数据可视化界面设计有什么方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据可视化界面设计有什么方法

“仪表板”、“大数据”、“数据可视化”、“数据分析”——越来越多人和企业,开始运用他们的数据来做一些有趣的事情。千锋教育培训大师带你走进大数据,教你几招,搞定大数据的可视化界面设计。

一、用户不同,数据不同

任何时候设计一套复杂的系统,都不可避免要为很多用户和角色进行设计。总裁、经理和分析师是几个常见角色,每个都有自己的工作流程和对数据的需求。

定义好角色,产生不同视角,这本身就是一种艺术。

关于角色,重要的一点是预先确定好,围绕它们来组织信息结构与线框图。

下面是我们去年做的一款健康报告应用的最终成品。这套系统有着不同的用户群,他们各自都需要不同的数据管理。创建了关键角色后,我们每次评审会将

它们放在旁边。

二、制作页面模型

首先为用户呈现他们需要的,再将页面余下的信息根据用户故事或信息层级,进行结构化处理。制作页面模型的概念,正是写散文(和其他很多种沟通形式)的核心原则,如果一开始就使人分心,那么用户不仅难以分辨每个元素是什么,也难以集中精力于整个流程。这是进行用户体验设计时需要牢记的一项准则。下面是制作页面模型的两个常用方式。

给画板创建某种结构。问问自己——通过这些信息要讲述怎样的故事?

在Behance和Dribbble上看到很多仪表板和数据画报项目,(视觉上)设计得很漂亮,但通常都使人眼花缭乱、过目即忘。它们要么是各种图表组件以缺乏层级的瀑布流形式排列,要么视觉上过度设计,并不适合这项数据。最关键的一点——避免创造出令人一知半解的图形。为页面信息建立模型,首先给用户呈现关键信息,然后才是支撑内容。

三、选择正确的图形

在美学方面,有很多(太多了)设计都在误用图表。最糟的是——这些“坏习惯”似乎在成倍增加。随处可见本应是饼形图的面积图,还有本应该是柱状图的曲线图。让我们一起来制止这些设计……下面这些建议有助于你正确对待数据:始于数据

未经处理的原始数据表格一点也没有吸引力。但它是最佳的起点。它帮你开始思考数据中有哪些变量可用,这些变量数据如何关联。原始数据的单调特性,会帮你思考系统中各种变量间的关联。除了从空白数据行列入手,等待灵感忽然进入你意识。你还可以更积极一些,通过下面这些很棒的资源,帮你揭示出有趣的关联。

在整个过程中,这部分并没有灵丹妙药。别对深入研究数据心存恐惧,试着混合搭配不同变量,创建基本图表。这需要时间,但它是值得的。我想到的一些绝妙点子,都来自这些原始数据文件的拼拼凑凑。

处理离散数据和连续数据

我花了很长时间才意识到这点,有些图表比其他更能表达你的数据。在创作中很容易陷入这样的境地,选择一种好看的图表,然后指望它能发挥作用。有些图形比其他更好,这取决于你所处理的数据类型。选择合适图表的方法之一,是评估你手中的数据。

四、基本的或定制化的图形

最后,作为这些海量数据系统的设计师,你得反复问自己“我应该选择非常规方式来定制化设计?还是使用久经考验的图表来展现信息?”

最近无意中读到这篇来自37 Signals的文章—— 只要3种图表就够了。作者强烈表达一个观点,图形的“有效性”胜过它的视觉特征。我非常赞同文中这一观点。不过,我觉得他的观点代表着一种极端实用主义的视角。我相信定制化的图形通常也能提升数据的易用性,同时独具一格引人入胜。

学习大数据可视化界面设计,不仅需要聪明的头脑和一时的灵感,更需要丰富的大数据理论知识,学习大数据就来千锋,教你学习大数据理论,丰富你

的知识宝库,精彩的是实战演练教你快速进入大数据时代。

相关文档
最新文档