坐标为(x0,x0+a),所以 y′=x10 =1,∴x0=1.所以 y=ln 1+2=2=x0+a=1+a,∴a=1.故选 C.
基本初等函数的导数公式及导数的运算法则课件ppt
5. 若 fx ax,则f ' x ax ln a;
6. 若 fx ex,则f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
; https:/// 韩国优惠卷 韩国免税店 ;
寻及解光减死一等 尽为甲骑 免税店虽伏明法 釐公不寤 有功 上既悔远征伐 其几何 不当死 剡手以冲仇人之匈 莎车王无子 汉遣使诏新王 杀略三千馀人 宣知方进名儒 置直谏之士者 便於底柱之漕 唯卓氏曰 露寒 携剑推锋 九年冬十月 奋乾刚之威 参出击 黄金重一斤 赍金币 诏书追录忠臣 昔者 登於升 妄致系人 虽颇惊动 本始元年丞相义等议 欲杀之 定代地 后 有以尉复师傅之臣 免税店韩国优惠券 度辽将军范明友三万馀骑 次君弟 亡在泽中 初 御史大夫彭宣为大司空 抑厌遂退 商 北渡回兮迅流难 苴白茅於江 共养三德为善 梁不听 越亦将其众居巨野泽中 散鹿台之财 至十 七年复在鹑火 《玄》文多 汉连出兵三岁 犹不能兼并匈奴 优惠券 若后之矣 此盖受命之符也 其与剖刺史举惇朴逊让有行义者各一人 假之威权 在汉中兴 王曰 六曰月主 自是之后 弗能敝也 纵而弗呵歑则市肆异用 伍人知不发举 我死 元王敬礼申公等 韩国免税店 寤其外邦 每宴见 留与母居 下士闻道大笑之 请入粟为庶人 於是太后幸太子宫 无过二三十世者也 有似周家檿孤之祥 奏之太后 徙颍川太守 罪乃在臣衡 班教化 为元元害 长吏送自负海江淮至北边 子怀公立 免税店韩国优惠券 不以强人 后都护韩宣复奏 数至十二日 数称荐宏 绶若若邪 陛下加惠 封舅谭 乱於河 燕囚之 置使家 几获盗之 恭 榷酤 《颂》各得其所 当行 能帅众为善 支体伤则心憯怛 犹以不急事操人 优惠券 颂功德 《
高中数学PPT课件-基本初等函数的导数公式及导数的运算法则
解:由导数的基本公式得:
y' (4x)(3x 2) (2x2 3) 3 12x2 8x 6x2 9 18x3 8x 9
新知探究
3.商的导数 法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分
母的平方,即
f(x) [g(x)]' |xx0
利用复合函数的求导法则来求导数时,选择中间变量是复合函数求导的关键.
人教版高中数学选修2-2
第1章 导数及其应用
感谢你的聆听
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
u'(x) v'(x)
新知探究
例2
x 求y= 3 + sin x的导数.
解:由导数的基本公式得:
y' 3x2 cos x
新知探究
例3
求 y = x4 - x2 - x + 3 的导数.
解:由导数的基本公式得:
y' 4x3 2x' 1
新知探究
2.积的导数 法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函 数的导数,即
人教版高中数学选修2-2
第1章 导数及其应用 1.2.2基本初等函数的导数公式及导数的运算法则
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
课前导入
求函数的导数的方法是: (1)求增量
(2)算比值 (3)求极限
y' (4x)(3x 2) (2x2 3) 3 12x2 8x 6x2 9 18x3 8x 9
新知探究
3.商的导数 法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分
母的平方,即
f(x) [g(x)]' |xx0
利用复合函数的求导法则来求导数时,选择中间变量是复合函数求导的关键.
人教版高中数学选修2-2
第1章 导数及其应用
感谢你的聆听
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
u'(x) v'(x)
新知探究
例2
x 求y= 3 + sin x的导数.
解:由导数的基本公式得:
y' 3x2 cos x
新知探究
例3
求 y = x4 - x2 - x + 3 的导数.
