北师大版数学必修四:《弧度制》导学案(含解析)

合集下载

数学北师大版必修4教学教案-1.3-弧度制-(5)-含答案

数学北师大版必修4教学教案-1.3-弧度制-(5)-含答案

《弧度制》教学设计一:教材分析:本节课的教学内容是北师大版数学必修四第一章:三角函数§1.3弧度制,本节课是新概念引入课,也是学习三角函数的基础,因此本节课在三角函数的学习中起到至关重要的作用,本节课主要借助生活情境体会学习弧度制的必要性,借助问题串及小组探究形式,让学生体会类比,以旧知为基础学习新知的迁移转化等重要数学思想的应用。

二:学情分析:从学生知识水平看(1)在学习本节前,学生已经学习了角的概念的推广,认识角分为正角,负角,零角,因此在本节课的教学中在引进弧度数之后,明确了角可以用一个实数来表示,从而顺利得到任何一个角都可以和一个实数一一对应。

(2)初中学生已经学习了用角度制表示一个角,角度制下扇形的弧长与面积公式,因此在本节课教学可以借助这些已有的知识,通过观察,分析,类比,归纳,帮助学生理解弧度制的概念,角度制与弧度制的转化,弧度制下扇形的弧长公式与面积公式;从能力的角度看,学生已经具备了一定的分析问题的能力,思考的能力,探究的能力,计算的能力,数学表达的能力,教学中要借助学生已有的能力,提供实际问题情境,引导学生进行分析,向学生提供问题串及合适的探究材料,引发学生的主动探究,借助小组探讨,合作交流,部分投影展示等活动培养学生的自主学习,合作学习及数学表达能力。

三:设计思想:《弧度制》是角的的一种新的表示,是角问题的延续与拓展。

本节课我的设计理念是:从生活实际出发,以问题串为载体,以学生为主体,创设有效问题情境,努力营造开放,民主,和谐的学习氛围,充分调动学生的兴趣与及积极性,让学生经历“自主,探究,合作”的过程中,体验从生活中感受数学,并通过分析,类比,归纳,探究,展示,交流等一系列思维活动,在教师的适当引导,组织下主动的建构数学知识的过程。

同时渗透“类比”“转化与化归”等重要数学思想方法,让学生掌握知识的同时提升数学素养与思维品质,真正做到“授之以鱼不如授之以渔”四:教学目标:(1)知识与能力:a:理解1弧度的角、弧度制的定义,体会弧度是一种度量角的单位b:掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算,熟记特殊角的弧度数,c:体会弧度制定义的合理性,并能初步运用弧度制表示弧长公式,解决相关问题。

高中数学 第一章三角函数《弧度制》教案 北师大版必修4

高中数学 第一章三角函数《弧度制》教案 北师大版必修4

§1.1 弧度制教案一、教学目标1.理解角集与实数集的一一对应,熟练掌握角度制与弧度制间的互相转化.2.能灵活应用弧长公式、扇形面积公式解决问题.二、教学重点:能熟练地进行角度制与弧度制的互化.难点:能灵活应用弧长公式、扇形面积公式解决问题.三、知识链接:1像角的概念推广一样,我们已经把~中角,利用“乘以”这一法则映射到实数集上,那么,~以外的角能否化为弧度制?如果能,如何转化呢?乘数因子是否仍为“”,本节课就来讨论这个问题.2.探索研究(1)正、负角的弧度定义______________________(2)角集合与实数集之间的一一对应(3)有关公式:①弧长②四、例题分析【例1】P10例1、2【例2】下列几个角中哪几个是第二象限角?(1)(2)(3)(4)9 (5)-4 (6)【例3】(1)把化为,,的形式是()A.B.C.D.(2)在半径不等的两个圆内,1弧度的圆心角()A.所对弧长相等B.所对的弦长相等C.所对弧长等于各自半径D.所对的弧长为【例4】填空(1)在内找出与终边相同的角______________.(2)圆的弧长等于该圆内接正三角形的边长,则该弧所对的圆心角的弧度数是________________.(3)在扇形中,,弧长为1,则此扇形内切圆的面积____________.【例5】若弧度为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是()A.B.C.D.【例6】如图,用弧度制表示下列终边落在阴影部分的角的集合(不包括边界).【例7】已知两角的和为1弧度,且两角的差为,求这两个角各是多少弧度.五、课时作业1.若,,,则的终边位置关系是()A.重合B.关于原点对称C.关于轴对称D.关于轴对称2.如果弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是()A.B.C.D.3.的值是().A.B.C.D.4.一条弦长等于半径的,则此弦所对圆心角().A.等于弧度B.等于弧度C.等于弧度D.以上都不对5.把化为的形式是().A.B.C.D.6.扇形的周期是16,圆心角是2弧度,则扇形面积是().A.B.C.16 D.32二、填空题1.度;弧度.2.半径为2的圆中,长为2的弧所对的圆周角的弧度数为__________,度数为____________.3.3弧度的角的终边在第_____________象限,7弧度的角的终边在第_____________象限.4.扇形的圆心角为,半径为,则弧长为____________.5.若的圆心角所对的弧长为,则此圆的半径为______________.6.地球赤道的半径是6370㎞,所以赤道上的弧长是_________(精确到0.01㎞)拓展探究:1、在直径为的滑轮上有一条弦,其长为,且为弦的中点,滑轮以每秒5弧度的角速度旋转,则经过后,点转过的弧长是多少?2、一扇形周长是,扇形的圆心角为多少弧度时,这个扇形的面积最大?最大面积是多少?3、一条铁路在转弯处成圆弧形,圆弧的半径为2㎞,一列火车用每小时30㎞的速度通过,10秒间转过几度?4、纸扇能否按照黄金比例设计?在炎炎夏日,用纸扇驱走闷热,无疑是最环好的方法.扇在美观设计上,可考虑用料、图案和形状.若从数学角度看,我们能否利用黄金比例(0.618)去设计一把富美感的的白纸扇?提示:在设计纸扇张开角()时,可考虑从一圆形(半径为)分割出来的扇形的面积()与剩余面积()的比值.若假设这比值等于黄金比例,便可以找出.(精确至最接近的).除了找市面上的纸扇去量度其张开的角度外,我们更可自制不同形状的纸扇,去测试一下接近的设计是否最美.2、旋转的风车一个大风车的半径为8m,12分钟旋转一周,它的最低点离地面2m(如图所示),求风车翼片的一个端点离地面距离(米)与时间(分钟)之间的函数关系(用弧度制求解).。

2017-2018学年高中数学北师大版四教学案:第一章§3弧度制含答案

2017-2018学年高中数学北师大版四教学案:第一章§3弧度制含答案

[核心必知]1.度量角的单位制(1)角度制规定周角的1360为1度的角,用度作为单位度量角的单位制叫角度制.(2)弧度制在以单位长为半径的圆中,单位长度的弧所对的圆心角称为1弧度的角,它的单位符号是rad,读作弧度.这种以弧度作单位度量角的单位制,叫作弧度制.2.角度与弧度的互化(1)角度制与弧度制的互化(换算)180°=π_rad;1°=错误!rad=0.017 45 rad;1 rad=错误!=57°18′=57.30°(2)特殊角的度数与弧度数的对应表任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.3.扇形的弧长及面积公式设扇形的半径为r,弧长为l,α为其圆心角,则[问题思考]1.半径不同的圆中,相同的圆心角所对的角的弧度数是否相同?提示:相同.在公式|α|=错误!中,角的弧度数的大小与所在圆的半径的大小无关,只与圆心角的大小有关.2.2°与2弧度的角是否表示同一个角?提示:不是同一个角.2°是角度制,2是弧度制,2 rad约为115°。

3.390°可以写成360°+错误!吗?提示:不可以,在同一表达式中角度与弧度不能混用.讲一讲1.(1)把112°30′化为弧度;(2)-错误!rad化为度.[尝试解答](1)∵1°=错误!rad,∴112°30′=112。

5°=112.5×π180rad=错误!rad.(2)∵1 rad=错误!°,∴-错误!rad=-错误!×错误!°=-75°.1.将角度制化为弧度制,当角度制中含有“分”“秒"单位时,应先将它们统一转化为“度”,再利用1°=错误!rad化为弧度便可.2.以弧度为单位表示角时,常把弧度写成多少π的形式,如无特殊要求,不必把π写成小数.练一练1.将下列角度与弧度互化.(1)20°;(2)错误!;(3)8 rad解:(1)20°=20×错误!=错误!,(2)错误!=错误!×180°=165°。

