初三数学二次函数经典题型例题讲解及答案解析,二次函数中考题型讲解及答案解析
初三数学《二次函数》知识点总结和经典习题(附答案)
![初三数学《二次函数》知识点总结和经典习题(附答案)](https://img.taocdn.com/s3/m/104abd6d336c1eb91a375d6d.png)
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =--3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析
![中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析](https://img.taocdn.com/s3/m/fe1c6535852458fb760b5641.png)
中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析一、二次函数1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3.(2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72, ∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94). 设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得: 17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==, ∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8. ∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.4.如图,抛物线y=ax2+bx(a≠0)过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,是否存在这样的点P,使得△ABP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,请说明理由;(4)若点M在直线BH上运动,点N在x轴正半轴上运动,当以点C,M,N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=-x2+4x;(2)C(3,3),面积为3;(3)P的坐标为(5,-5);(4)52或5.【解析】试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P所处象限的特点即可求;(4)分情况进行讨论,确定点M、N,然后三角形的面积公式即可求.试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2+bx 中,得16403a b a b +=⎧⎨+=⎩ ,解得14a b =-⎧⎨=⎩, ∴抛物线的表达式为y =-x 2+4x .(2)∵抛物线的表达式为y =-x 2+4x ,∴抛物线的对称轴为直线x =2.又C ,B 关于对称轴对称,∴C (3,3).∴BC =2,∴S △ABC =12×2×3=3. (3)存在点P .作PQ ⊥BH 于点Q ,设P (m ,-m 2+4m ).∵S △ABP =2S △ABC ,S △ABC =3,∴S △ABP =6.∵S △ABP +S △BPQ =S △ABH +S 梯形AHQP ∴6+12×(m -1)×(3+m 2-4m )=12×3×3+12×(3+m -1)(m 2-4m ) 整理得m 2-5m =0,解得m 1=0(舍),m 2=5,∴点P 的坐标为(5,-5). (4)52或5. 提示:①当以M 为直角顶点,则S △CMN =52; ②当以N 为直角顶点,S △CMN =5; ③当以C 为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.5.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ).(1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式;(2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =- (3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤- 224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.6.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.7.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a ≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.8.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.9. 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有:x =1,y =3,y =x +2,y =﹣x +4.问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线21()4y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (m ,n )所有的特征线;(2)若点D 有一条特征线是y =x +1,求此抛物线的解析式; (3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A ′的位置,当点A ′在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【答案】(1)x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m+n ;(2)21(2)34y x =-+;(3)抛物线向下平移9233-或2312距离,其顶点落在OP 上. 【解析】试题分析:(1)根据特征线直接求出点D 的特征线;(2)由点D 的一条特征线和正方形的性质求出点D 的坐标,从而求出抛物线解析式; (2)分平行于x 轴和y 轴两种情况,由折叠的性质计算即可.试题解析:解:(1)∵点D (m ,n ),∴点D (m ,n )的特征线是x =m ,y =n ,y =x +n ﹣m ,y =﹣x +m +n ;(2)点D 有一条特征线是y =x +1,∴n ﹣m =1,∴n =m +1.∵抛物线解析式为21()4y x m n =-+,∴21()14y x m m =-++,∵四边形OABC 是正方形,且D 点为正方形的对称轴,D (m ,n ),∴B (2m ,2m ),∴21(2)24y m m n m =-+=,将n =m +1带入得到m =2,n =3;∴D (2,3),∴抛物线解析式为21(2)34y x =-+. (3)①如图,当点A ′在平行于y 轴的D 点的特征线时:根据题意可得,D (2,3),∴OA ′=OA =4,OM =2,∴∠A ′OM =60°,∴∠A ′OP =∠AOP =30°,∴MN 323∴抛物线需要向下平移的距离=233923-. ②如图,当点A ′在平行于x 轴的D 点的特征线时,设A ′(p ,3),则OA ′=OA =4,OE =3,EA 2243-7,∴A ′F =47,设P (4,c )(c >0),,在Rt △A ′FP 中,(4﹣7)2+(3﹣c)2=c2,∴c=16473-,∴P(4,16473-),∴直线OP解析式为y=47-x,∴N(2,827-),∴抛物线需要向下平移的距离=3﹣827 -=127+.综上所述:抛物线向下平移9233-或127+距离,其顶点落在OP上.点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答本题的关键是用正方形的性质求出点D的坐标.10.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12-,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8. ∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t ,∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8. ∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .11.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4541+541-. 【解析】【分析】 ①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h 为2sin 45)BP t ︒=-,于是21122)22)2222PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为22③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离22d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即22NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得15412m =,25412m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得15412m =(舍去),25412m =. 【详解】解:①∵点B 、C 在直线为y x n =+上,∴B (﹣n ,0)、C (0,n ),∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h为sin 45(4)2BP t ︒=-,∴211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+ 当2t =时,△PBE的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -, 易证△PQN为等腰直角三角形,即NQ PQ == ∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, 5m >,∴m =, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=, 解得1541m +=,2541m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴541m -=, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或5412+或5412-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.12.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 2 6abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.13.如图,顶点M 在y 轴上的抛物线与直线y=x+1相交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为2,连结AM 、BM . (1)求抛物线的函数关系式; (2)判断△ABM 的形状,并说明理由;(3)把抛物线与直线y=x 的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点.【答案】(1)抛物线解析式为y=x 2﹣1;(2)△ABM 为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点. 