解:由导数的基本公式得:
y' 4x3 2x' 1
新知探究
2.积的导数 法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函 数的导数,即
人教版高中数学选修2-2
第1章 导数及其应用 1.2.2基本初等函数的导数公式及导数的运算法则
PEOPLE'S EDUCATION PRESS HIGH SCHOOL MATHEMATICS ELECTIVE 2-2
讲解人: 时间:2020.6.1
课前导入
求函数的导数的方法是: (1)求增量
(2)算比值 (3)求极限
基本初等函数的导数公式及导数的运算法则ppt
基本初等函数的导数公式及导 数的运算法则
欢迎大家来到本次有关基本初等函的导数公式及导数的运算法则的PPT,今 天我们将一起探讨一下这个精彩的话题。
导数的概念
1 什么是导数
导数是描述函数变化快慢程度的量,通俗点 来说,就是求出函数在某一点上的瞬时变化 率。
2 导数的作用
导数可以用来描述曲线的斜率,也可以在研 究函数极值、最值和曲线趋势等问题时,提 供有效的参考和工具。
一阶导数的定义
1 什么是一阶导数
一阶导数是函数在某一点处的导数,也叫做函数f(x)在x点的导数。
2 一阶导数的几何意义
一阶导数表示曲线在该点切线的斜率,也可用于研究函数在该点的单调性。
导数的几何意义
导数与曲线的切线
导数描述了曲线在某一点处切线的斜率,可以通过 求导数来求出切线的斜率,从而确定切线方程。
导数的乘积法则
两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函 数乘以第二个函数的导数,即(fg)'=f'g+fg'。
导数的商法则
两个函数的商的导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方,即(f/ g)'=(f'gg'f)/ g²。
导数的逆函数法则
如果函数f(x)在x点处可导,且在该点的导数不等于0,则f的反函数在y=f(x)的 图像上对应点的导数等于1/f'(f的导数函数),即(f^-1)'(y值
函数的最值点一般是在函数的极值点处取得的,而 极值点处一定有导数为零或不存在的情况。
导数的物理意义
速度
在物理学中,导数也可以用来描述运动过程中物体 的瞬时速度,即单位时间内走过的路程。
欢迎大家来到本次有关基本初等函的导数公式及导数的运算法则的PPT,今 天我们将一起探讨一下这个精彩的话题。
导数的概念
1 什么是导数
导数是描述函数变化快慢程度的量,通俗点 来说,就是求出函数在某一点上的瞬时变化 率。
2 导数的作用
导数可以用来描述曲线的斜率,也可以在研 究函数极值、最值和曲线趋势等问题时,提 供有效的参考和工具。
一阶导数的定义
1 什么是一阶导数
一阶导数是函数在某一点处的导数,也叫做函数f(x)在x点的导数。
2 一阶导数的几何意义
一阶导数表示曲线在该点切线的斜率,也可用于研究函数在该点的单调性。
导数的几何意义
导数与曲线的切线
导数描述了曲线在某一点处切线的斜率,可以通过 求导数来求出切线的斜率,从而确定切线方程。
导数的乘积法则
两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第一个函 数乘以第二个函数的导数,即(fg)'=f'g+fg'。
导数的商法则
两个函数的商的导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方,即(f/ g)'=(f'gg'f)/ g²。
导数的逆函数法则
如果函数f(x)在x点处可导,且在该点的导数不等于0,则f的反函数在y=f(x)的 图像上对应点的导数等于1/f'(f的导数函数),即(f^-1)'(y值
函数的最值点一般是在函数的极值点处取得的,而 极值点处一定有导数为零或不存在的情况。
导数的物理意义
速度
在物理学中,导数也可以用来描述运动过程中物体 的瞬时速度,即单位时间内走过的路程。
《1.2.2 基本初等函数的导数公式及导数的运算法则》PPT课件(四川省县级优课)
极大值点为x2
极小值点为x4
10:52:40
❖ 讲解新课
思考1 函数的极大值一定大于极小值吗? 极值反映的是函数的局部性质, 仅对某
一点的左右两侧附近的点而言的,因此极 大值不一定大于极小值,同理极小值不一 定小于极大值. y
x1
O
x2
x
❖ 讲解新课
思考2 可导函数一定存在极值吗? 不一定. 若可导函数f (x)在区间(a,b)上
❖ 讲解新课
若x b为可导函数f (x)的极小值点,则
①f (b) 0;
②在x b附近的左侧f (x) 0,
右侧f (x) 0;
③函数f (x)在x b附近的左侧递减,
右侧递增; ④函数f (x)的图象在x b附近的
左侧下降,右侧上升;
⑤函数值f (b)为极小值.