高中数学 第一章 三角函数 1.3 弧度制导学案 北师大版必修4

高中数学 第一章 三角函数 1.3 弧度制导学案 北师大版必修4

1.3 弧度制问题导学1.角度制与弧度制的互化活动与探究1(1)把112°30′化成弧度;(2)把-5π12化成度.迁移与应用把下列各角从度化成弧度或从弧度化成度.(1)67°30′;(2)810°;(3)108°;(4)135°;(5)7π;(6)-5π2;(7)23π4;(8)-4π5.1.角度与弧度的互化.(1)原则:牢记180°=π rad ,充分利用1°=π180rad ,1 rad =⎝ ⎛⎭⎪⎫180π°进行换算. (2)方法:设一个角的弧度数为α,角度数为n ,则α rad =⎝⎛⎭⎪⎫α·180π°;n °=n ·π180 rad . 2.将角度制化为弧度制,当角度制中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad 化为弧度即可.以弧度为单位表示角时,常把弧度写成多少π的形式.如无特殊要求,不必把π写成小数.2.用弧度表示终边相同的角及区域角活动与探究2已知角α=2 005°,(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.迁移与应用已知角α的终边与π3的终边相同,求角α3在[0,2π)内的值.(1)用弧度表示终边相同的角所有与角α终边相同的角,连同角α在内,构成的集合用弧度可表示为{β|β=2k π+α,k ∈Z },这里α应为弧度数.(2)在某个区间内寻找与α终边相同的角β ①首先表示β的一般形式.②然后根据区间范围讨论k 的值.③最后把k 的值代入β的一般形式求出.活动与探究3用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在图中的阴影部分内的角的集合(不包括边界).迁移与应用用弧度表示顶点在原点,始边与x轴的非负半轴重合,终边落在阴影部分内的角的集合,如图所示,包括边界.区域角的表示方法(1)要用终边相同的角的表示形式表示出以阴影部分的边界为终边的角,并注意旋转的方向及两边界角的大小顺序;(2)表达式中角度制与弧度制不能混用;(3)要分清阴影部分是否包括边界,以确定表达式中是否带“等号”.3.弧长公式及扇形面积公式的应用活动与探究4扇形AOB的周长为8 cm,圆心角为α(0<α<2π).(1)若这个扇形的面积为3 cm2,求圆心角α的大小;(2)求这个扇形的面积取得最大值时圆心角α的大小.迁移与应用如图所示,已知扇形AOB的圆心角为120°,半径长为6,求:(1)AB的长;(2)弓形ACB的面积.(1)在弧度制下的弧长公式及扇形面积公式中,由α,r,l,S中的两个量可以求出另外的两个量,即用方程的思想“知二求二”.(2)求扇形的面积关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量.相反,也可由扇形的面积结合其他条件,求扇形的圆心角、半径、弧长.解题时要注意公式的灵活变形及方程思想的运用.当堂检测1.下列说法中,错误的是( ).A.用角度制和弧度制度量任一角,单位不同,量数也不同B.1°的角是周角的1360,1 rad的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径无关2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积为( ).A .83πB .43C .2πD .4π33.把-1 485°写成2k π+α(0≤α<2π,k ∈Z )的形式是( ).A .-8π+π4B .-8π-7π4C .-10π-π4D .-10π+7π44.(1)300°化为弧度是________;(2)-5π6化为度是________;(3)终边落在如图的阴影部分(包括边界)的角的集合是________.5.已知扇形的周长为6 cm ,面积为2 cm 2,求扇形圆心角α(0<α<2π).课前预习导学 【预习导引】1.(1)1360(2)1弧度的角 rad 弧度 弧度预习交流1 略预习交流2 30° 45° 120° 0 π12 π3 5π12 3π4 5π6 5π4 3π2 3.正数 负数 0预习交流3 (1)32 (2)π34.|α|πr 180 |α|r |α|πr 2360 12lr 12|α|r 2预习交流4 (1)提示:此公式可类比三角形的面积公式来记忆.。

高一数学必修4示范教案:第一章第一节弧度制Word版含解析

高一数学必修4示范教案:第一章第一节弧度制Word版含解析

识弧度制的关键, 为更好地理解角度弧度的关系奠定基础. 讨论后教师提问学生, 并对回答
好的学生及时表扬, 对回答不准确的学生提示引导考虑问题的关键. 教师板书弧度制的定义:
规定长度等于半径长的圆弧所对的圆心角叫做
1 弧度的角. 以弧度为单位来度量角的制度叫
做弧度制;在弧度制下, 1 弧度记作 1 rad.如图 1 中, 的长等于半径 r,AB 所对的圆心角
教师给学生指出,角的概念推广后,在弧度制下,角的集合与实数集
R 之间建立起一
一对应关系:每一个角都有唯一的一个实数 (即这个角的弧度数 )与它对应;反过来,每一个 实数也都有唯一的一个角 (即弧度数等于这个实数的角 )与它对应.值得注意的是:今后在表
示与角 α终边相同的角时, 有弧度制与角度制两种单位制, 要根据角 α的单位来决定另一项
度数为 αrad= (18π0α) °, n°= 1n8π0(rad).
提出问题
问题①: 引入弧度之后, 在平面直角坐标系中, 终边相同的角应该怎么用弧度来表示? 扇形的面积与弧长公式用弧度怎么表示?
问题②:填写下列的表格,找出某种规律 .
的长
OB 旋转的方向 ∠ AOB 的弧度数 ∠ AOB 的度数
问题②:如果一个半径为 r 的圆的圆心角 α所对的弧长是 l,那么 α的弧度数是多少? 既然角度制、弧度制都是角的度量制,那么它们之间如何换算?
活动: 教师引导学生学会总结和归纳角度制和弧度制的关系,
提问学生归纳的情况, 让
学生找出区别和联系. 教师给予补充和提示, 对表现好的学生进行表扬, 对回答不准确的学
度量一个确定的量所得到的量数必须是唯一确定的.
在初中, 已学过利用角度来度量角的大
小,现在来学习角的另一种度量方法 —— 弧度制.要使学生真正了解弧度制,首先要弄清