【解析】试题分析:(1)分别写出A 、B 的坐标,利用待定系数法求出抛物线的解析式即可; 根据OA =OM =1,AC =BC =3,分别得到∠MAC =45°,∠BAC =45°,得到∠BAM =90°,进而得到△ABM 是直角三角形;(3)根据抛物线的平以后的顶点设其解析式为,∵抛物线的不动点是抛物线与直线的交点,∴,方程总有实数根,则≥0,得到m的取值范围即可试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0)∵点B在直线上,且横坐标为2,∴B点为(2,3)∵过点A、B的抛物线的顶点M在轴上,故设其解析式为:∴,解得:∴抛物线的解析式为.(2)△ABM是直角三角形,且∠BAM=90°.理由如下:作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°;点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1,∵∠AOM=90°∴∠MAC=45°;∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形.(3)将抛物线的顶点平移至点(,),则其解析式为.∵抛物线的不动点是抛物线与直线的交点,∴化简得:∴==当时,方程总有实数根,即平移后的抛物线总有不动点∴.考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式)14.如图,在平面直角坐标系中,已知抛物线y=12x2+32x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)y=122x--;(2)DE=3225;(3)存在点P(139,9881),使∠BAP=∠BCO﹣∠BAG,理由见解析.【解析】【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【详解】(1)∵抛物线y=12x2+32x-2,∴当y=0时,得x1=1,x2=-4,当x=0时,y=-2,∵抛物线y=12x2+32x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(-4,0),点B(1,0),点C(0,-2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,402k bb-+⎧⎨-⎩==,得122kb⎧-⎪⎨⎪-⎩==,即直线l的函数解析式为y=−12x−2;(2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°, ∴AC=25, ∴OD=45525=, ∵OD ⊥AC ,OA ⊥OC ,∠OAD=∠CAO , ∴△AOD ∽△ACO , ∴AD AOAO AC=, 即425AD =,得AD=85, ∵EF ⊥x 轴,∠ADC=90°, ∴EF ∥OC , ∴△ADF ∽△ACO , ∴AF DF AD AO OC AC==, 解得,AF=165,DF=85, ∴OF=4-165=45, ∴m=-45, 当m=-45时,y=12×(−45)2+32×(-45)-2=-7225,∴EF=7225, ∴DE=EF-FD=7225−85=3225; (3)存在点P ,使∠BAP=∠BCO-∠BAG ,理由:作GM ⊥AC 于点M ,作PN ⊥x 轴于点N ,如图2所示,∵点A (-4,0),点B (1,0),点C (0,-2),∴OA=4,OB=1,OC=2,∴tan ∠OAC=2142OC OA ==,tan ∠OCB=12OB OC =,, ∴∠OAC=∠OCB ,∵∠BAP=∠BCO-∠BAG ,∠GAM=∠OAC-∠BAG , ∴∠BAP=∠GAM ,∵点G (0,-1),OA=4, ∴OG=1,GC=1, ∴,••22AC GM CG OA =,即1422GM ⨯=, 解得,, ∴=,∴tan ∠GAM=29GM AM =, ∴tan ∠PAN=29, 设点P 的坐标为(n ,12n 2+32n-2), ∴AN=4+n ,PN=12n 2+32n-2, ∴2132222 49n n n +-+=, 解得,n 1=139,n 2=-4(舍去),当n=139时,12n 2+32n-2=9881,∴点P 的坐标为(139,9881),即存在点P (139,9881),使∠BAP=∠BCO-∠BAG .【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.15.已知抛物线27y x3x4=--的顶点为点D,并与x轴相交于A、B两点(点A在点B 的左侧),与y轴相交于点C.(1)求点A、B、C、D的坐标;(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;(3)取点E(34-,0)和点F(0,),直线l经过E、F两点,点G是线段BD的中点.①点G是否在直线l上,请说明理由;②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1) D(32,﹣4)(2) P(0,74)或(0,17)(3)详见解析【解析】【分析】(1)令y=0,解关于x的一元二次方程求出A、B的坐标,令x=0求出点C的坐标,再根据顶点坐标公式计算即可求出顶点D的坐标.(2)根据点A、C的坐标求出OA、OC的长,再分OA和OA是对应边,OA和OC是对应边两种情况,利用相似三角形对应边成比例列式求出OP的长,从而得解.(3)①设直线l的解析式为y=kx+b(k≠0),利用待定系数法求一次函数解析式求出直线l的解析式,再利用中点公式求出点G的坐标,然后根据直线上点的坐标特征验证即可.②设抛物线的对称轴与x轴交点为H,求出OE、OF、HD、HB的长,然后求出△OEF和△HDB相似,根据相似三角形对应角相等求出∠OFE=∠HBD,然后求出EG⊥BD,从而得到直线l是线段BD的垂直平分线,根据线段垂直平分线的性质点D关于直线l的对称点就是。
二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析
![二次函数实际应用例题与解答,中考数学二次函数解决实际应用问题经典题型及答案解析](https://img.taocdn.com/s3/m/e5bd1849814d2b160b4e767f5acfa1c7aa0082fd.png)
二次函数实际应用示例1.在排球家中,_队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面1.9米,当球飞行距离为9米时达最大高度5.5米,已知球场长18米,问这样发球是否会直接把球打出边线?思路解析*先建立坐标系,如图,根据已知条件求出抛物线的解析式,再 求抛物线与x轴的交点坐标(横坐标为正),若这点的横坐标大于18,就可判断球出线.解:以发球员站立位置为原点,球运动的水平方向为x轴,建立直角坐标系伽图).由于其图象的顶点为(95执设二^函教关系式为y=a(x-9)、S.5(3丰0),由已知,这个函数的图象过(0,1.9),可以得到1.9=0(0-9)2+552解得a----7,45所以,所求二}欠函数的关系式是y=-M(x-9)2十5.5.45排球落在x轴上,则y=O,因此,-:(x・9)2+5.5=0.解方程,得*=9十半点0.1,X2=9-峪(负值,不合题意,舍去).所以,排球约在20」米远处落下,因为20.1>18,所以,这样发球会直接把球打出边线,2.某工厂大门是一抛物线型水泥建筑物,如图26.3-9所示,大门地面亮AB二4m,解:以队员甲投球站立位置为原点,球运动的水平方向为X轴,建立直角坐标系.由于球在空中的路径为抛物线,其图象的顶点为(4,4),设二}欠函数关系式为y=a(x-4)2-4(g0),由已知,这个函数的图象过(024),可以得到24=3(0-4)2+4.解得a=-0.1.所以所求二次函数的关系式是y=-0.1(x-4)2+4当x二7时,y=-0.1(x-4)2+4=3.1.因为3.1=3+0.1,0.1在篮球偏离球圈中心10cm以内.答:这个球能投中.综合•应用4.(2010安徽模拟)如图26.3-10,在平面直角坐标系中,二}欠函数y=ax2十c(a ")的图象过正方形ABO(:的三个顶点A、B、C,则ac的值是.思路解析:图中,正方形和抛物线都关于y轴对称,欲求ac的值,需求抛物线的解析式,点A、B、C都在抛物线上,它们的坐标跟正方形的边长有关,可设正方形的边长为2m「则A(0r2整m)、B(-皿阳7^所)、C(72w r把A、B的坐标值代入y=a*十c中,得a=四,c=2&,所以Imac=—X =2.2ni5.有一种螃蟹,从海上捕获后不放乔,最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变.现有一经销商,按市场价收购了这种;SB〔000千克放养在塘内,此时市场价为每千克30元.据测算,此后每千克活蟹的市场价每天可上升1元,但放养一天需各种费用400元,且平均每天还有10千克螯死去,假定死蟹均于当天全部售出,售价是每千克20元⑴设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售点颔Q元,写出Q关于x的函数关系式;⑶该经销商将这批蟹放弄多少天后出售,可获得最大利润(利润=销售总额-收购成本-费用)?最大利润是多少?思路解析:⑴市场价每天上升1元,则P=30+X;(2)销售总额为活蟹销售和死蟹销售两部分的和,活蟹数量每天减少10千克,死蟹数量跟放养天数成正比;(3)根据利润计算式表达,可没利润为w元,用函数瞄解决.答案:⑴P=30+x.(2)Q=(30+x)(1000-10x)+20-10x=-10x2+900x+30000.⑶设利润为w元,则w=(-10x2+900x+30000)-30-1000-400x=-10(x-Z5)2-»-6250.」.当x=25时,w有最大值,最大值为6250.答;经销商将这批蟹放养25天后出售,可获得最大?IJ润,6.将一条长为20cm的铁丝雪成两段,并以每一段铁丝的长度为周长做成f正方形.⑴要使这两个正方形的面积之和等于17cm2,那么这段铁丝磐成两段后的长:度分别是多少?(2)两个正方形的面积之和可能等于12cm?吗?若能,求出两段铁丝的长度;若不能,请说明理由.思路解析;用方程或函数考虑.设其中一段长为x cm,列出面积和的表达式,构成方程或函数,用它们的性质解决问题.方法一:⑴解:设剪成两段后其中一段为x cm,则另一段为(20-x)cm.由题意得(三沪+(竺1沪=17.4 4解得冶=16,x2=4.当为=16时,20-x=4;当x2=4时,20-x=16.答:这段铁丝雪成两段后的长度分别是16cm和4cm.(2)不能.理由是:(料牛)5.整理,得x<20x+104=0.•,A=b2-4ac=-16<0,.,此方程无配即不能雪成两段使得面积和为12新.方法二:剪成两段后其中一段为x cm,两个正方形面积的和为yen?.则y=弓尸+=;(x.10)2+12.5(0<x<20)・当y=17时,有上(乂-10)112.5=17.S解方程,得Xi=16,x2=4.当xi=16时,20*4;当X2二4时,20*16.答:这段铁丝剪成两段后的长度分别是16cm和4cm.(2)不能.理由是:函数y=|(x-10)2+1Z5中,a二;>0,当x=10时,函数有最小值,最小值88为12.5.•.・12v125,所以不能勇成两段使得面积和为12cm2.7.我市英山县某茶厂种植,春蕊牌“绿茶,由历任来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(jt)与上市时间t庆)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z齿)与上市时间t庆)的关系可以近似地用如图②的抛物肆图263-11①图26.3-11-②⑴写出图①中表示的市场销售单价y团)与上市时间t庆)(t>0)的函数关系式;(2)求出图②中表示的种梢成本单价z员)与上市时间t庆)(t>0)的函敬关系式;⑶认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价缺?(说明:市场铠售单价和种植成本单价的单位:元/500克.)思路解析:从图形中得出相关数据,用分段函薮表示市场销售单价,种植成本是一E碰物线,再分别计算各时段的纯收益单价,匕咸得出结论.解:(1)①当0冬X三120时,y=-|x-b160;②当120<xE50时,y=80;2③当150UX式180时,y=±x-+20.5(2)设z=a(x・110)」20,N OC1把X=6O,y=W代入,^=a(60-110)120解得。
(完整版)二次函数典型中考试题解析和训练.doc
![(完整版)二次函数典型中考试题解析和训练.doc](https://img.taocdn.com/s3/m/ef20d6a96c175f0e7dd13760.png)