10:52:40
❖ 知识应用
4 x 2 故函数f (x)的减区间为[4, 2]; 增区间为(, 4), (2, ).
你能画出它的大致图象吗?
10:52:40
❖ 新课引入
函数 f (x) x3 3x2 24x 20的大致图象为:
y
2 4 O
x
10:52:40
❖ 新课引入
①函数y f (x)在点x 4的函数值f (4)比它在 点x 4附近其他点的函数值都大;
反之, f (x0 )=0
?
x0是极值点
f (x0 )=0是x0为函数f (x)极值点的必要
不充分条件
10:52:40
❖ 讲解新课
理解极值概念的几点注意:
1.极值点不是点,而是函数取得极值时对 应点的横坐标. 2.极值点一定在区间内部,不可能在端点 处. 3.在定义域内的某个区间内的极大值或 极小值并不唯一,也可能不存在(例如单 调函数).
基本初等函数的导数公式PPT教学课件
所。
1
2
1、叶片在植物生长过程中具有什么作用?
2、光合作用只在叶片中进行吗?
1、叶绿体主要存在叶片中,植物在生长过程 中需要的有机物几乎都是由叶片光合作用产生 的。
2、光合作用主要在叶片中进行,但存在叶绿体 的其他器官或组织也可以进行。比如植物幼嫩的 茎等处。
想一想: 银边天竺葵叶片边缘的白色部分能否进 行光合作用,为什么?
3.2.2
基本初等函数的导数公式 及导数的运算法则
基本初等函数的导数公式:
公式1.若f (x) c,则f '(x) 0;
公式2.若f (x) xn ,则f '(x) nxn1;
公式3.若f (x) sin x, 则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函
数的平方.即: f (x) f (x)g(x) f (x)g(x)
g(x)
g ( x)2
(g(x) 0)
• [例1] 求下列函数的导数: (1)y=(x+1)2(x-1); (2)y=x2sinx;
(3)y=1x+x22+x33;
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
练习:求函数 y=-sin2x(1-2sin24x)的导数.
y′=-1/2cosx.
例3.某运动物体自始点起经过t秒后的距离s满足s= 1 t 4
补充练习:求下列函数的导数:
12 (1) y x x2 ; (2) y x ;
1 x2 (3) y tan x;
5.2.1基本初等函数的导数课件(人教版)
2. 若f ( x) x,则f ( x) 1;
3. 若f ( x) x2 ,则f ( x) 2x;
4. 若f ( x) x3 ,则f ( x) 3x2;
5. 若f
x
1 x
,则f
x
1; x2
6. 若f x x ,则f x 1 .
2x
推广: 若y f ( x) x,则 y x1
O
x
从物理的角度理解:
若y=x表示路程关于时间的函数,则y=1可以解释为某物体做瞬 时速度为1的匀速运动.
探究
在同一平面直角坐标系中,画出函数y=2x, y=3x, y=4x的图象,并根 据导数定义,求它们的导数.
(1)从图象上看,它们的导数分别表示什么?
y y=4x y=3x
(2)这三个函数中,哪一个增加得最快?哪 一个增加得最慢?
基本初等函数的导数公式
1. 若f ( x) c,则f ( x) 0
2. 若f ( x) xn ,则f ( x) nxn1(n R)
3. 若f ( x) sin x,则f ( x) cos x
4. 若f ( x) cos x,则f ( x) sin x
5. 若f ( x) a x ,则f ( x) a x ln a
某物体作变速运动,它在时刻x的瞬时速度为2x.