高中数学 第1章 三角函数 3 弧度制学案 北师大版必修4-北师大版高一必修4数学学案

高中数学 第1章 三角函数 3 弧度制学案 北师大版必修4-北师大版高一必修4数学学案

§3 弧度制学 习 目 标核 心 素 养1.了解角的另外一种度量方法——弧度制.2.能够熟练地在角度制和弧度制之间进行换算.(重点)3.掌握弧度制中扇形的弧长公式和面积公式.(难点)1.通过学习弧度制的概念,提升数学抽象素养.2.通过角度制和弧度制的换算及弧长公式和面积公式的应用,培养数学运算素养.1.弧度制 (1)弧度制的定义在单位圆中,长度为1的弧所对的圆心角称为1弧度角.它的单位符号是rad ,读作弧度.以弧度作为单位来度量角的单位制,叫作弧度制.(2)角度制与弧度制的互化 ①弧度数(ⅰ)正角的弧度数是一个正数; (ⅱ)负角的弧度数是一个负数; (ⅲ)零角的弧度数是0;(ⅳ)弧度数与十进制实数间存在一一对应关系. ②弧度数的计算 |α|=lr.如图:③角度制与弧度制的换算④一些特殊角的度数与弧度数的对应关系 度0° 1°30° 45° 60° 90°120° 135° 150° 180° 270° 360° 弧度0 π180π6π4π3π22π33π45π6π3π22π思考1:“1弧度的角”的大小和所在圆的半径大小有关系吗?[提示] 在半径为1的圆中,1弧度的角为长度为1的弧所对的圆心角,又当半径不同时, 同样的圆心角所对的弧长与半径之比是常数,故1弧度角的大小与所在圆的半径大小无关.2.弧长公式与扇形面积公式已知r 为扇形所在圆的半径,n 为圆心角的度数,α为圆心角的弧度数.角度制 弧度制弧长公式l =|n |πr180l =|α|r 扇形面积公式S =|n |πr 2360S =12l ·r =12|α|r 2思考2:扇形的面积与弧长公式用弧度怎么表示?[提示] 设扇形的半径为r ,弧长为l ,α为其圆心角,则S =12lr ,l =αr .1.下列说法中,错误的说法是( ) A .半圆所对的圆心角是π rad B .周角的大小是2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度D [根据弧度的定义及角度与弧度的换算知A ,B ,C 均正确,D 错误.] 2.时针经过一小时,时针转过了( )A .π6 radB .-π6 radC .π12rad D .-π12radB [时针经过一小时,转过-30°, 又-30°=-π6rad ,故选B.]3.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限D [2π-5与-5的终边相同,∵2π-5∈⎝⎛⎭⎪⎫0,π2,∴2π-5是第一象限角,则-5也是第一象限角.]4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或4C [设扇形半径为r ,圆心角弧度数为α, 则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧r =1,α=4或⎩⎪⎨⎪⎧r =2,α=1.]角度与弧度的互化【例1】 设α1=510°,α2=-750°,β1=5,β2=-6.(1)将α1,α2用弧度表示出来,并指出它们各自终边所在的象限;(2)将β1,β2用角度表示出来,并在-360°~360°范围内找出与它们终边相同的所有的角.[解] (1)∵1°=π180 rad ,∴α1=510°=510×π180=176π,α2=-750°=-750×π180=-256π. ∴α1的终边在第二象限,α2的终边在第四象限. (2)β1=4π5=4π5×180°π=144°.设θ1=k ·360°+144°(k ∈Z ). ∵-360°≤θ1<360°,∴-360°≤k ·360°+144°<360°. ∴k =-1或k =0.∴在-360°~360°范围内与β1终边相同的角是-216°.β2=-11π6=-11π6×180°π=-330°. 设θ2=k ·360°-330°(k ∈Z ). ∵-360°≤θ2<360°,∴-360°≤k ·360°-330°<360°. ∴k =0或k =1.∴在-360°~360°范围内与β2终边相同的角是30°.角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad,充分利用1°=π180 rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°π;n °=n ·π180 rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度.1.将下列角度与弧度进行互化:(1)20°;(2)-15°;(3)7π12;(4)-115π.[解] (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad=712×180°=105°. (4)-115π rad=-115×180°=-396°.用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. [解] (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π, ∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.1.根据已知图形写出区域角的集合的步骤: (1)仔细观察图形; (2)写出区间边界对应的角; (3)用不等式表示区域范围内的角.2.注意事项:用不等式表示区域角的范围时,要注意角的集合形式是否能够合并,这一点容易出错.2.(1)把-1 125°化为2k π+α(k ∈Z,0≤α<2π)的形式是( ) A .-6π-π4B .-6π+7π4C .-8π-π4D .-8π+7π4(2)在0°~720°范围内,找出与角22π5终边相同的角.(1)D [因为-1 125°=-4×360°+315°,315°=315×π180=7π4,所以-1 125°=-8π+7π4.](2)解:因为22π5=4π+25π=720°+72°,所以与角22π5终边相同的角构成集合{θ|θ=72°+k ·360°,k ∈Z }.当k =0时,θ=72°;当k =1时,θ=432°,所以在0°~720°范围内,与角22π5终边相同的角为72°,432°.弧长公式与面积公式的应用[探究问题]1.扇形的半径,弧长及圆心角存在怎样的关系? [提示] |α|=l r.2.扇形的面积和相应的弧长存在怎样的关系? [提示] S =12lr .【例3】 一个扇形的面积为1,周长为4,求该扇形圆心角的弧度数. [思路探究] 设扇形的半径为R ,弧长为l → 根据条件列方程组→解方程组求R 、l →求圆心角 [解] 设扇形的半径为R ,弧长为l , 则2R +l =4,∴l =4-2R , 根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.1.(变条件)将例3中的条件改为“扇形的面积为4,周长为10,试求圆心角α(0<α<2π)的弧度数.[解] 设弧长为l ,扇形半径为r ,由题意得:⎩⎪⎨⎪⎧l +2r =10,12lr =4,解得⎩⎪⎨⎪⎧r =4,l =2或⎩⎪⎨⎪⎧r =1,l =8.(舍)故α=24=12(rad),即扇形的圆心角为12rad.2.(变条件,变结论)将例3的条件改为“已知扇形的周长为40 cm”.问:当它的半径和圆心角取什么值时,才使扇形的面积最大?[解] 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S ,则l +2r =40,∴l =40-2r ,∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010=2(rad).∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.1.判断(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位.( ) (2)1度的角是周角的1360,1弧度的角是周角的12π.( )(3)180°等于π弧度.( ) [答案] (1)√ (2)√ (3)√ 2.-72°化为弧度是( ) A .-π3B .-25πC .-5π6D .-5π7B [-72°=-72×π180=-25π.]3.-2312π化为角度为________.-345° [-2312π=-2312π×180°π=-345°.]4.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=k π2-π3,k ∈Z,N ={α|-π<α<π},则M ∩N =________. ⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π [由-π<k π2-π3<π,得-43<k <83.因为k ∈Z ,所以k =-1,0,1,2,所以M ∩N =⎩⎨⎧⎭⎬⎫-56π,-π3,π6,23π.]5.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________. 32 48 [|α|=l r =128=32 rad ,S =12l ·r =12×12×8=48.]。

高中数学第一章三角函数1.3弧度制课堂导学案北师大版必修4

高中数学第一章三角函数1.3弧度制课堂导学案北师大版必修4

1.3 弧度制课堂导学三点剖析1.角度与弧度之间的换算【例1】化下列角度为弧度制:(1)540°;(2)112°30′;(3)36°.思路分析:根据1°=rad就可将角度化为弧度.解:(1)∵1°= rad,∴540°=3π rad.(2)∵1°= rad,∴112°30′=×112.5 rad= rad.(3)∵1°= rad,∴36°=×36 rad=.友情提示(1)角度数的单位不能省略、弧度数的单位可以省略.(2)一般情况下没有精确度要求,保留π即可,不必将π化成小数.各个击破类题演练 1把130°,-270°化为弧度为________,____________-.解析:∵1°= rad,∴130°=×130 rad×π rad-270°=-×270 rad= rad.答案:π变式提升 1(1)将-225°化为弧度;(2)将 rad化为度.解:(1)∵1°=rad,∴-225°=-×225 rad= rad.(2)∵1 rad=()°,∴ rad=-()°=-75°.2.弧度的综合应用【例2】集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则有()A.M=NB.M NC.M ND.M∩N=思路分析:本题是考查用弧度制表示角的集合之间的关系.可以用取特殊值法分别找到集合M、N所表示的角的终边的位置.解:对集合M中的整数k依次取0,1,2,3,得角.于是集合M中的角与上面4个角的终边相同,如图(1)所示.同理,集合N中的角与0,,,,π,π,3,,2π角的终边相同,如图(2)所示.故M N.∴选C.答案:C类题演练 2已知某角是小于2π的非负角且此角的终边与它的5倍角的终边相同,求此角的大小.解析:设这个角是α,则0≤α<2π.∵5α与α终边相同,∴5α=α+2kπ(k∈Z),∴α=(k∈Z).又∵α∈[0,2π),令k=0,1,2,3.得α=0,,π,π.即为所求值.变式提升 2(1)分别写出终边落在OA,OB位置上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.解析:(1)在0到2π之间,终边落在OA位置上的角是+,终边落在OB位置上的角是+=,故终边落在OA上的角的集合为{α|α=2kπ+,k∈Z},终边落在OB上的角的集合为{β|β=2kπ+,k∈Z}.(2)终边落在阴影部分角的集合为{α|2kπ-≤α≤2kπ+,k∈Z}.【例3】一条弦的长度等于半径r,求:(1)这条弦所对的劣弧长;(2)这条弦与劣弧所组成的弓形的面积.思路分析:由已知可知圆心角的大小为,然后用弧长和扇形面积公式求解即可.注意弓形面积等于扇形面积减去对应的三角形面积.解:(1)如右图,因为半径为r的圆O中弦AB=r,则△OAB为等边三角形,所以∠AOB=.则弦AB所对的劣弧长为r.(2)∵S△AOB=OA·OB·sin∠AOB=r2,S扇形OAB=|α|r2=××r2=r2,∴S弓形=S扇形OAB-S△AOB=r2-r2=(-)r2.友情提示图形的分解与组合是解决数学问题的基本方法之一,本例是把弓形看成是扇形与三角形的差组成的,即可运用已有知识解决要求解的问题.类题演练 3求解:(1)已知扇形的周长为10 cm,面积为4 cm2,求扇形圆心角的弧度数.(2)已知一扇形的圆心角是72°,半径等于20 cm,求扇形的面积.解析:(1)设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l,半径为r,依题意有①代入②得r2-5r+4=0,解之得r1=1,r2=4.当r=1时,l=8(cm),此时,θ=8 rad>2π rad舍去.当r=4时,l=2(cm),此时,θ= rad.(2)设扇形弧长为l,∵72°=72×(rad),∴l=αR=×20=8π(cm).∴S=lR=×8π×20=80π(cm2).变式提升 3一扇形圆心角为150°,半径为10,则扇形面积为多少?解析:150°=,S=|α|r2=××102=π.3.弧度的意义【例4】下列各命题中,假命题是()A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,180°一定等于π弧度D.不论用角度制还是用弧度制度量角,它们都与圆的半径长短有关思路分析:由角和弧度的定义,可知无论是角度制还是弧度制,角的大小与半径的长短无关,而是与弧长与半径的比值有关.故应选D.答案:D友情提示掌握定义的准确表述,弧度是角的单位,不是弧的单位.类题演练 4下列各命题中,真命题是()A.一弧度是一度的圆心角所对的弧B.一弧度是长度为半径的弧C.一弧度是一度的弧与一度的角之和D.一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位解析:根据一弧度的定义:把长度等于半径长的弧所对圆心角叫做一弧度的角,由选项知,D为真命题.答案:D变式提升 4在半径不等的圆中,1弧度的圆心角所对的…()A.弦长相等B.弧长相等C.弦长等于所在圆的半径D.弧长等于所在圆的半径解析:由弧度的定义可知选D.答案:D。