二次函数典型中考试题解析和训练二次函数典型中考试题解析及训练[ 解读中考要点 ]1、二次函数一般地,形如y ax2 bx c ( a,b,c 是常数,a 0 )的函数叫做x的二次函数。
解读:在函数中注意二次项系数 a 0 ,b,c是任意的实数即可。
2、二次函数y ax2(a 0 )的性质解读:( 1)二次函数y ax 2 的图象是抛物线,它的顶点是原点,对称轴是y 轴。
(2)当a 0 时,抛物线y ax 2 的开口向上,并且向上无限延伸,顶点是它的最低点;当 a 0 时,抛物线y ax2 的开口向下,并且向下无限延伸,顶点是它的最高点。
3、二次函数y ax2 k (a 0 )的图象与性质解读:(1)二次函数y ax2 k 的图象与 y ax2 的图象的形状完全一样,可以通过平移二次函数y ax2 的图象得到y ax2 k 的图象。
当k 0 时,向上平移k 个单位长度;当k 0 时,向下平移k 个单位长度。
(2)当a0 时,抛物线的开口向上;当a0 时,抛物线的开口向下。
(3)抛物线的顶点是0, k ,对称轴是y轴。
4、二次函数y a x h 2 k ( a 0 )的图象与性质解读:( 1)它的图象与y ax2 的图象的形状完全一样,可以通过二次函数 y ax 22的图象得到 y a x hk的图象。
(2)当a0 时,抛物线的开口向上;当a0 时,抛物线的开口向下。
(3 )抛物线的顶点是h, k ,对称轴是y 轴。
5、关于二次函数y ax2 bx c (a 0 )的图象解读:( 1)二次函数y ax 2 bx c (a 0 )的图象是与y ax2 的图象的形状完全一样的一条抛物线。
(2 )抛物线 y ax 2 bx c (a 0 )的对称轴是直线 xb,顶点是b 4ac b2。
2a,4a2a(3 )当a 0 时,抛物线的开口向上,顶点是它的最低点。
当x b 时,函数有最小值4ac b2 ;当x b2a 4a 2a时, y 的值随x值的增大而减小;当xb时, y 的值随x值的增大而增大。
中考数学压轴题专题二次函数的经典综合题及答案解析
![中考数学压轴题专题二次函数的经典综合题及答案解析](https://img.taocdn.com/s3/m/5890d1e0e518964bce847c1a.png)
一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。
初三数学二次函数分类题型及解析[整理版]-12页文档资料
![初三数学二次函数分类题型及解析[整理版]-12页文档资料](https://img.taocdn.com/s3/m/9248ef559ec3d5bbfd0a74e5.png)
初三数学二次函数分类题型及解析一.解答题(共10小题)1.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.3.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.4.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.5.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.6.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?7.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?8.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?9.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.10.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.2016年12月09日天津优胜教育二次函数组卷参考答案与试题解析一.解答题(共10小题)1.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), 解得:, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).2.(2016•菏泽)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y=﹣x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【解答】解:(1)由题意解得,∴抛物线解析式为y=x 2﹣x+2.(2)∵y=x 2﹣x+2=(x ﹣1)2+.∴顶点坐标(1,),∵直线BC 为y=﹣x+4,∴对称轴与BC 的交点H (1,3),∴S △BDC =S △BDH +S △DHC =•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.3.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.4.(2016•大连)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d 最大===,∴D 点的坐标为(,). 5.(2016•黔南州)已知二次函数y=x 2+bx+c 的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.【解答】解:(1)∵把C (0,﹣6)代入抛物线的解析式得:C=﹣6,把A (﹣2,0)代入y=x 2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x 2﹣x ﹣6.∴y=(x ﹣)2﹣.∴抛物线的顶点坐标D (,﹣).(2)二次函数的图形沿x 轴向左平移个单位长度得:y=(x+2)2﹣. 令y=0得:(x+2)2﹣=0,解得:x 1=,x 2=﹣.∵a >0,∴当y <0时,x 的取值范围是﹣<x <. 6.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.7.(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.8.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=﹣10x 2+400x ﹣3000,令W=840,则﹣10x 2+400x ﹣3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.9.(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.10.(2016•湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。
初三二次函数经典题型及解析
![初三二次函数经典题型及解析](https://img.taocdn.com/s3/m/472a2d4e905f804d2b160b4e767f5acfa0c7831e.png)
初三二次函数经典题型及解析一、二次函数基础概念题型初三二次函数的概念可是很重要的哦。
比如说,给你一个函数表达式,像y = ax²+bx + c(a≠0),然后问你这个函数是不是二次函数。
这时候你就得瞅准了,a不能等于0哦,要是a等于0了,那就变成一次函数了。
就像y = 3x + 2,这就是一次函数,和二次函数可不一样啦。
还有那种给你实际问题,让你列出二次函数表达式的题。
比如说,一个小球从高处落下,它下落的高度h和时间t 的关系,根据物理知识和二次函数的概念,你就能列出h = 1/2gt²(这里g是重力加速度,是个常数)这样的表达式。
这种题就需要你理解二次函数在实际中的意义,把实际问题转化成数学表达式。
二、二次函数图像题型二次函数的图像那可太有趣了。
它的图像是一条抛物线呢。
当a>0的时候,抛物线开口向上,就像一个笑脸一样;当a<0的时候,抛物线开口向下,就有点像哭脸啦。
对称轴是x = -b/2a这个公式可一定要记住哦。
比如说,给你一个二次函数y = 2x² - 4x + 1,先求对称轴,把a = 2,b = -4代入对称轴公式,得到x = -(-4)/(2×2)=1。
然后你还可以求顶点坐标,把x = 1代入函数表达式,就能算出y的值啦。
还有那种通过图像判断a、b、c的取值范围的题。
如果抛物线开口向上,那a>0;如果对称轴在y轴左侧,那么b和a同号,如果对称轴在y轴右侧,b和a异号;当x = 0时,y = c,所以看图像与y轴交点就知道c的取值啦。
三、二次函数最值题型二次函数的最值问题也是经常考的呢。
对于二次函数y = ax²+bx + c(a≠0),当a>0时,函数有最小值,这个最小值就在顶点处取得,也就是y = (4ac - b²)/4a;当a<0时,函数有最大值,同样是在顶点处取得这个值。
比如说,有个二次函数y = -x²+2x + 3,因为 a = -1<0,所以这个函数有最大值。
中考数学压轴题专题二次函数的经典综合题及答案解析
![中考数学压轴题专题二次函数的经典综合题及答案解析](https://img.taocdn.com/s3/m/93d4947a02020740bf1e9b77.png)
∴ BC2 18 , PB2 1 32 t2 4 t2 , PC2 12 t 32 t2 6t 10 ,
①若点 B 为直角顶点,则 BC2 PB2 PC2 ,即:18 4 t2 t2 6t 10 解得: t 2 , ②若点 C 为直角顶点,则 BC2 PC2 PB2 ,即:18 t2 6t 10 4 t2 解得: t 4, ③若点 P 为直角顶点,则 PB2 PC2 BC2 ,即: 4 t2 t2 6t 10 18 解得:
坐标.
【答案】(1)抛物线的解析式为 y x2 2x 3 ,直线的解析式为 y x 3 .(2)
M (1, 2) ;(3) P 的坐标为 (1, 2) 或 (1, 4) 或 (1, 3 17 ) 或 (1, 3 17 ) .
2
2
【解析】
分析:(1)先把点 A,C 的坐标分别代入抛物线解析式得到 a 和 b,c 的关系式,再根据
【答案】(1)(2,4);(2)( , );(3) ;(4)( , ). 【解析】 试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点 P 的坐标; (2)联立两解析式,可求出交点 A 的坐标; (3)作 PQ⊥x 轴于点 Q,AB⊥x 轴于点 B.根据 S△ POA=S△ POQ+S△ 梯形 PQBA﹣S△ BOA,代入数值 计算即可求解; (4)过 P 作 OA 的平行线,交抛物线于点 M,连结 OM、AM,由于两平行线之间的距离 相等,根据同底等高的两个三角形面积相等,可得△ MOA 的面积等于△ POA 的面积.设直
线段 FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理.
中考数学二次函数综合经典题含答案解析
![中考数学二次函数综合经典题含答案解析](https://img.taocdn.com/s3/m/98f023bc6c175f0e7dd1372f.png)