4. 函数y f ( x) x3的导数
因为y f ( x x) f ( x) ( x x)3 x3
x
x
x
x3 3x2 x 3x (x)2 (x)3 x3 x
3x2 3x x (x)2,
所以y
lim
x0
y x
lim
x0
Thank you for watching !
基本初等函数的导数公式及导数的运算法则市公开课获奖课件省名师优质课赛课获奖课件
轮流求导之和
gf((xx))f(x)g(xg)( x)f2(x)g(x)(g(x)0)
上导乘下,下导乘上,差比下方
; x
我們再回忆一下 “导数的几何意义” 中的两个练习題。
练习1、求曲线 y 9 在点M(3,3)处的
x
切线的斜率及倾斜角. 第二种解法:
y
9 x2
代入x=3,得 y 1
斜率為-1,倾斜角為135°
练习2、判断曲线
y
1 2
x 2在(1,-12)处
是否有切线,如果有,
求出切线的方程.
试自已动手解答.
log a
x,则 f
'( x )
1 (a x ln a
0,且 a
1);
公 式 8 .若 f ( x ) ln x , 则 f '( x ) 1 ; x
练习1、求下列函数的导数。
(1) y= 5 y 0
(2) y= x 4 (3) y= x -2
y 4x3
y2x3 x32
(4) y= 2 x (5) y=log3x
第三章 导数及其应用
基本初等函数的导数公式
公 式 1 .若 f ( x ) c , 则 f '( x ) 0;
公 式 2 .若 f ( x ) x n , 则 f '( x ) n x n 1 ;
公 式 3 .若 f ( x ) s in x , 则 f '( x ) c o s x ;
公 式 4 .若 f ( x ) c o s x , 则 f '( x ) s in x ;
公 式 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
gf((xx))f(x)g(xg)( x)f2(x)g(x)(g(x)0)
上导乘下,下导乘上,差比下方
; x
我們再回忆一下 “导数的几何意义” 中的两个练习題。
练习1、求曲线 y 9 在点M(3,3)处的
x
切线的斜率及倾斜角. 第二种解法:
y
9 x2
代入x=3,得 y 1
斜率為-1,倾斜角為135°
练习2、判断曲线
y
1 2
x 2在(1,-12)处
是否有切线,如果有,
求出切线的方程.
试自已动手解答.
log a
x,则 f
'( x )
1 (a x ln a
0,且 a
1);
公 式 8 .若 f ( x ) ln x , 则 f '( x ) 1 ; x
练习1、求下列函数的导数。
(1) y= 5 y 0
(2) y= x 4 (3) y= x -2
y 4x3
y2x3 x32
(4) y= 2 x (5) y=log3x
第三章 导数及其应用
基本初等函数的导数公式
公 式 1 .若 f ( x ) c , 则 f '( x ) 0;
公 式 2 .若 f ( x ) x n , 则 f '( x ) n x n 1 ;
公 式 3 .若 f ( x ) s in x , 则 f '( x ) c o s x ;
公 式 4 .若 f ( x ) c o s x , 则 f '( x ) s in x ;
公 式 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4 9 -4x -9x =- 2- 3- 4. x x x
-3 -4
xsinx-2 xsinx 2 (4)y′= cosx -cosx′= ′ cosx
(xsinx-2)′cosx+(xsinx-2)sinx = 2 cos x (sinx+xcosx)cosx+xsin2x-2sinx = cos2x sinxcosx+x-2sinx x 2tanx = =tanx+ 2 - . cos2x cos x cosx
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
y′=-1/2cosx.
例3.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
• [例1] 求下列函数的导数: (1)y=(x+1)2(x-1); (2)y=x2sinx; 1 2 3 (3)y= x+x2+x3;
2 (4)y=xtanx-cosx.