北师大版高中数学必修4-1.3《弧度制》参考教案1

北师大版高中数学必修4-1.3《弧度制》参考教案1

§3 弧度制一、教学目标:1、知识与技能:(1)理解1弧度的角及弧度的定义;(2)掌握角度与弧度的换算公式;(3)熟练进行角度与弧度的换算;(4)理解角的集合与实数集R之间的一一对应关系;(5)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。

2、过程与方法:通过单位圆中的圆心角引入弧度的概念;比较两种度量角的方法探究角度制与弧度制之间的互化;应用在特殊角的角度制与弧度制的互化,帮助学生理解掌握;以针对性的例题和习题使学生掌握弧长公式和扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。

3、情感态度与价值观:通过弧度制的学习,使学生认识到角度制与弧度制都是度量角制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下,角的加、减运算可以像十进制一样进行,而不需要进行角度制与十进制之间的互化,化简了六十进制给角的加、减运算带来的诸多不便,体现了弧度制的简捷美;通过弧度制与角度制的比较,使学生认识到引入弧度制的优越性,激发学生的学习兴趣和求知欲望,养成良好的学习品质。

二、教学重、难点重点: 理解弧度制的意义,正确进行弧度与角度的换算;弧长和面积公式及应用。

难点: 弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系。

三、学法与教法在初中,我们非常熟悉角度制表示角,但在进行角的运算时,运用六十进制出现了很不习惯的问题,与我们常用的十进制不一样,正因为这样,所以有必要引入弧度制;在学习中,通过自主学习的形式,让学生感受弧度制的优越性,在类比中理解掌握弧度制。

教法:探究讨论法。

四、教学过程(一)、创设情境,揭示课题在初中几何里我们学过角的度量,当时是用度做单位来度量角的.我们把周角的3601规定为1度的角,而把这种用度作单位来度量角的单位制叫做角度制.但在数学和其他科学中我们还经常用到另一种度量角的单位制——弧度制。

下面我们就来学习弧度制的有关概念.(板书课题)弧度制的单位是rad ,读作弧度.(二)、探究新知1.1弧度的角的定义.(板书)我们把长度等于半径长的弧所对的圆心角,叫做1弧度的角(打开课件).如图1—12(见教材),弧AB 的长等于半径r ,则弧AB 所对的圆心角就是1弧度的角,弧度的单位记作rad 。

数学北师大版高中必修4数学教学案必修4:第02课时(弧度制)

数学北师大版高中必修4数学教学案必修4:第02课时(弧度制)

总 课 题任意角、弧度 总课时 第 2 课时 分 课 题 弧度制 分课时 第 2 课时教学目标理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;了解角的集合与实数集R 之间建立起一一对应的关系;掌握弧度制下的弧长公式,会利用弧度制解决某些简单的实际问题。

重点难点 弧度的意义,弧度与角度的换算引入新课1、问题:角度是怎样规定的?是否有其它方法来度量角?2、角度的定义:周角的3601为1度的角,用度作为单位来度量角的单位制叫做角度制。

3、弧度的定义4、角度与弧度的换算5、特殊角的弧度数与角度制(1)_____360=︒ (2)rad rad ________1≈=︒(3)︒≈=30.57____1度rad6、弧长公式、扇形的面积公式例题剖析例1、把下列各角从弧度化为度:(1)53π (2)5.3例2、把下列各角从度化为弧度:(1)︒252 (2)'1511︒例3、已知扇形的周长为cm 8,圆心角为rad 2,求该扇形的面积。

巩固练习1、 把下列各角从角度化为弧度:(1)︒180 (2)︒90 (3)︒45(4)︒30 (5)︒120 (6)︒2702、把下列各角从弧度化为度:(1)π2 (2)2π (3)6π (4)π323、把下列各角从度化为弧度:(1)︒75 (2)︒-210 (3)︒135 (4)'3022︒4、把下列各角从弧度化为度:(1)12π (2)π52 (3)π34- (4)π12-5、若6-=α,则角α的终边在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6、已知半径为mm 240的圆上,有一段弧的长是mm 500,求此弧所对的圆心角的弧度数。

课堂小结弧度数的定义,一些特殊角的弧度数;弧长公式、扇形的面积公式。

课后训练班级:高一( )班 姓名__________一、基础题1、︒1000的角的终边所在的象限为( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2、12π的角化成角度制是( ) A 、︒15 B 、︒30 C 、︒60 D 、︒75 3、下列各角中与︒-120角终边相同的角为( )A 、π34B 、π65-C 、π34-D 、π674、集合⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k B Z k k A ,22|,,2|ππααππαα的关系是( ) A 、B A = B 、B A ⊆ C 、B A ⊇ D 、以上都不对5、在半径不等的两个圆内,1弧度的圆心角( )A 、所对的弧长相等B 、所对的弦长相等C 、所对的弧长等于各自的圆的半径D 、所对的弦长等于各自的圆的半径二、提高题6、已知6πα=,角β的终边与α的终边关于直线x y =对称,则角β的集合为____________________.7、角rad 5的终边落在第______象限,角rad 3-的终边落在第______象限。

高中数学 第1章(三角函数)3弧度制导学案 北师大版必修4 学案

高中数学 第1章(三角函数)3弧度制导学案 北师大版必修4 学案

陕西省榆林育才中学高中数学 第1章《三角函数》3弧度制导学案 北师大版必修4【学习目标】1.通过计算弧长与半径的比值理解弧度的定义.2.掌握弧度与角度之间的换算关系,能正确地进行弧度与角度的互化.3.能初步运用弧度制表示的弧长公式、扇形面积公式,解决相关问题. 【重点难点】重点:弧度与角度之间的换算. 难点:弧度制的理解. 【自主学习】1. 先选定一个特殊的角,即周角,将它分为360等份,把1等份确定为一个度 量单位,称为__________,这种度量角的方法叫___________.2. 在度量和计算时,同样的圆心角所对的弧长与半径的比是常数,称这个常数 为该角的______________.3. 规定:在单位圆中,单位长度的弧所对的圆心角为______________, 它的 单位符号是________,读作___________.4. =360________rad ; =180________rad ; =1________rad ≈________rad ; 1rad =()≈__________=___________.5. 一般地,任一正角的弧度数都是一个________数;任一负角的弧度数都是一 个______数;零角的弧度数是_________.这种以弧度作为单位来度量角的单位制, 叫作________.注:在弧度制下,角的集合与实数集之间建立了一一对应关系:即 每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个 实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.6.弧长等于弧所对的圆心角弧度数的绝对值与半径的积,即________________.7.在弧度制下,扇形面积公式为:=S _______________.8.把下列各角从度化成弧度.(1)135; (2)90; (3)60.【合作探究】1.把下列各角化成π2~0间的角加上)(2Z k k ∈π的形式,并指出它们是哪个象限的角. (1)672; (2)718π-; (3)1500-; (4)236π.2. 已知一扇形的圆心角为72,半径等于cm 20,求扇形的面积.【课堂检测】1. 与32π终边相同的角是( ) A. 311π B. 322ππ-k (Z k ∈)C. 3102ππ-k (Z k ∈)D. 32)12(ππ++k (Z k ∈)【课堂小结】【课后训练】1. 下列叙述中错误的是( )A. “度”与“弧度”是度量角的两种不同的度量单位B. 1度的角是周角的3601,1弧度上的角是周角的π21 C. 1弧度是长度等于半径的弧 D. 根据弧度的定义,180等于π弧度2. 把1485-写成),20(2Z k k ∈<≤+πααπ的形式是__________________.3. 若一扇形弧长为18cm ,半径为12cm ,则扇形的面积为___________.。

(北师大版)高中数学必修四:1.3《弧度制》教案(2)

(北师大版)高中数学必修四:1.3《弧度制》教案(2)

弧度制教学目的:1.理解1弧度的角、弧度制的定义2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解教学过程: 一、复习引入:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA 为2.度量角的大小第一种单位制—角度制的定义初中几何中研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的? 规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180rn l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同二、角度制与弧度制的换算:rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad三、讲解范例:例1 把'3067化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴ rad rad ππ832167180'3067=⨯=例2 把rad π53化成度解:1081805353=⨯=rad π注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad ,表示角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住:4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系任意角的集合 实数集R例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3 终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 . 5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 . 6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B. 9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案:1.C2.C3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z } 5.一 7-2π 6.3 7.28.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求: (1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z,即4π+k π<2α<2π+k π,k ∈Z.故当k=2m(m ∈Z)时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k=2m+1(m ∈Z)时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角. 综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈=3m(m ∈Z)时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k=3m+1(m ∈Z)时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角;当k=3m+2(m ∈Z)时,ππαππm m 2353223+<<+,此时,3α角是第四象限角. 综上可知,3α角是第一、第二或第四象限角. (3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z.评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k=0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z)所表示的角所在象限.(3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z),而此角不属于任何象限. 七、板书设计(略)。