一、二次函数 真题与模拟题分类汇编(难题易错题)1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解析】 【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ. ①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8 【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题. 详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3. (2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72,∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94).设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得:17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==,∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∵-2<0, ∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154).(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t , ∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8. 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN 沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【答案】(1)(1,4)(2)①点M坐标(﹣12,74)或(﹣32,﹣94);②m的值为3172±或1172±【解析】【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到930{3b cc-++==,解得2{3bc==,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0), ∴BE=2,∴tan ∠BDE=BE DE =12, ∵∠MBA=∠BDE ,∴2233m m m-++-=12, 当点M 在x 轴上方时,2233m m m-++- =12, 解得m=﹣12或3(舍弃), ∴M (﹣12,74), 当点M 在x 轴下方时,2233m m m--- =12, 解得m=﹣32或m=3(舍弃), ∴点M (﹣32,﹣94), 综上所述,满足条件的点M 坐标(﹣12,74)或(﹣32,﹣94); ②如图中,∵MN ∥x 轴,∴点M 、N 关于抛物线的对称轴对称, ∵四边形MPNQ 是正方形,∴点P 是抛物线的对称轴与x 轴的交点,即OP=1, 易证GM=GP ,即|﹣m 2+2m+3|=|1﹣m|, 当﹣m 2+2m+3=1﹣m 时,解得317±, 当﹣m 2+2m+3=m ﹣1时,解得m=1172±, ∴满足条件的m 317±117±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41 2;②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+412或5-412;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC 的解析式为y=5x ﹣5,E 点坐标为(12,﹣52, 设直线EM 1的解析式为y=﹣15x+b , 把E (12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125, ∴直线EM 1的解析式为y=﹣15x ﹣125 解方程组511255y x y x =-⎧⎪⎨=--⎪⎩得136176x y ⎧=⎪⎪⎨⎪=-⎪⎩,则M 1(136,﹣176); 作直线BC 上作点M 1关于N 点的对称点M 2,如图2,则∠AM 2C=∠AM 1B=2∠ACB , 设M 2(x ,x ﹣5),∵3=13+62x∴x=236, ∴M 2(236,﹣76). 综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.7.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)2+-或317(1,)2--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛⎫+- ⎪ ⎪⎝⎭或3171,2⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94.【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.9.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩ ∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.10.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +). 【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】【分析】 (1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.。
初中数学二次函数题型精讲(含答案和解析)
![初中数学二次函数题型精讲(含答案和解析)](https://img.taocdn.com/s3/m/5450015878563c1ec5da50e2524de518974bd36f.png)
初中数学二次函数题型精讲1.(2018•湖州•6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1.0).(3.0).求a.b的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1.0).(3.0).可以求得A.b的值.本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1.0).(3.0). ∴.解得..即a的值是1.b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征.解答本题的关键是明确题意.利用二次函数的性质解答.2.(2018•金华、丽水•10分)如图.抛物线(a≠0)过点E(10.0).矩形ABCD的边AB在线段OE上(点A在点B的左边).点 C . D在抛物线上.设A(t. 0).当t=2时.AD=4.(1)求抛物线的函数表达式.(2)当t为何值时.矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动.向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G . H . 且直线GH平分矩形的面积时.求抛物线平移的距离.【解析】【分析】(1)抛物线中有两个字母a,b未知.则需要两个点的坐标.E点已知.由当t=2时.AD=4.可得D的坐标.由待定系数法代入求出a.b的值即可;(2)求矩形ABCD的周长最大值.可以联系到二次函数在求最值中的应用.因为矩形ABCD的周长随着t的变化而变化.不妨用t的代数式表示出矩形ABCD的周长.再运用二次函数求最值的方法去做;(3)因为矩形ABCD是中心对称图形.设其中心为点P.所以只要GH经过该矩形的中心即可;先理清抛物线在平移时抛物线与矩形ABCD边的交点位置.一开始.抛物线从D开始出发.与线段CD和AD有交点.而过这两个交点的直线必不经过点P.同样这两个交点分别在BC和AB上时.也不经过点P.则可得出当G.H分别在线段AB和CD上时.存在这样的直线经过点P.从而根据平移的性质得出结果即可。
中考数学培优 易错 难题(含解析)之二次函数及答案解析
![中考数学培优 易错 难题(含解析)之二次函数及答案解析](https://img.taocdn.com/s3/m/71e531d7168884868662d6af.png)
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716 (3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m =-或1m =-时,△BDM 为直角三角形.2.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3(2)运动1秒使△PBQ 的面积最大,最大面积是910 (3)K 1(1,﹣278),K 2(3,﹣158) 【解析】【详解】 试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158). 解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得 423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以该抛物线的解析式为:y=38x 2﹣34x ﹣3; (2)设运动时间为t 秒,则AP=3t ,BQ=t .∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,.如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO ,∴△BHQ ∽△BOC , ∴HB OC BG BC=,即Hb 35t =, ∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910. 当△PBQ 存在时,0<t <2∴当t=1时, S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0).把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上. ∴设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m ﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=9 10.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t >3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.5.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】【分析】 (1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小.【详解】(1) ∵抛物线F 经过点C (-1,-2),∴22122m m -=++-.∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-. ∴当m=-2时,P y 的最小值为-2.此时抛物线F 的表达式是()222y x =+-.∴当2x ≤-时,y 随x 的增大而减小.∵12x x <≤-2,∴1y >2y .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得: 660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH ⊥OB 于H , ∴∠DHB=∠AOB=90°, ∴DH ∥AO , ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE ∥x 轴、PD ⊥x 轴, ∴∠DPE=90°,若△PDE 为等腰直角三角形, 则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4, 即点P (4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.7.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
中考复习专题二次函数经典分类讲解复习以及练习题含答案
![中考复习专题二次函数经典分类讲解复习以及练习题含答案](https://img.taocdn.com/s3/m/c5fe47358bd63186bdebbc29.png)
1、二次函数的定义定义:y=ax2 +bx +c (a 、b 、c是常数, a ≠0)定义重点:①a≠0②最高次数为 2 ③代数式必定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5x2,y=3x2-2x3+5,此中是二次函数的有____个。
m2m2.当m_______时,函数y=(m+1)χ-2χ+1是二次函数?2、二次函数的图像及性质y抛物线极点坐标xy=ax2+bx+c(a>0)4acb2a,4ay0 xy=ax2+bx+c(a<0)b4acb22a,4ab直线x 直线xb对称轴地点张口方向增减性最值2a由a,b和c的符号确立a>0,张口向上在对称轴的左边,y跟着x的增大而减小.在对称轴的右边,y跟着x的增大而增大.当x b 时,y最小值为4acb22 a4a2a由a,b和c的符号确立a<0,张口向下在对称轴的左边,y跟着x的增大而增大.在对称轴的右边,y跟着x的增大而减小.当x b时,y最大值为4acb22a4a例2:已知二次函数y1232x21)求抛物线张口方向,对称轴和极点M 的坐标。
2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。