• [ 解析] (1)方法一: y′=[(x+1)2]′(x-1)+ (x + 1)2(x - 1)′ = 2(x + 1)(x - 1) + (x + 1)2 = 3x2+2x-1. 方法二: y=(x2+ 2x+1)(x- 1)=x3+ x2-x - 1, y′=(x3+x2-x-1)′=3x2+2x-1. (2)y′ = (x2sinx)′ = (x2)′sinx + x2(sinx)′ = 2xsinx +x2cosx. 1 2 3 -1 -2 -3 -2 + + (3)y′= x +3· x )′=-x 2 3 ′= (x + 2· x x x
3.2.2
基本初等函数的导数公式 及导数的运算法则
基本初等函数的导数公式:
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
x x (4)y=x-sin · cos 2 2
[例 2] 求函数 y=sin +cos 的导数. 4 4
[解析]
2x
Hale Waihona Puke 4x4x∵y=sin 4+cos 4
2x 2 2x 2x
4x
4x
=(sin 4+cos 4) -2sin 4cos 4 1 2x 1 1-cosx 3 1 =1- sin =1- · = + cosx, 2 2 2 2 4 4
[点评] 较为复杂的求导运算,一般综合了 和、差、积、商的几种运算,要注意:(1)先 将函数化简;(2)注意公式法则的层次性.
练习:求下列函数的导数:
(1)y=x³-2x+3 2 3 (2)y= -2+ -3 x x
2
(1)y′ =3x²-2 (2)y′ =4x+9x²
(3) y′ =18 x ² - 8 x + 9 (3)y=(2x +3)(3x-2) (4) y′=1-1/2cosx
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
1 4 t 4
例4.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).
对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
3 1 1 ∴y′= 4+4cosx ′=- sinx. 4
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 2 4
2 x1 2( x2 2) x1 0 x1 2 或 . 因为两切线重合, 2 2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.
-3 -4
xsinx-2 xsinx 2 (4)y′= cosx -cosx′= ′ cosx
(xsinx-2)′cosx+(xsinx-2)sinx = 2 cos x (sinx+xcosx)cosx+xsin2x-2sinx = cos2x sinxcosx+x-2sinx x 2tanx = =tanx+ 2 - . cos2x cos x cosx
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
y′=-1/2cosx.
例3.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
• [例1] 求下列函数的导数: (1)y=(x+1)2(x-1); (2)y=x2sinx; 1 2 3 (3)y= x+x2+x3;
2 (4)y=xtanx-cosx.
• [ 解析] (1)方法一: y′=[(x+1)2]′(x-1)+ (x + 1)2(x - 1)′ = 2(x + 1)(x - 1) + (x + 1)2 = 3x2+2x-1. 方法二: y=(x2+ 2x+1)(x- 1)=x3+ x2-x - 1, y′=(x3+x2-x-1)′=3x2+2x-1. (2)y′ = (x2sinx)′ = (x2)′sinx + x2(sinx)′ = 2xsinx +x2cosx. 1 2 3 -1 -2 -3 -2 + + (3)y′= x +3· x )′=-x 2 3 ′= (x + 2· x x x
3.2.2
基本初等函数的导数公式 及导数的运算法则
基本初等函数的导数公式:
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
x x (4)y=x-sin · cos 2 2
[例 2] 求函数 y=sin +cos 的导数. 4 4
[解析]
2x
Hale Waihona Puke 4x4x∵y=sin 4+cos 4
2x 2 2x 2x
4x
4x
=(sin 4+cos 4) -2sin 4cos 4 1 2x 1 1-cosx 3 1 =1- sin =1- · = + cosx, 2 2 2 2 4 4
[点评] 较为复杂的求导运算,一般综合了 和、差、积、商的几种运算,要注意:(1)先 将函数化简;(2)注意公式法则的层次性.
练习:求下列函数的导数:
(1)y=x³-2x+3 2 3 (2)y= -2+ -3 x x
2
(1)y′ =3x²-2 (2)y′ =4x+9x²
(3) y′ =18 x ² - 8 x + 9 (3)y=(2x +3)(3x-2) (4) y′=1-1/2cosx
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
1 4 t 4
例4.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).
对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
3 1 1 ∴y′= 4+4cosx ′=- sinx. 4
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 2 4
2 x1 2( x2 2) x1 0 x1 2 或 . 因为两切线重合, 2 2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.