北师版数学高一北师大版必修4学案 1.3 弧度制

北师版数学高一北师大版必修4学案 1.3 弧度制

明目标、知重点 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.1.度量角的单位制(1)角度制用度作为单位来度量角的单位制,叫作角度制.规定1度的角等于周角的1 360.(2)1弧度的角在以单位长为半径的圆中,单位长度的弧所对的圆心角为1弧度的角,它的单位符号是rad,读作弧度.(3)弧度制以弧度作为单位来度量角的单位制,叫作弧度制.(4)角的弧度数的规定一般地,任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值满足|α|=lr.这里,弧度数α的正负由角α的终边的旋转方向决定.2.角度制与弧度制的换算(1)角度化弧度弧度化角度360°=2π rad2π rad=360°180°=π radπ rad=180°1°=π180rad ≈0.017 45 rad1 rad =⎝⎛⎭⎫180π°≈57.30°=57°18′(2)一些特殊角的度数与弧度数的对应关系 度数0°1° 30° 45° 60° 90° 弧度数 0π180π6π4π3π2度数 120° 135° 150° 180° 270° 360° 弧度数2π33π45π6π3π22π3.扇形的弧长及面积公式设扇形的半径为r ,弧长为l ,α(0<α<2π)为其圆心角,则 度量单位类别 α为角度制 α为弧度制 扇形的弧长 l =απr 180l =|α|·r 扇形的面积S =απr 2360S =12l ·r =12α·r 2[情境导学] 初中几何研究过角的度量, 规定周角的1360作为1°的角.我们把用度作为单位来度量角的制度叫作角度制, 在角度制下,当两个带着度、分、秒各单位的角相加、相减时,由于运算进制不是十进制,总给我们带来不少困难.那么我们能否重新选择角的单位制,使在该单位制下两角的加减运算与十进制下的加减法运算一样呢?今天我们就来研究这种新单位制—弧度制. 探究点一 弧度制思考1 1弧度的角是怎样规定的?1弧度的角和圆半径的大小有关吗?你能作出一个1弧度的角吗?答 在以单位长为半径的圆中,单位长度的弧所对的圆心角为1弧度的角.1弧度的角是一个定值,与所在圆的半径无关.如图所示,∠AOB 就是1弧度的角.思考2 如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么α的弧度数与l 、r 之间有着怎样的关系?请你完成下表,找出某种规律.规律:如果一个半径为r 的圆的圆心角α所对的弧长为l ,那么α的弧度数的绝对值是lr ,即|α|=l r.思考3 除了角度制,数学中还常用弧度制表示角.请叙述一下弧度制的内容.答 一般地,任一正角的弧度数都是一个正数,任一负角的弧度数都是一个负数,零角的弧度数是0.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr.这里,弧度数α的正负由角α的终边的旋转方向决定. 例1 (1)把67°30′化成弧度; (2)把-7π12化成角度.解 (1)∵67°30′=⎝⎛⎭⎫6712°, ∴67°30′=π180rad ×6712=38π rad.(2)-7π12=-7π12×⎝⎛⎭⎫180π°=-105°.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以⎝⎛⎭⎫180π°即可. 跟踪训练1 将下列角按要求转化: (1)300°=________rad ; (2)-22°30′=________rad ;(3)8π5=________度. 答案 (1)5π3 (2)-π8(3)288探究点二 弧度制下的弧长公式和扇形面积公式思考 我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α). 答 半径为r ,圆心角为n 的扇形弧长公式为l =n πr180,扇形面积公式为S 扇=n πr 2360.∵l 2πr =|α|2π,∴l =|α|r . ∵S 扇S 圆=S 扇πr 2=|α|2π,∴S 扇=12|α|r 2.∴S 扇=12|α|r 2=12lr .例2 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2, 此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.反思与感悟 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.跟踪训练2 一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2 rad ,即扇形的圆心角为2 rad.探究点三 利用弧度制表示终边相同的角导引 在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度.思考1 利用弧度制表示出终边落在坐标轴上的角的集合.思考2例3 (1)-1 500°; (2)23π6; (3)-4.解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°. ∴-1 500°可化成-10π+5π3,是第四象限角.(2)∵23π6=2π+11π6,∴23π6与11π6终边相同,是第四象限角.(3)∵-4=-2π+(2π-4),π2<2π-4<π.∴-4与2π-4终边相同,是第二象限角.反思与感悟 在同一问题中,单位制度要统一,角度制与弧度制不能混用. 跟踪训练3 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α的终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,又0<169π<2π,∴-1 480°=169π+2×(-5)π.(2)∵β与α终边相同,∴β=α+2k π=169π+2k π(k ∈Z ).又β∈[-4π,0],∴β1=169π-2π=-29π,β2=169π-4π=-209π.∴β=-29π或β=-209π.1.时针经过一小时,时针转过了( ) A.π6 rad B .-π6 radC.π12 rad D .-π12rad答案 B解析 时针经过一小时,转过-30°, 又-30°=-π6rad ,故选B.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .1或2 C .1或4 D .2或4 答案 C解析 设扇形半径为r ,圆心角弧度数为α,则由题意得⎩⎪⎨⎪⎧ 2r +αr =6,12αr 2=2,∴⎩⎪⎨⎪⎧ r =1α=4或⎩⎪⎨⎪⎧r =2,α=1.3.已知两角的和是1弧度,两角的差是1°,则这两个角分别为____________________.答案 12+π360,12-π360解析 设这两个角为α,β弧度,不妨设α>β,则⎩⎪⎨⎪⎧α+β=1,α-β=π180,解得α=12+π360,β=12-π360. 4.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是________.答案 -34π解析 ∵-114π=-2π+⎝⎛⎭⎫-34π =2×(-1)π+⎝⎛⎭⎫-34π. ∴θ=-34π.[呈重点、现规律]1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 角度制与弧度制换算关系为:度数×π180rad =弧度数,弧度数×⎝⎛⎭⎫180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.一、基础过关1.-300°化为弧度是( ) A .-43πB .-53πC .-54πD .-76π答案 B2.集合A =⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π2,k ∈Z }的关系是( )A .A =B B .A ⊆BC .B ⊆AD .以上都不对答案 A3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1 D .2sin 1 答案 C 解析 ∵r =1sin 1,∴l =|α|r =2sin 1. 4.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C5.设角α、β满足-180°<α<β<180°,则α-β的范围是_________________________________. 答案 (-360°,0°)解析 ∵α<β,∴α-β<0°,又-180°<α<180°,-180°<-β<180°,∴-360°<α-β<360°. 综上可知α-β的范围是-360°<α-β<0°.6.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________. 答案 34解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .7.用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(包括边界,如图所示).解 (1)⎩⎨⎧⎭⎬⎫α|2k π-π6≤α≤2k π+5π12,k ∈Z .(2)⎩⎨⎧⎭⎬⎫α|k π+π6≤α≤k π+π2,k ∈Z .二、能力提升8.扇形圆心角为π3,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9 答案 B解析 设扇形的半径为R ,扇形内切圆半径为r , 则R =r +rsin π6=r +2r =3r .∴S 内切=πr 2.S 扇形=12αR 2=12×π3×R 2=12×π3×9r 2=32πr 2.∴S 内切∶S 扇形=2∶3.9.圆的半径是6 cm ,则圆心角为15°的扇形面积是( ) A.π2 cm 2 B.3π2 cm 2 C .π cm 2 D .3π cm 2 答案 B解析 ∵15°=π12,∴l =π12×6=π2(cm),∴S =12lr =12×π2×6=3π2(cm 2).10.下列表示中不正确的是( )A .终边在x 轴上的角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上的角的集合是{α|α=π2+k π,k ∈Z }C .终边在坐标轴上的角的集合是{α|α=k ·π2,k ∈Z }D .终边在直线y =x 上的角的集合是{α|α=π4+2k π,k ∈Z }答案 D解析 终边在直线y =x 上的角的集合应是{α|α=π4+k π,k ∈Z }.11.如图所示,动点P ,Q 从点A 出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·|-π6|=2π.所以t =4(秒),即第一次相遇的时间为4秒.12.如图所示,半径为1的圆的圆心位于坐标原点,点P 从点A (1,0)出发,依逆时针方向等速沿单位圆周旋转,已知P 点在1 s 内转过的角度为θ (0<θ<π),经过2 s 达到第三象限,经过14 s 后又回到了出发点A 处,求θ. 解 因为0<θ<π,且2k π+π<2θ<2k π+3π2(k ∈Z ),则必有k =0,于是π2<θ<3π4,又14θ=2n π(n ∈Z ),所以θ=n π7,n ∈Z ,从而π2<n π7<3π4,即72<n <214,n ∈Z ,所以n =4或5,故θ=4π7或5π7.三、探究与拓展13.已知一扇形的中心角是α,所在圆的半径是R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值c (c >0),当α为多少弧度时,该扇形有最大面积? 解 (1)设弧长为l ,弓形面积为S 弓, ∵α=60°=π3,R =10,∴l =αR =10π3(cm).S 弓=S 扇-S △=12×10π3×10-2×12×10×sin π6×10×cos π6=50⎝⎛⎭⎫π3-32 (cm 2).(2)扇形周长c =2R +l =2R +αR ,∴α=c -2RR ,∴S 扇=12αR 2=12·c -2R R ·R 2=12(c -2R )R打印版高中数学 =-R 2+12cR =-⎝⎛⎭⎫R -c 42+c 216. 当且仅当R =c 4,即α=2时,扇形面积最大,且最大面积是c 216.。