3)x 为什么值时,y 随的增大而减少,x 为什么值时,y 有最大(小)值,这个最大(小)值是多少? 4)x 为什么值时,y<0?x 为什么值时,y>0?3、求抛物线分析式的三种方法1、一般式:已知抛物线上的三点,往常设分析式为________________y=ax2+bx+c(a≠0)2,极点式:已知抛物线极点坐标(h,k ),往常设抛物线分析式为_______________求出表达式后化为一般形式.y=a(x-h)2+k(a≠0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),往常设分析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2)(a≠0)练习:依据以下条件,求二次函数的分析式。
九下数学-二次函数(超经典例题讲解,习题含答案)
![九下数学-二次函数(超经典例题讲解,习题含答案)](https://img.taocdn.com/s3/m/3cf8780259eef8c75fbfb3bf.png)
3.若正比例函数y=(1-2m)x的图像经过点A( , )和点B( , ),当 < 时 > ,则m的取值范围是()
(A)m<0(B)m>0(C)m< (D)m>
4.函数y= kx+ 1与函数 在同一坐标系中的大致图象是( )
(A) (B) (C) (D)
5.下列各图是在同一直角坐标系内,二次函数 与一次函数y=ax+c的大致图像,有且只有一个是正确的,正确的是()
(A) , ,
(B) , ,
(C) , ,
(D) , ,
11.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()
12.二次函数y=x2-2x+2有()
A.最大值是1 B.最大值是2 C.最小值是1 D.最小值是2
(A)(B)(C)(D)
6.抛物线 的顶点坐标是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
7.函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是( )
A.ab>0,c>0 B.ab<0,c>0
C.ab>0,c<0 D.ab<0,c<0
8.已知a,b,c均为正数,且k= ,在下列四个点中,正比例函数
三、解答题:
(1) (2)
解:(1)如图,建立直角坐标系,设二次函数解析式为y=ax2+c
∵D(-0.4,0.7),B(0.8,2.2),∴
∴ ∴绳子最低点到地面的距离为0.2米.
(2)分别作EG⊥AB于G,FH⊥AB于H,
初中数学二次函数题型精讲(含答案和解析)
![初中数学二次函数题型精讲(含答案和解析)](https://img.taocdn.com/s3/m/89fa0352bfd5b9f3f90f76c66137ee06eef94e62.png)
初中数学二次函数题型精讲解答题1.(2018•达州•12分)如图.抛物线经过原点O(0.0).点A(1.1).点.(1)求抛物线解析式;(2)连接OA.过点A作AC⊥OA交抛物线于C.连接OC.求△AOC的面积;(3)点M是y轴右侧抛物线上一动点.连接OM.过点M作MN⊥OM交x轴于点N.问:是否存在点M.使以点O.M.N为顶点的三角形与(2)中的△AOC 相似.若存在.求出点M的坐标;若不存在.说明理由.【分析】(1)设交点式y=ax(x﹣).然后把A点坐标代入求出a即可得到抛物线解析式;(2)延长CA交y轴于D.如图1.易得OA=.∠DOA=45°.则可判断△AOD 为等腰直角三角形.所以OD=OA=2.则D(0.2).利用待定系数法求出直线AD的解析式为y=﹣x+2.再解方程组得C(5.﹣3).然后利用三角形面积公式.利用S△AOC=S△COD﹣S△AOD进行计算;(3)如图2.作MH⊥x轴于H.AC=4.OA=.设M(x.﹣x2+x)(x>0).根据三角形相似的判定.由于∠OHM=∠OAC.则当=时.△OHM∽△OAC.即=;当=时.△OHM∽△CAO.即=.则分别解关于x的绝对值方程可得到对应M点的坐标.由于△OMH∽△ONM.所以求得的M点能以点O.M.N为顶点的三角形与(2)中的△AOC相似.【解答】解:(1)设抛物线解析式为y=ax(x﹣).把A(1.1)代入得a•1(1﹣)=1.解得a=﹣.∴抛物线解析式为y=﹣x(x﹣).即y=﹣x2+x;(2)延长CA交y轴于D.如图1.∵A(1.1).∴OA=.∠DOA=45°.∴△AOD为等腰直角三角形.∵OA⊥AC.∴OD=OA=2.∴D(0.2).易得直线AD的解析式为y=﹣x+2.解方程组得或.则C(5.﹣3).∴S△AOC=S△COD﹣S△AOD=×2×5﹣×2×1=4;(3)存在.如图2.作MH⊥x轴于H.AC==4.OA=.设M(x.﹣x2+x)(x>0).∵∠OHM=∠OAC.∴当=时.△OHM∽△OAC.即=.解方程﹣x2+x=4x得x1=0(舍去).x2=﹣(舍去).解方程﹣x2+x=﹣4x得x1=0(舍去).x2=.此时M点坐标为(.﹣54);当=时.△OHM∽△CAO.即=.解方程﹣x2+x=x得x1=0(舍去).x2=.此时M点的坐标为(.). 解方程﹣x2+x=﹣x得x1=0(舍去).x2=﹣.此时M点坐标为(.﹣);∵MN⊥OM.∴∠OMN=90°.∴∠MON=∠HOM.∴△OMH∽△ONM.∴当M点的坐标为(.﹣54)或(.)或(.﹣)时.以点O.M.N 为顶点的三角形与(2)中的△AOC相似.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式.会解一元二次方程;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.2.(2018•遂宁•12分)如图.已知抛物线y=ax2+x+4的对称轴是直线x=3.且与x轴相交于A.B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A.B两点的坐标;(2)若点P是抛物线上B.C两点之间的一个动点(不与B.C重合).则是否存在一点P.使△PBC的面积最大.若存在.请求出△PBC的最大面积;若不存在.试说明理由;(3)若M是抛物线上任意一点.过点M作y轴的平行线.交直线BC于点N.当MN=3时.求M点的坐标.【分析】(1)由抛物线的对称轴为直线x=3.利用二次函数的性质即可求出a值.进而可得出抛物线的解析式.再利用二次函数图象上点的坐标特征.即可求出点A.B的坐标;(2)利用二次函数图象上点的坐标特征可求出点C的坐标.由点B.C的坐标.利用待定系数法即可求出直线BC的解析式.假设存在.设点P的坐标为(x.﹣x2+x+4).过点P作PD∥y轴.交直线BC于点D.则点D的坐标为(x.﹣x+4).PD=﹣x2+2x.利用三角形的面积公式即可得出S△PBC关于x 的函数关系式.再利用二次函数的性质即可解决最值问题;(3)设点M的坐标为(m.﹣m2+m+4).则点N的坐标为(m.﹣m+4).进而可得出MN=|﹣m2+2m|.结合MN=3即可得出关于m的含绝对值符号的一元二次方程.解之即可得出结论.【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3.∴﹣=3.解得:a=﹣.∴抛物线的解析式为y=﹣x2+x+4.当y=0时.﹣x2+x+4=0.解得:x1=﹣2.x2=8.∴点A的坐标为(﹣2.0).点B的坐标为(8.0).(2)当x=0时.y=﹣x2+x+4=4.∴点C的坐标为(0.4).设直线BC的解析式为y=kx+b(k≠0).将B(8.0)、C(0.4)代入y=kx+b..解得:.∴直线BC的解析式为y=﹣x+4.假设存在.设点P的坐标为(x.﹣x2+x+4).过点P作PD∥y轴.交直线BC于点D.则点D的坐标为(x.﹣x+4).如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x.∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0.∴当x=4时.△PBC的面积最大.最大面积是16.∵0<x<8.∴存在点P.使△PBC的面积最大.最大面积是16.(3)设点M的坐标为(m.﹣m2+m+4).则点N的坐标为(m.﹣m+4).∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3.∴|﹣m2+2m|=3.当0<m<8时.有﹣m2+2m﹣3=0.解得:m1=2.m2=6.∴点P的坐标为(2.6)或(6.4);当m<0或m>8时.有﹣m2+2m+3=0.解得:m3=4﹣2.m4=4+2.∴点P的坐标为(4﹣2.﹣1)或(4+2.﹣﹣1).综上所述:M点的坐标为(4﹣2.﹣1)、(2.6)、(6.4)或(4+2.﹣﹣1).【点评】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积.解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出S△PBC关于x的函数关系式;(3)根据MN的长度.找出关于m的含绝对值符号的一元二次方程.3. (2018•资阳•12分)已知:如图.抛物线y=ax2+bx+c与坐标轴分别交于点A(0.6).B(6.0).C(﹣2.0).点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时.△PAB的面积有最大值?(3)过点P作x轴的垂线.交线段AB于点D.再过点P做PE∥x轴交抛物线于点E.连结DE.请问是否存在点P使△PDE为等腰直角三角形?若存在.求出点P的坐标;若不存在.说明理由.【分析】(1)待定系数法求解可得;(2)作PM⊥OB与点M.交AB于点N.作AG⊥PM.先求出直线AB解析式为y=﹣x+6.设P(t.﹣t2+2t+6).则N(t.﹣t+6).由S△PAB=S△PAN+S△PBN=PN•AG+ PN•BM=PN•OB列出关于t的函数表达式.利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO.据此由OA=OB=6得∠BDH=∠BAO=45°.结合∠DPE=90°知若△PDE为等腰直角三角形.则∠EDP=45°.从而得出点E与点A 重合.求出y=6时x的值即可得出答案.【解答】解:(1)∵抛物线过点B(6.0)、C(﹣2.0).∴设抛物线解析式为y=a(x﹣6)(x+2).将点A(0.6)代入.得:﹣12a=6.解得:a=﹣.所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如图1.过点P作PM⊥OB与点M.交AB于点N.作AG⊥PM于点G.设直线AB解析式为y=kx+b.将点A(0.6)、B(6.0)代入.得:.解得:.则直线AB解析式为y=﹣x+6.设P(t.﹣t2+2t+6)其中0<t<6.则N(t.﹣t+6).∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t. ∴S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•(AG+BM)=PN•OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+.∴当t=3时.△PAB的面积有最大值;(3)如图2.∵PH⊥OB于H.∴∠DHB=∠AOB=90°.∴DH∥AO.∵OA=OB=6.∴∠BDH=∠BAO=45°.∵PE∥x轴、PD⊥x轴.∴∠DPE=90°.若△PDE为等腰直角三角形.则∠EDP=45°.∴∠EDP与∠BDH互为对顶角.即点E与点A重合.则当y=6时.﹣x2+2x+6=6.解得:x=0(舍)或x=4.即点P(4.6).【点评】本题主要考查二次函数的综合问题.解题的关键是掌握待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等知识点.4. (2018•乌鲁木齐•10分)在平面直角坐标系xOy中.抛物线y=﹣ x2+bx+c 经过点A(﹣2.0).B(8.0).(1)求抛物线的解析式;(2)点C是抛物线与y轴的交点.连接BC.设点P是抛物线上在第一象限内的点.PD⊥BC.垂足为点D.①是否存在点P.使线段PD的长度最大?若存在.请求出点P的坐标;若不存在.请说明理由;②当△PDC与△COA相似时.求点P的坐标.【分析】(1)直接把点A(﹣2.0).B(8.0)代入抛物线的解析式中列二元一次方程组.解出可得结论;(2)先得直线BC的解析式为:y=﹣ x+4.①如图1.作辅助线.先说明Rt△PDE中.PD=PE•sin∠PED=PE•sin∠OCB= PE.则当线段PE最长时.PD的长最大.设P(t. ).则E(t. ).表示PE的长.配方后可得PE的最大值.从而得PD的最大值;②先根据勾股定理的逆定理可得∠ACB=90°.则△COA∽△BOC.所以当△PDC与△COA相似时.就有△PDC与△BOC相似.分两种情况:(I)若∠PCD=∠CBO时.即Rt△PDC∽Rt△COB.(II)若∠PCD=∠BCO时.即Rt△PDC∽Rt△BOC.分别求得P的坐标即可.【解答】解:(1)把A(﹣2.0).B(8.0)代入抛物线y=﹣ x2+bx+c. 得: .解得: .∴抛物线的解析式为:y=﹣ x2+ x+4;(3分)(2)由(1)知C(0.4).∵B(8.0).易得直线BC的解析式为:y=﹣ x+4.①如图1.过P作PG⊥x轴于G.PG交BC于E.Rt△BOC中.OC=4.OB=8.∴BC= =4 .在Rt△PDE中.PD=PE•sin∠PED=PE•sin∠OCB= PE.∴当线段PE最长时.PD的长最大.设P(t. ).则E(t. ).∴PG=﹣ .EG=﹣ t+4.∴PE=PG﹣EG=(﹣)﹣(﹣ t+4)=﹣ t2+2t=﹣(t﹣4)2+4.(0<t<8). 当t=4时.PE有最大值是4.此时P(4.6).∴PD= = .即当P(4.6)时.PD的长度最大.最大值是;(7分)②∵A(﹣2.0).B(8.0).C(0.4).∴OA=2.OB=8.OC=4.∴AC2=22+42=20.AB2=(2+8)2=100.BC2=42+82=80.∴AC2+BC2=AB2.∴∠ACB=90°.∴△COA∽△BOC.当△PDC与△COA相似时.就有△PDC与△BOC相似.∵相似三角形的对应角相等.∴∠PCD=∠CBO或∠PCD=∠BCO.(I)若∠PCD=∠CBO时.即Rt△PDC∽Rt△COB.此时CP∥OB.∵C(0.4).∴yP=4.∴)=4.解得:x1=6.x2=0(舍).即Rt△PDC∽Rt△COB时.P(6.4);(II)若∠PCD=∠BCO时.即Rt△PDC∽Rt△BOC.如图2.过P作x轴的垂线PG.交直线BC于F.∴PF∥OC.∴∠PFC=∠BCO.∴∠PCD=∠PFC.∴PC=PF.设P(n. + n+4).则PF=﹣ +2n.过P作PN⊥y轴于N.Rt△PNC中.PC2=PN2+CN2=PF2.∴n2+( + n+4﹣4)2=(﹣ +2n)2.解得:n=3.即Rt△PDC∽Rt△BOC时.P(3. );综上所述.当△PDC与△COA相似时.点P的坐标为(6.4)或(3. ).(12分)【点评】本题考查二次函数综合题、一次函数的应用、勾股定理的逆定理、锐角三角函数、相似三角形的判定和性质等知识.解题的关键是灵活运用所学知识解决问题.学会根据方程解决问题.属于中考压轴题.5. (2018•达州•7分)“绿水青山就是金山银山”的理念已融入人们的日常生活中.因此.越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时.以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变.按(1)中的标价出售.该店平均每月可售出51辆;若每辆自行车每降价20元.每月可多售出3辆.求该型号自行车降价多少元时.每月获利最大?最大利润是多少?【分析】(1)设进价为x元.则标价是1.5x元.根据关键语句:按标价九折销售该型号自行车8辆的利润是1.5x×0.9×8﹣8x.将标价直降100元销售7辆获利是(1.5x﹣100)×7﹣7x.根据利润相等可得方程1.5x×0.9×8﹣8x=(1.5x﹣100)×7﹣7x.再解方程即可得到进价.进而得到标价;(2)设该型号自行车降价a元.利润为w元.利用销售量×每辆自行车的利润=总利润列出函数关系式.再利用配方法求最值即可.【解答】解:(1)设进价为x元.则标价是1.5x元.由题意得:1.5x×0.9×8﹣8x=(1.5x﹣100)×7﹣7x.解得:x=1000.1.5×1000=1500(元).答:进价为1000元.标价为1500元;(2)设该型号自行车降价a元.利润为w元.由题意得:w=(51+×3)(1500﹣1000﹣a).=﹣(a﹣80)2+26460.∵﹣<0.∴当a=80时.w最大=26460.答:该型号自行车降价80元出售每月获利最大.最大利润是26460元.【点评】此题主要考查了二次函数的应用.以及元一次方程的应用.关键是正确理解题意.根据已知得出w与a的关系式.进而求出最值.6.(2018•上海•12分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1.0)和点B(0.).顶点为C.点D在其对称轴上且位于点C下方.将线段DC绕点D按顺时针方向旋转90°.点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移.使其顶点C移到原点O的位置.这时点P落在点E的位置.如果点M在y轴上.且以O、D.E.M为顶点的四边形面积为8.求点M的坐标.【分析】(1)利用待定系数法求抛物线解析式;(2)利用配方法得到y=﹣(x﹣2)2+.则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2.如图.设CD=t.则D(2.﹣t).根据旋转性质得∠PDC=90°.DP=DC=t.则P(2+t.﹣t).然后把P(2+t.﹣t)代入y=﹣x2+2x+得到关于t的方程.从而解方程可得到CD的长;(3)P点坐标为(4.).D点坐标为(2.).利用抛物线的平移规律确定E点坐标为(2.﹣2).设M(0.m).当m>0时.利用梯形面积公式得到•(m++2)•2=8当m<0时.利用梯形面积公式得到•(﹣m++2)•2=8.然后分别解方程求出m即可得到对应的M点坐标.【解答】解:(1)把A(﹣1.0)和点B(0.)代入y=﹣x2+bx+c得.解得.∴抛物线解析式为y=﹣x2+2x+;(2)∵y=﹣(x﹣2)2+.∴C(2.).抛物线的对称轴为直线x=2.如图.设CD=t.则D(2.﹣t).∵线段DC绕点D按顺时针方向旋转90°.点C落在抛物线上的点P处.∴∠PDC=90°.DP=DC=t.∴P(2+t.﹣t).把P(2+t.﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t. 整理得t2﹣2t=0.解得t1=0(舍去).t2=2.∴线段CD的长为2;(3)P点坐标为(4.).D点坐标为(2.).∵抛物线平移.使其顶点C(2.)移到原点O的位置.∴抛物线向左平移2个单位.向下平移个单位.而P点(4.)向左平移2个单位.向下平移个单位得到点E.∴E点坐标为(2.﹣2).设M(0.m).当m>0时.•(m++2)•2=8.解得m=.此时M点坐标为(0.);当m<0时.•(﹣m++2)•2=8.解得m=﹣.此时M点坐标为(0.﹣);综上所述.M点的坐标为(0.)或(0.﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和旋转的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.7.(2018•达州•12分)如图.抛物线经过原点O(0.0).点A(1.1).点.(1)求抛物线解析式;(2)连接OA.过点A作AC⊥OA交抛物线于C.连接OC.求△AOC的面积;(3)点M是y轴右侧抛物线上一动点.连接OM.过点M作MN⊥OM交x轴于点N.问:是否存在点M.使以点O.M.N为顶点的三角形与(2)中的△AOC 相似.若存在.求出点M的坐标;若不存在.说明理由.【分析】(1)设交点式y=ax(x﹣).然后把A点坐标代入求出a即可得到抛物线解析式;(2)延长CA交y轴于D.如图1.易得OA=.∠DOA=45°.则可判断△AOD 为等腰直角三角形.所以OD=OA=2.则D(0.2).利用待定系数法求出直线AD的解析式为y=﹣x+2.再解方程组得C(5.﹣3).然后利用三角形面积公式.利用S△AOC=S△COD﹣S△AOD进行计算;(3)如图2.作MH⊥x轴于H.AC=4.OA=.设M(x.﹣x2+x)(x>0).根据三角形相似的判定.由于∠OHM=∠OAC.则当=时.△OHM∽△OAC.即=;当=时.△OHM∽△CAO.即=.则分别解关于x的绝对值方程可得到对应M点的坐标.由于△OMH∽△ONM.所以求得的M点能以点O.M.N为顶点的三角形与(2)中的△AOC相似.【解答】解:(1)设抛物线解析式为y=ax(x﹣).把A(1.1)代入得a•1(1﹣)=1.解得a=﹣.∴抛物线解析式为y=﹣x(x﹣).即y=﹣x2+x;(2)延长CA交y轴于D.如图1.∵A(1.1).∴OA=.∠DOA=45°.∴△AOD为等腰直角三角形.∵OA⊥AC.∴OD=OA=2.∴D(0.2).易得直线AD的解析式为y=﹣x+2.解方程组得或.则C(5.﹣3).∴S△AOC=S△COD﹣S△AOD=×2×5﹣×2×1=4;(3)存在.如图2.作MH⊥x轴于H.AC==4.OA=.设M(x.﹣x2+x)(x>0).∵∠OHM=∠OAC.∴当=时.△OHM∽△OAC.即=.解方程﹣x2+x=4x得x1=0(舍去).x2=﹣(舍去).解方程﹣x2+x=﹣4x得x1=0(舍去).x2=.此时M点坐标为(.﹣54);当=时.△OHM∽△CAO.即=.解方程﹣x2+x=x得x1=0(舍去).x2=.此时M点的坐标为(.). 解方程﹣x2+x=﹣x得x1=0(舍去).x2=﹣.此时M点坐标为(.﹣);∵MN⊥OM.∴∠OMN=90°.∴∠MON=∠HOM.∴△OMH∽△ONM.∴当M点的坐标为(.﹣54)或(.)或(.﹣)时.以点O.M.N 为顶点的三角形与(2)中的△AOC相似.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式.会解一元二次方程;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.7. (2018•遂宁•12分)如图.已知抛物线y=ax2+x+4的对称轴是直线x=3.且与x轴相交于A.B两点(B点在A点右侧)与y轴交于C点.(1)求抛物线的解折式和A.B两点的坐标;(2)若点P是抛物线上B.C两点之间的一个动点(不与B.C重合).则是否存在一点P.使△PBC的面积最大.若存在.请求出△PBC的最大面积;若不存在.试说明理由;(3)若M是抛物线上任意一点.过点M作y轴的平行线.交直线BC于点N.当MN=3时.求M点的坐标.【分析】(1)由抛物线的对称轴为直线x=3.利用二次函数的性质即可求出a值.进而可得出抛物线的解析式.再利用二次函数图象上点的坐标特征.即可求出点A.B的坐标;(2)利用二次函数图象上点的坐标特征可求出点C的坐标.由点B.C的坐标.利用待定系数法即可求出直线BC的解析式.假设存在.设点P的坐标为(x.﹣x2+x+4).过点P作PD∥y轴.交直线BC于点D.则点D的坐标为(x.﹣x+4).PD=﹣x2+2x.利用三角形的面积公式即可得出S△PBC关于x 的函数关系式.再利用二次函数的性质即可解决最值问题;(3)设点M的坐标为(m.﹣m2+m+4).则点N的坐标为(m.﹣m+4).进而可得出MN=|﹣m2+2m|.结合MN=3即可得出关于m的含绝对值符号的一元二次方程.解之即可得出结论.【解答】解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3.∴﹣=3.解得:a=﹣.∴抛物线的解析式为y=﹣x2+x+4.当y=0时.﹣x2+x+4=0.解得:x1=﹣2.x2=8.∴点A的坐标为(﹣2.0).点B的坐标为(8.0).(2)当x=0时.y=﹣x2+x+4=4.∴点C的坐标为(0.4).设直线BC的解析式为y=kx+b(k≠0).将B(8.0)、C(0.4)代入y=kx+b..解得:.∴直线BC的解析式为y=﹣x+4.假设存在.设点P的坐标为(x.﹣x2+x+4).过点P作PD∥y轴.交直线BC于点D.则点D的坐标为(x.﹣x+4).如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x.∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0.∴当x=4时.△PBC的面积最大.最大面积是16.∵0<x<8.∴存在点P.使△PBC的面积最大.最大面积是16.(3)设点M的坐标为(m.﹣m2+m+4).则点N的坐标为(m.﹣m+4). ∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3.∴|﹣m2+2m|=3.当0<m<8时.有﹣m2+2m﹣3=0.解得:m1=2.m2=6.