2019-2020年高中数学北师大版必修4《弧度制》word导学案

2019-2020年高中数学北师大版必修4《弧度制》word导学案

2019-2020年高中数学北师大版必修4《弧度制》word导学案1.了解弧度制的概念及其意义,会将角度制与弧度制互相转化.2.了解弧度制下的弧长公式和扇形公式并能应用公式解决有关问题.3.理解角的集合与实数集R之间的一一对应关系.自行车大链轮有48个齿,小链轮有20个齿,当大链轮转过一周时,小链轮转过的角度是多少度?多少弧度?问题1:弧度制的定义以弧度作为单位来度量角的单位制叫作弧度制,把等于半径长的圆弧所对的圆心角叫作1弧度的角,记作1 rad.问题2:角度与弧度之间的转换①将角度化为弧度:360°=,180°=,1°=≈0.01745 rad,n°= rad.②将弧度化为角度:2π=,π=,1 rad=()°≈57.30°=57°18',nrad=()°.问题3:弧度制下终边相同的角的表示(1)与任意角α终边相同的角组成的集合为,其中α为角的弧度数.(2)用弧度制表示角省掉单位“弧度”后,就使角的集合与实数集R之间建立了一种的关系,即每一个角都有的一个实数与它对应;反过来,每一个实数也都有的一个角与之对应.(3)在表示与角α终边相同的角时,要注意统一单位,应避免出现30°+2kπ或+k·360°,即同一表达式中度量单位要.问题4:弧长公式及扇形的面积公式(1)弧长公式:①弧度制:;②角度制:.(2)扇形的面积公式:①弧度制:;②角度制:.上述公式中,由α、r、l、S中的两个量可以求出另外两个量,即知二得二;使用弧度制下的弧长公式有很多优越性(如公式简单,便于记忆、应用),但是如果已知的角是以“度”为单位时,则必须先把它化成弧度后再用公式计算.1.225°角的弧度数为().A.B.C.D.2.若一扇形的圆心角为72°,半径为20 cm,则扇形的面积为().A.40π cm2B.80π cm2C.40 cm2D.80 cm23.半径为2的圆中,弧长为4的弧所对的圆心角是.4.两角差为1°,两角和为1 rad,求这两角的弧度数.角度与弧度的互化(1)把22°30'化成弧度;(2)把化成角度.用弧度表示终边相同的角(1)将-1485°表示成2kπ+α(k∈Z)的形式,且0≤α<2π;(2)若β∈[0,4π],且β与(1)中α的终边相同,求β.与弧度制有关的综合题已知一扇形的中心角是α,所在圆的半径是R.(1)若α=60°,R=10 cm,求扇形的弧所在的弓形面积;(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?设角α1=-570°,α2=750°,β1=,β2=-.(1)将α1、α2用弧度制表示出来,并指出它们各自所在的象限;(2)将β1、β2用角度制表示出来,并在-720°~0°之间找出与它们有相同终边的所有角.单位圆上一点A(1,0)依逆时针方向做匀速圆周运动,已知点A每分钟转过θ角(0<θ≤π),经过2分钟到达第三象限,经过14分钟回到原来的位置,那么θ是多少弧度?(1)已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.(2)已知扇形的圆心角为90°,弧长为l,求此扇形内切圆的面积.1.圆的半径是6 cm,则圆心角为15°的扇形面积是().A. cm2B. cm2C.π cm2D.3π cm22.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴的距离d关于时间t的函数图像大致为().3.已知2kπ+<α<2kπ+(k∈Z),则为第象限角.4.若2弧度的圆心角所对的弦长为2 cm,则这个圆心角所夹的扇形的面积是多少?设扇形的周长为8 cm,面积为4 cm2,则扇形的圆心角的弧度数是.考题变式(我来改编):第2课时弧度制知识体系梳理问题2:①2ππ②360°180°问题3:(1)S={β|β=α+2kπ,k∈Z}(2)一一对应唯一唯一(3)统一问题4:(1)l=|α|r l=(2)S=lr=|α|r2S=基础学习交流1.C因为1°= rad,所以225°=225×=.2.B72°=,S扇形=|α|R2=××202=80π(cm2).3.2 radα===2(rad).4.解:设两角分别为α、β,则有α-β=,α+β=1,解得α=+,β=-.重点难点探究探究一:【解析】(1)22°30'=22.5°=22.5×= rad.(2) rad=×()°=()°=10°.【小结】弧度制与角度制的互化应熟悉其互化规则.在利用弧度制表示角时,“弧度”或“rad”可省略不写.探究二:【解析】(1)∵1485°=1485×==8π+,∴-1485°=-8π-=-10π+.(2)∵β与α的终边相同,∴β=2kπ+α=+2kπ(k∈Z).又∵β∈[0,4π],∴β1=,β2=+2π=.【小结】在将角度化成弧度的过程中,要注意负角应怎么化,这里容易忽略β∈[0,4π]这个条件.探究三:【解析】(1)设弧长为l,弓形面积为S弓,∵α=60°=,R=10,∴l=π(cm),S弓=S扇-S△=×π×10-×10×10sin 60°=50(-)(cm2).(2)由已知得2R+l=c,∴R=(l<c),∴S=Rl=··l=(cl-l2)=-(l-)2+,∴当l=时,S max=,此时α===2,∴当扇形的圆心角为2弧度时,扇形面积有最大值.【小结】本题是弧度制下弧长公式和扇形面积公式的应用,公式简明,运算非常简便.思维拓展应用应用一:(1)∵180°=π rad,∴-570°=-570×=-,∴α1=-=-2×2π+.同理,α2=2×2π+.∴α1是第二象限角,α2是第一象限角.(2)∵β1==×()°=144°,设θ=k·360°+β1(k∈Z),由-720°≤θ<0°得,-720°≤k·360°+144°<0°,∴k=-1或k=-2,∴在-720°~0°之间与β1有相同终边的角是-216°,-576°.同理,β2=-×()°=-315°,且在-720°~0°之间与β2有相同终边的角是-315°和-675°.应用二:【解析】∵0<θ≤π,∴0<2θ≤2π,又2θ在第三象限,∴π<2θ<π,又∵14θ=2kπ,k∈Z,∴2θ=kπ,k∈Z.当k=4,5时,2θ=π,π,它们都在(π,π)内,因此θ=π rad或θ=π rad.应用三:(1)设扇形的半径为R cm,如图.由sin 60°=,得R=4 cm.所以l=|α|R=×4=π(cm).(2)设扇形的半径为R,其内接圆的半径为r,则有l=R·,r+r=R,于是r=l·(-1).故内切圆的面积S=πr2=π·[l·(-1)]2=l2.基础智能检测1.B∵15°=,∴l=×6=,∴S=lr=××6=(cm2).2.C∵P0(,-),∴∠P0Ox=,按逆时针转时间t后得,∠POP0=t,∠POx=t-,此时点P的纵坐标为2sin(t-),∴d=2|sin(t-)|.当t=0时,d=,排除A、D;当t=时,d=0,排除B,故选C.3.一或三4.解:由弧长公式l=|α|r可知,r===1 cm,故圆心角所夹的扇形的面积为S=lr=×2×1=1(cm2).全新视角拓展2由题意得S=(8-2r)r=4,整理得r2-4r+4=0,解得r=2.又l=4,故|α|==2(rad).思维导图构建所对的圆心角|α|r2。

高中数学必修四(北师大版)第一章学案 弧度制

高中数学必修四(北师大版)第一章学案 弧度制

403弧度制班级姓名组号编写人:程忠虎审核人:王松涛【学习目标】1、理解1弧度的定义和弧度制的概念,体会弧度制定义的合理性;2、掌握弧度与角度的互化,理解角的集合与实数集R间建立的一一对应关系;3、掌握弧度制下的弧长公式与扇形面积公式。