∴点P的坐标为(2.6)或(6.4);当m<0或m>8时.有﹣m2+2m+3=0.解得:m3=4﹣2.m4=4+2.∴点P的坐标为(4﹣2.﹣1)或(4+2.﹣﹣1).综上所述:M点的坐标为(4﹣2.﹣1)、(2.6)、(6.4)或(4+2.﹣﹣1).【点评】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积.解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出S△PBC关于x的函数关系式;(3)根据MN的长度.找出关于m的含绝对值符号的一元二次方程.8.(2018•资阳•12分)已知:如图.抛物线y=ax2+bx+c与坐标轴分别交于点A(0.6).B(6.0).C(﹣2.0).点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时.△PAB的面积有最大值?(3)过点P作x轴的垂线.交线段AB于点D.再过点P做PE∥x轴交抛物线于点E.连结DE.请问是否存在点P使△PDE为等腰直角三角形?若存在.求出点P的坐标;若不存在.说明理由.【分析】(1)待定系数法求解可得;(2)作PM⊥OB与点M.交AB于点N.作AG⊥PM.先求出直线AB解析式为y=﹣x+6.设P(t.﹣t2+2t+6).则N(t.﹣t+6).由S△PAB=S△PAN+S△PBN=PN•AG+ PN•BM=PN•OB列出关于t的函数表达式.利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO.据此由OA=OB=6得∠BDH=∠BAO=45°.结合∠DPE=90°知若△PDE为等腰直角三角形.则∠EDP=45°.从而得出点E与点A 重合.求出y=6时x的值即可得出答案.【解答】解:(1)∵抛物线过点B(6.0)、C(﹣2.0).∴设抛物线解析式为y=a(x﹣6)(x+2).将点A(0.6)代入.得:﹣12a=6.解得:a=﹣.所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如图1.过点P作PM⊥OB与点M.交AB于点N.作AG⊥PM于点G.设直线AB解析式为y=kx+b.将点A(0.6)、B(6.0)代入.得:.解得:.则直线AB解析式为y=﹣x+6.设P(t.﹣t2+2t+6)其中0<t<6.则N(t.﹣t+6).∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t. ∴S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•(AG+BM)=PN•OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+.∴当t=3时.△PAB的面积有最大值;(3)如图2.∵PH⊥OB于H.∴∠DHB=∠AOB=90°.∴DH∥AO.∵OA=OB=6.∴∠BDH=∠BAO=45°.∵PE∥x轴、PD⊥x轴.∴∠DPE=90°.若△PDE为等腰直角三角形.则∠EDP=45°.∴∠EDP与∠BDH互为对顶角.即点E与点A重合.则当y=6时.﹣x2+2x+6=6.解得:x=0(舍)或x=4.即点P(4.6).【点评】本题主要考查二次函数的综合问题.解题的关键是掌握待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等知识点.9.(2018•乌鲁木齐•10分)在平面直角坐标系xOy中.抛物线y=﹣ x2+bx+c 经过点A(﹣2.0).B(8.0).(1)求抛物线的解析式;(2)点C是抛物线与y轴的交点.连接BC.设点P是抛物线上在第一象限内的点.PD⊥BC.垂足为点D.①是否存在点P.使线段PD的长度最大?若存在.请求出点P的坐标;若不存在.请说明理由;②当△PDC与△COA相似时.求点P的坐标.【分析】(1)直接把点A(﹣2.0).B(8.0)代入抛物线的解析式中列二元一次方程组.解出可得结论;(2)先得直线BC的解析式为:y=﹣ x+4.①如图1.作辅助线.先说明Rt△PDE中.PD=PE•sin∠PED=PE•sin∠OCB= PE.则当线段PE最长时.PD的长最大.设P(t. ).则E(t. ).表示PE的长.配方后可得PE的最大值.从而得PD的最大值;②先根据勾股定理的逆定理可得∠ACB=90°.则△COA∽△BOC.所以当△PDC与△COA相似时.就有△PDC与△BOC相似.分两种情况:(I)若∠PCD=∠CBO时.即Rt△PDC∽Rt△COB.(II)若∠PCD=∠BCO时.即Rt△PDC∽Rt△BOC.分别求得P的坐标即可.【解答】解:(1)把A(﹣2.0).B(8.0)代入抛物线y=﹣ x2+bx+c. 得: .解得: .∴抛物线的解析式为:y=﹣ x2+ x+4;(3分)(2)由(1)知C(0.4).∵B(8.0).易得直线BC的解析式为:y=﹣ x+4.①如图1.过P作PG⊥x轴于G.PG交BC于E.Rt△BOC中.OC=4.OB=8.∴BC= =4 .在Rt△PDE中.PD=PE•sin∠PED=PE•sin∠OCB= PE.∴当线段PE最长时.PD的长最大.设P(t. ).则E(t. ).∴PG=﹣ .EG=﹣ t+4.∴PE=PG﹣EG=(﹣)﹣(﹣ t+4)=﹣ t2+2t=﹣(t﹣4)2+4.(0<t<8). 当t=4时.PE有最大值是4.此时P(4.6).∴PD= = .即当P(4.6)时.PD的长度最大.最大值是;(7分)②∵A(﹣2.0).B(8.0).C(0.4).∴OA=2.OB=8.OC=4.∴AC2=22+42=20.AB2=(2+8)2=100.BC2=42+82=80.∴AC2+BC2=AB2.∴∠ACB=90°.∴△COA∽△BOC.当△PDC与△COA相似时.就有△PDC与△BOC相似.∵相似三角形的对应角相等.∴∠PCD=∠CBO或∠PCD=∠BCO.(I)若∠PCD=∠CBO时.即Rt△PDC∽Rt△COB.此时CP∥OB.∵C(0.4).∴yP=4.∴)=4.解得:x1=6.x2=0(舍).即Rt△PDC∽Rt△COB时.P(6.4);(II)若∠PCD=∠BCO时.即Rt△PDC∽Rt△BOC.如图2.过P作x轴的垂线PG.交直线BC于F.∴PF∥OC.∴∠PFC=∠BCO.∴∠PCD=∠PFC.∴PC=PF.设P(n. + n+4).则PF=﹣ +2n.过P作PN⊥y轴于N.Rt△PNC中.PC2=PN2+CN2=PF2.∴n2+( + n+4﹣4)2=(﹣ +2n)2.解得:n=3.即Rt△PDC∽Rt△BOC时.P(3. );综上所述.当△PDC与△COA相似时.点P的坐标为(6.4)或(3. ).(12分)【点评】本题考查二次函数综合题、一次函数的应用、勾股定理的逆定理、锐角三角函数、相似三角形的判定和性质等知识.解题的关键是灵活运用所学知识解决问题.学会根据方程解决问题.属于中考压轴题.10. (2018•临安•8分)如图.△OAB是边长为2+的等边三角形.其中O 是坐标原点.顶点B在y轴正方向上.将△OAB折叠.使点A落在边OB上.记为A′.折痕为EF.(1)当A′E∥x轴时.求点A′和E的坐标;(2)当A′E∥x轴.且抛物线y=﹣x2+bx+c经过点A′和E时.求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动.但不与点O、B重合时.能否使△A′EF成为直角三角形?若能.请求出此时点A′的坐标;若不能.请你说明理由.【分析】(1)当A′E∥x轴时.△A′EO是直角三角形.可根据∠A′OE的度数用O′A表示出OE和A′E.由于A′E=AE.且A′E+OE=OA=2+.由此可求出OA′的长.也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′.E点的坐标代入抛物线中.即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A.因此∠FA′E不可能为直角.因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90°.根据折叠的性质.∠A′EF=∠AEF=90°.此时A′与O重合.与题意不符.因此此种情况不成立.②∠A′FE=90°.同①.可得出此种情况也不成立.因此A′不与O、B重合的情况下.△A′EF不可能成为直角三角形.【解答】解:(1)由已知可得∠A′OE=60°.A′E=AE.由A′E∥x轴.得△OA′E是直角三角形.设A′的坐标为(0.b).AE=A′E=b.OE=2b.b+2b=2+.所以b=1.A′、E的坐标分别是(0.1)与(.1).(2)因为A′、E在抛物线上.所以.所以.函数关系式为y=﹣x2+x+1.由﹣x2+x+1=0.得x1=﹣.x2=2.与x轴的两个交点坐标分别是(.0)与(.0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60°.若△A′EF成为直角三角形.只能是∠A′EF=90°或∠A′FE=90°若∠A′EF=90°.利用对称性.则∠AEF=90°.A.E.A三点共线.O与A重合.与已知矛盾;同理若∠A′FE=90°也不可能.所以不能使△A′EF成为直角三角形.【点评】本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点.综合性较强.。
中考数学二次函数综合经典题含详细答案
![中考数学二次函数综合经典题含详细答案](https://img.taocdn.com/s3/m/25d42f47998fcc22bdd10da6.png)
一、二次函数 真题与模拟题分类汇编(难题易错题)1.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.2.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.3.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m =﹣m 2﹣3m , 解得,m =0或m =﹣4, ∴n =0﹣(﹣4)=4, ∴﹣2<m ≤2,由上可得,当m >2或m ≤﹣2时,n =2, 当﹣2<m ≤2时,n =4. 【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.4.如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点()0,3C-.(1)求二次函数的表达式及点A 、点B 的坐标;(2)若点D 在二次函数图像上,且45DBC ABC S S =△△,求点D 的横坐标;(3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作ME y ∥轴,与直线BC 交于点E ,过N 作NF y ∥轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.【答案】(1)y =239344x x --,A (﹣1,0),B (4,0);(2)D 点的横坐标为22﹣2,2;(3)M (13,﹣113) 【解析】 【分析】(1)求出a ,即可求解;(2)求出直线BC 的解析式,过点D 作DH ∥y 轴,与直线BC 交于点H ,根据三角形面积的关系求解;(3)过点M 作MG ∥x 轴,交FN 的延长线于点G ,设M (m ,34m 2﹣94m ﹣3),N(n,34n2﹣94n﹣3),判断四边形MNFE是平行四边形,根据ME=NF,求出m+n=4,再确定ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,即可求M;【详解】(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),∴a=34,∴y=34x2﹣94x﹣3,与x轴交点A(﹣1,0),B(4,0);(2)设直线BC的解析式为y=kx+b,∴403k bb+=⎧⎨=-⎩,∴343kb⎧=-⎪⎨⎪=-⎩,∴y=34x﹣3;过点D作DH∥y轴,与直线BC交于点H,设H(x,34x﹣3),D(x,34x2﹣94x﹣3),∴DH=|34x2﹣3x|,∵S△ABC=1155323⨯⨯=,∴S△DBC=41552⨯=6,∴S△DBC=2×|34x2﹣3x|=6,∴x=2+22,x=2﹣22,x=2;∴D点的横坐标为2+22,2﹣22,2;(3)过点M作MG∥x轴,交FN的延长线于点G,设M(m,34m2﹣94m﹣3),N(n,34n2﹣94n﹣3),则E(m,34m﹣3),F(n,34n﹣3),∴ME=﹣34m2+3m,NF=﹣34n2+3n,∵EF∥MN,ME∥NF,∴四边形MNFE是平行四边形,∴ME=NF,∴﹣34m2+3m=﹣34n2+3n,∴m+n=4,∴MG=n﹣m=4﹣2m,∴∠NMG=∠OBC,∴cos∠NMG=cos∠OBC=MG OBMN BC,∵B(4,0),C(0,﹣3),∴OB=4,OC=3,在Rt△BOC中,BC=5,∴MN=54(n﹣m)=54(4﹣2m)=5﹣52m,∴ME+MN=﹣34m2+3m+5﹣52m=﹣34(m﹣13)2+6112,∵﹣34<0,∴当m=13时,ME+MN有最大值,∴M(13,﹣113)【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题.5.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.6.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式. (3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少? 【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【解析】 【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论. 【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b , 将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩,解得:1180k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩,解得:3300m n =-⎧⎨=⎩,∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105,∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600, 当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65,∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675, ∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675. 【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.7.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P 的横坐标为:74+-74. 【解析】【分析】 (1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标; (2)根据抛物线C 绕点O 旋转180,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可.【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩ 解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -; (2)∵抛物线C 绕点O 旋转180,得到新的抛物线'C .∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a =∴新抛物线'C 的解析式为:22(2)44y x x x =--=-将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-,∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --, ∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称,∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++, ∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴 ∴//DH EK∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=,∴1tan 3BG GAB AB ∠===, ∵DEP GAB ∠=∠∴1tan tan 3DEP GAB ∠=∠=, 在x轴下方过点O 作OH OE ⊥,在OH 上截取123OH OE ==, 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -,∴45EOT ∠=∵90EOH ∠=∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得11773735x y ⎧--=⎪⎪⎨-⎪=⎪⎩,22773735x y ⎧-+=⎪⎪⎨+⎪=-⎪⎩, ∴点P 的横坐标为:773+-或737-.【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大.8.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x 2+32x ﹣2;(2)9;(3)点Q 的坐标为(﹣2,4)或(﹣2,﹣1).【解析】 (1)如答图1所示,利用已知条件求出点B 的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA 面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC 与直线x=2的交点F 的坐标,从而确定了Rt △AGF 的各个边长;然后证明Rt △AGF ∽Rt △QEF ,利用相似线段比例关系列出方程,求出点Q 的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.9.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4.【解析】【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论.【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=, ∴点C 的坐标为()0,3.点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x t y x x =-++⎧⎨=-+⎩,解得:11322x t y ⎧=⎪⎪⎨+-⎪=⎪⎩,22322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M的坐标为,点N的坐标为,. 点A 的坐标为()1,0,(222210571AM t t t ⎫⎫∴=+-=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=-+-=++++⎪⎪⎪⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭.AMN ∆为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.10.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b a-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b a -=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1;②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.。
二次函数常见题型(含答案)解析
![二次函数常见题型(含答案)解析](https://img.taocdn.com/s3/m/127c002acf84b9d528ea7ac3.png)
中考二次函数常见题型考点1:二次函数的数学应用题1. (2011湖北黄石,16,3分)初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数。
若某生的位置数为10,则当m+n取最小值时,m·n的最大值为。
【答案】362.(2011浙江金华,23,10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=-1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,①试求出当n=3时a的值;②直接写出a关于n的关系式.∴1421112 1.42a ba b=++⎧⎪⎨=++⎪⎩,解得4,38.3ab⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x=-++;……4分(3)①当n=3时,OC=1,BC=3,设所求抛物线解析式为2y ax bx=+,过C作CD⊥OB于点D,则Rt△OCD∽Rt△CBD,∴13OD OCCD BC==,设OD=t,则CD=3t,∵222OD CD OC+=,∴222(3)1t t+=,∴1101010t==,∴C(1010,31010), 又B(10,0),∴把B 、C坐标代入抛物线解析式,得01010311010.101010a ba b⎧=+⎪⎨=+⎪⎩,解得:a=103-;……2分②21nan+=-. ……2分3. (2011山东日照,24,10分)如图,抛物线y=ax2+bx(a0)与双曲线y=xk相交于点A,B. 已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4. 过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;xyOABCDxyOCEABM NF(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.【答案】(1)把点B (-2,-2)的坐标,代入y =xk, 得:-2=2-k,∴k =4. 即双曲线的解析式为:y =x4. 设A 点的坐标为(m ,n )。
中考二次函数经典例题及解析
![中考二次函数经典例题及解析](https://img.taocdn.com/s3/m/4d2bf08688eb172ded630b1c59eef8c75fbf9512.png)
中考二次函数经典例题及解析中考二次函数经典例题及解析一、引言二次函数是中学数学中的重要内容,也是中考数学考试中常见的题型。
通过解析经典的二次函数例题,我们可以更好地理解和掌握二次函数的特点和解题方法。
本文将结合多个经典的中考二次函数例题,深入分析题目,探讨解题思路和方法,帮助读者全面理解二次函数的应用。
二、例题一题目:已知二次函数y=ax^2+bx+c的图像经过点(1,1),(2,4),(3,9)。
求a,b,c的值。
解析:根据已知条件,代入三个点的坐标,得到三个方程:a+b+c=14a+2b+c=49a+3b+c=9通过解方程组,可以求解出a,b,c的值,进而得到二次函数的表达式。
三、例题二题目:已知二次函数y=ax^2+bx+c的图像的对称轴为x=2,顶点在直线y=1-x上。
求a,b,c的值。
解析:根据已知条件,对称轴为x=2,顶点在直线y=1-x上,可以列出方程:-b/(2a)=21-4a+2b+c=0通过求解方程组,可以得到a,b,c的值,进而得到二次函数的表达式。
四、例题三题目:已知二次函数经过点(1,-3),且在x轴上的交点为x=4。
求函数的解析式。
解析:根据已知条件,可以列出方程:a+b+c=-316a+4b+c=0通过解方程组,可以求解出a,b,c的值,进而得到二次函数的解析式。
五、总结通过以上例题的解析,我们可以看到在解二次函数相关题目时,首先需要根据题目的条件列方程,并运用相关的解方程技巧得到二次函数的系数a,b,c的值,从而得到二次函数的解析式。
在解题过程中,我们还可以借助对称轴和顶点等概念来辅助求解,这些解题方法和技巧都是我们在中考数学中必须掌握的知识点。
个人观点和理解:二次函数作为中学数学中的重要内容,其在中考数学中的考查也是至关重要的。
掌握二次函数的特点和解题方法,不仅有助于解题,还可以帮助我们更深入地理解函数的性质和应用。
通过解析经典的二次函数例题,我们可以更好地掌握二次函数的知识,并在中考数学中取得更好的成绩。