【学习重点】弧度制概念的理解,弧度与角度的互化。

【学习难点】弧度制的建立与应用。

【学习过程】一、预习自学(预习教材p9-p12)思考1:半径不同的同心圆中,同样的圆心角所对的弧长和半径之比有什么特征?利用什么量表示这一特征?思考2:单位圆中,长度为1的狐与半径的比是多少?如何描述该狐所对圆心角的大小?如果一个半径为r的圆的圆心角α所对的弧长是l,那么a的弧度数是多少?思考3:课本表1-3是怎样得到的?你会转化吗?试举一例说明。

思考4: 利用弧度制证明下列关于扇形的公式:(1)l Rα=;(2)212S Rα=;(3)12S lR=.(其中R是半径,l是弧长,(02)ααπ<<为圆心角,S是扇形的面积)【知识自测】填写新学案P4-P5“知识梳理”相关内容二、合作探究问题1: 圆O的半径为2, AB的长等于4,AOC∠=-90°,AOC∠和BOC∠的弧度数.问题2;(弧度与角度之间的互化)(1)18°=_________; (2)6730'︒=_______; (3)310πrad =________; (4)2rad =________. 问题3:已知1570α=-︒,2750α=︒,145πβ=,23πβ=-. (1) 将12,αα用弧度表示出来,并指出它们是第几象限角;(2) 将12,ββ用角度表示出来,并在7200-︒︒ 之间找出与它们终边相同的角.问题4:(弧长公式、扇形面积公式的应用): 解下列各题: (1) 已知扇形的圆心角为32rad ,半径为6cm ,求扇形的周长。

(2) 已知扇形的周长为8cm , 圆心角为2rad,求扇形的面积三、当堂检测——新学案p5:自主测评四.学习小结1、本节学习收获2、弧度制与角度制有何不同?。

高中数学 1.3.1弧度制学案 北师大版必修4

高中数学 1.3.1弧度制学案 北师大版必修4

班级_______姓名________层次______1.3.1弧度制寄语:珍惜每一分钟,创造高效课堂!一、学习目标:1、理解1弧度的角及弧度制的定义.2、掌握角度与弧度的换算公式,理解角的集合与实数集合R 之间一一对应的关系.3、理解并掌握弧度制下的弧长公式、扇形的面积公式,并能灵活运用这两个公式解题. 二、学习重点:理解弧度制的意义,正确进行弧度与角度的换算.学习难点:弧长的概念及与角度的关系;角的集合与实数之间一一对应的关系,弧度制的运用.三、知识链接:1、角可以分为 、 、 .2、β 与α是终边相同的角⇔β= ____.3、在直角坐标系中,写出终边落在x 轴上角的集合___________________.写出终边落在y轴上角的集合___________________. 4、初中我们所学的0°~360°的角所对应的弧长公式 从中可以看出在一个给定半径的圆中, 和 是一一对应的.四、学习过程:1、仔细观察课本第9页的表格不难发现:当半径不同时,同样的圆心角所对的弧长与半径的比是______.我们称这个常数为该角的_______.特别地,当半径和弧长都为1时,那么弧长与半径的比值为 因此在单位圆中1弧度角的定义为: .它的单位符号是 ,读作弧度.在单位圆中,当圆心角为周角时,它所对的弧长为 ,所以圆周角的弧度数是_______.因此,任意一个0360oo:的角的弧度数必然适合不等式 .2、角度和弧度之间的互化:360°= __rad; =πrad; 1°= rad ≈ rad1rad=( )°≈ = . 完成下表(并掌握熟练):、一般地,任一正角的弧度数是一个 ,任一负角的弧度数是一个 ,零角的弧度数是 ,这种以_____作为单位来度量角的单位制叫作弧度制.4、设r 是圆的半径,L 是圆心角α所对的弧长,由弧度的定义可知,角α绝对值满足 ,即 .采用角度制时的相应公式为 . 5、角的概念推广以后,不论用角度制还是弧度制,都能在角与实数之间建立一种 的对应关系.6、弧度制和角度制的主要区别是什么?五、基础练习(B )1、把45o化为弧度=______rad. (B )2、把35rad π化为角度=________,是第___象限角. (B )3、下列说法正确的是( )A 、一弧度是一度的圆心角所对的弧.B 、一弧度是长度为半径的弧.C 、一弧度是一度的弧与一度的角之和.D 、一弧度是长度等于半径长的弧所对的圆心角,它是角的一种度量单位. (B)4、把下列各角从度化成弧度.(1) 135o(2) 90o(3) 60o(B)5、求下列各式的值. (1) sin3π (2) tan6π六、能力提升:(C )1、用弧度制表示终边在x 轴上的角的集合.(C )2、试用弧度制证明扇形面积公式12s lr =,其中l 是弧长,r 是 圆的半径. 并求扇形的弧长是18cm,半径是12cm 的扇形的面积.(B3、分别用角度制、弧度制下的弧长公式,计算半径为1m 的圆中,60o的圆心角所对的弧的长度.(选作)4、已知扇形的周长为6 cm ,面积为2 2cm ,求扇形中心角的弧度数.七、反思小结:。

高中数学弧度制 讲学案北师大版必修四

高中数学弧度制 讲学案北师大版必修四

二、探究精讲:
探究一: 用弧度制证明扇形面积公式 S 1 lR 其中 l 是扇形弧长, R 2
是圆的半径。
证: 如图:圆心角为 1rad 的扇形面积为: 1 R 2 2 NhomakorabeaR oS l
弧长为 l 的扇形圆心角为 l rad R
∴ S l 1 R2 1 lR
R 2
2
感悟: 比较这与 扇形面积 公式
图中长度单位为:m 60
R=45
〖归纳小节〗:
1、 弧度制概念的应用 2、 掌握弧长公式和扇形的面积公式
S扇
nR 2 360
要简单
感悟:
探究二: 计算 sin 4
tan1.5
解:∵ 45 4
∴ sin sin 45 2
4
2
1.5rad 57.30• 1.5 85.95 8557' ∴ tan1.5 tan8557' 14.12
探究三: 求图中公路弯道处弧 AB 的长 l (精确到 1m)
弧度制 讲学案
〖学习目标及要求〗:
1、学习目标: 加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解 决具体的问题,理解并掌握弧度制下的弧长公式、扇形面积公式, 并能灵活运用这两个公式解题。
2、重点难点:理解弧度制,掌握弧长公式和扇形的面积公式,感受弧 度制的优越性,在类比中理解掌握弧度制。
〖讲学过程〗: 一、预习反馈:

高中数学 弧制导学案 北师大版

高中数学 弧制导学案 北师大版

高中数学 弧制导学案 北师大版学习目标:1. 理解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;2. 掌握弧度制下的弧长公式和扇形的面积公式学习重难点:弧度与角度的换算及弧度制下的弧长公式和扇形的面积公式自主预习完成:1.规定:周角 为1度的角; _____________________________________________________._叫做1弧度的角.2.角度制与弧度制相互换算:1弧度= (度);1度= (弧度)3.把下列各角从弧度化为角度: 7_______;6π= 4_______.3π-=4.把下列各角从角度化为弧度:0315________;= 072_________.-=5.下列命题中,假命题的是( )A 、“角度”与“弧度”是度量角的两种不同的度量单位;B 、1度的角是周角的1360,1弧度的角是周角的12π;C 、根据弧度的定义,一定有0180π=成立;D 、不论是用角度制还是用弧度制量角,它们与圆的半径长短有关.精讲互动一、弧度制的概念例1.把下列各角从弧度化为角度:(拓展思考弧度制下如何判断所在象限)(1)35π(2)π27例2.把下列各角从角度化为弧度(1)0252 (2)01080二、弧长公式和扇形面积公式例3.已知扇形的周长为8厘米,圆心角为2弧度,求该扇形的面积.例4一扇形周长是,扇形的圆心角为多少弧度时,这个扇形的面积最大?最大面积是多少?反馈演练 1. 4sin π的值是( )A . B . C . D .2.一条弦长等于直径的 ,则此弦所对圆心角( ).A .等于 弧度B .等于 弧度C .等于 弧度D .以上都不对3.半径为2的圆中,长为2的弧所对的圆周角的弧度数为__________,度数为____________.4.3弧度的角的终边在第_____________象限,7弧度的角的终边在第_____________象限.5.扇形的圆心角为 ,半径为 ,则弧长为____________.6.把下列各角从弧度化为角度:(1)12π (2)25π (3)43π- (4)12π-7.把下列各角从角度化为弧度:(1)075 (2)0210- (3)0135 (4)0'22308.扇形的面积为 ,它的周长为 ,求扇形圆心角的弧度数及弦长AB上本作业基础题:)),(题(的第21712P ;提高题第八题课后练习一:选择1.把 化为 的形式是( ).A .B .C .D .2.扇形的周长是16,圆心角是2弧度,则扇形面积是( ).A .B .C .16D .323.下列各对角中终边相同的角是( ).A .2π和)(22Z k k ∈+-ππ B.2π-和322 C.97π-和911π D.320π和9122π4. 时钟经过一小时,时针转过了( ). A.rad 6π B.rad 6π- C.rad 12π D.rad 12π-5. 两个圆心角相同的扇形的面积之比为 1∶2,则两个扇形周长的比为( ).A.2:1B.4:1C.2:1 D 8:16. 下列命题中正确的命题是( ).A. 若两扇形面积的比是 1∶4,则两扇形弧长的比是 1∶2.B. 若扇形的弧长一定,则面积存在最大值.C. 若扇形的面积一定,则弧长存在最小值.D. 任意角的集合可以与实数集 R 之间建立一种一一对应关系.7. 一个半径为 R 的扇形,它的周长是 4R ,则这个扇形所含弓形的面积是( ). A.()21cos 1sin 221R ⋅- B.21cos 1sin 21R ⋅ C.221R D.()21cos 1sin 1R ⋅-8.终边经过点的角的集合是)0)(,(≠a a a ( )A ⎭⎬⎫⎩⎨⎧4π B⎭⎬⎫⎩⎨⎧45,4ππ,C ⎭⎬⎫⎩⎨⎧∈+=Z k k ,24|ππαα D ⎭⎬⎫⎩⎨⎧∈+=Z k k ,4|ππαα二、填空题9.如果是第是第三象限角,则∂+∂π______象限角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时弧度制
1.了解弧度制的概念及其意义,会将角度制与弧度制互相转化.
2.了解弧度制下的弧长公式和扇形公式并能应用公式解决有关问题.
3.理解角的集合与实数集R之间的一一对应关系.
自行车大链轮有48个齿,小链轮有20个齿,当大链轮转过一周时,小链轮转过的角度是多少度?多少弧度?
问题1:弧度制的定义
以弧度作为单位来度量角的单位制叫作弧度制,把等于半径长的圆弧所对的圆心角叫作1弧度的角,记作1rad.
问题2:角度与弧度之间的转换
①将角度化为弧度:360°=,180°=,1°=≈0.01745rad,n°= rad.
②将弧度化为角度:2π=,π=,1rad=()°≈57.30°=57°18',n
rad=()°.
问题3:弧度制下终边相同的角的表示
(1)与任意角α终边相同的角组成的集合为,其中α为角的弧度数.
(2)用弧度制表示角省掉单位“弧度”后,就使角的集合与实数集R之间建立了一种的关系,即每一个角都有的一个实数与它对应;反过来,每一个实数也都有的一个角与之对应.
(3)在表示与角α终边相同的角时,要注意统一单位,应避免出现30°+2kπ或+k·360°,
即同一表达式中度量单位要.
问题4:弧长公式及扇形的面积公式
(1)弧长公式:
①弧度制:;
②角度制:.
(2)扇形的面积公式:
①弧度制:;
②角度制:.
上述公式中,由α、r、l、S中的两个量可以求出另外两个量,即知二得二;使用弧度制下的弧长公式有很多优越性(如公式简单,便于记忆、应用),但是如果已知的角是以“度”为单位时,则必须先把它化成弧度后再用公式计算.
1.225°角的弧度数为().
A.B.C.D.
2.若一扇形的圆心角为72°,半径为20cm,则扇形的面积为().
A.40πcm2
B.80πcm2
C.40cm2
D.80cm2
3.半径为2的圆中,弧长为4的弧所对的圆心角是.
4.两角差为1°,两角和为1rad,求这两角的弧度数.
角度与弧度的互化
(1)把22°30'化成弧度;
(2)把化成角度.
用弧度表示终边相同的角
(1)将-1485°表示成2kπ+α(k∈Z)的形式,且0≤α<2π;
(2)若β∈[0,4π],且β与(1)中α的终边相同,求β.
与弧度制有关的综合题
已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10cm,求扇形的弧所在的弓形面积;
(2)若扇形的周长是一定值c(c>0),当α为多少弧度时,该扇形有最大面积?
设角α1=-570°,α2=750°,β1=,β2=-.
(1)将α1、α2用弧度制表示出来,并指出它们各自所在的象限;
(2)将β1、β2用角度制表示出来,并在-720°~0°之间找出与它们有相同终边的所有角.
单位圆上一点A(1,0)依逆时针方向做匀速圆周运动,已知点A每分钟转过θ角(0<θ≤π),经过2分钟到达第三象限,经过14分钟回到原来的位置,那么θ是多少弧度?
(1)已知扇形的圆心角是α=120°,弦长AB=12cm,求弧长l.
(2)已知扇形的圆心角为90°,弧长为l,求此扇形内切圆的面积.
1.圆的半径是6cm,则圆心角为15°的扇形面积是().
A.cm2
B.cm2
C.πcm2
D.3πcm2
2.如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴的距离d关于时间t的函数图像大致为().
3.已知2kπ+<α<2kπ+(k∈Z),则为第象限角.
4.若2弧度的圆心角所对的弦长为2cm,则这个圆心角所夹的扇形的面积是多少?
设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是.
考题变式(我来改编):
第2课时弧度制
知识体系梳理
问题2:①2ππ②360°180°
问题3:(1)S={β|β=α+2kπ,k∈Z}(2)一一对应唯一唯一(3)统一问题4:(1)l=|α|r l=(2)S=lr=|α|r2S=
基础学习交流
1.C因为1°=rad,所以225°=225×=.
2.B72°=,S扇形=|α|R2=××202=80π(cm2).
3.2radα===2(rad).
4.解:设两角分别为α、β,则有α-β=,α+β=1,解得α=+,β=-.
重点难点探究
探究一:【解析】(1)22°30'=22.5°=22.5×=rad.
(2)rad=×()°=()°=10°.
【小结】弧度制与角度制的互化应熟悉其互化规则.在利用弧度制表示角时,“弧度”或“rad”可省略不写.
探究二:【解析】(1)∵1485°=1485×==8π+,
∴-1485°=-8π-=-10π+.
(2)∵β与α的终边相同,
∴β=2kπ+α=+2kπ(k∈Z).
又∵β∈[0,4π],∴β1=,β2=+2π=.
【小结】在将角度化成弧度的过程中,要注意负角应怎么化,这里容易忽略β∈[0,4π]这个条件.
探究三:【解析】(1)设弧长为l,弓形面积为S弓,
∵α=60°=,R=10,∴l=π(cm),
S弓=S扇-S△=×π×10-×10×10sin60°=50(-)(cm2).
(2)由已知得2R+l=c,∴R=(l<c),∴S=Rl=··l=(cl-l2)=-(l-)2+,
∴当l=时,S max=,此时α===2,
∴当扇形的圆心角为2弧度时,扇形面积有最大值.
【小结】本题是弧度制下弧长公式和扇形面积公式的应用,公式简明,运算非常简便.
思维拓展应用
应用一:(1)∵180°=πrad,
∴-570°=-570×=-,
∴α1=-=-2×2π+.同理,α2=2×2π+.
∴α1是第二象限角,α2是第一象限角.
(2)∵β1==×()°=144°,设θ=k·360°+β1(k∈Z),由-720°≤θ<0°
得,-720°≤k·360°+144°<0°,
∴k=-1或k=-2,∴在-720°~0°之间与β1有相同终边的角是-216°,-576°.
同理,β2=-×()°=-315°,且在-720°~0°之间与β2有相同终边的角是-315°和
-675°.
应用二:【解析】∵0<θ≤π,∴0<2θ≤2π,
又2θ在第三象限,∴π<2θ<π,
又∵14θ=2kπ,k∈Z,∴2θ=kπ,k∈Z.
当k=4,5时,2θ=π,π,它们都在(π,π)内,
因此θ=πrad或θ=πrad.
应用三:
(1)设扇形的半径为R cm,如图.
由sin60°=,得R=4cm.
所以l=|α|R=×4=π(cm).
(2)设扇形的半径为R,其内接圆的半径为r,则有l=R·,r+r=R,于是r=l·(-1).
故内切圆的面积S=πr2=π·[l·(-1)]2
=l2.
基础智能检测
1.B∵15°=,∴l=×6=,∴S=lr=××6=(cm2).
2.C∵P0(,-),∴∠P0Ox=,按逆时针转时间t后得,∠POP0=t,∠POx=t-,此时点P的纵坐标为2sin(t-),∴d=2|sin(t-)|.当t=0时,d=,排除A、D;当t=时,d=0,排除B,故选
C.
3.一或三
4.解:由弧长公式l=|α|r可知,r===1cm,故圆心角所夹的扇形的面积为S=lr=×2×1=1(cm2).
全新视角拓展
2由题意得S=(8-2r)r=4,整理得r2-4r+4=0,解得r=2.又l=4,故|α|==2(rad).
思维导图构建
所对的圆心角|α|r2。

相关文档
最新文档