线性系统能观性能控性判定

合集下载

能控性与能观性

能控性与能观性
c11 c12 c c22 21 y (t ) c m1 cm 2 c1n e1t x10 c2 n e2t x20 nt cmn e xn 0
假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。

能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。

能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。

但是⼀般没有特别指明时,指的都是状态的可控性。

所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。

4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。

反之,只要有⼀个状态不可控,我们就称系统不可控。

对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。

现代控制理论习题解答(第三章)

现代控制理论习题解答(第三章)

第三章 线性控制系统的能控性和能观性3-3-1 判断下列系统的状态能控性。

(1)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=01,0101B A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111001,342100010B A (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020011,100030013B A (4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1110,0000000011111B A λλλλ 【解】:(1)[]2,1011==⎥⎦⎤⎢⎣⎡-==n rankU AB BU c c ,所以系统完全能控。

(2)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==7111111010012B A ABBU c 前三列已经可使3==n rankU c ,所以系统完全能控(后续列元素不必计算)。

(3)A 为约旦标准型,且第一个约旦块对应的B 阵最后一行元素全为零,所以系统不完全能控。

(4)A 阵为约旦标准型的特殊结构特征,所以不能用常规标准型的判别方法判系统的能控性。

同一特征值对应着多个约旦块,只要是单输入系统,一定是不完全能控的。

可以求一下能控判别阵。

[]2,111321031211312113121121132=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==c c rankU B A BA AB BU λλλλλλλλλλλ,所以系统不完全能控。

3-3-2 判断下列系统的输出能控性。

(1) ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=xy u x x 011101020011100030013 (2) []⎪⎪⎩⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=x y u x x 0011006116100010【解】: (1)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020011,100030013B A ,⎥⎦⎤⎢⎣⎡-=011101C ,⎥⎦⎤⎢⎣⎡=0000D []⎥⎦⎤⎢⎣⎡--=111300002B CA CAB CB D前两列已经使[]22==m B CA CAB CB D rank ,所以系统输出能控。

4.4线性时变系统的能控性和能观性

4.4线性时变系统的能控性和能观性

n
M
N
n1
(t1
)
N0(t) C(t)
N k 1 (t )
Nk
(t ) A(t )
d dt
Nk
(t)
(k 0,1,2,L ,n 1)
第四章 线性系统的能控性与能观性
例 4.4.2.(2)已知线性时变连续系统为
x1 t 1 0 x1
x2
0
2t
0
x2
Td [0, 2], t0 0.5, t f 2
解:首先计算 0
M0 (t ) B(t ) 1
1
1
M1(t)
A(t )M0 (t )
d dt
M0 (t )
2t
t t 2
3t
M2 (t )
A(t )M1(t )
d dt
M1(t)
4t 2 2
(t 2 t )2 2t 1
进而,可以找到 t1 1,[0使,3有]
第四章 线性系统的能控性与能观性
t
t 2
第四章 线性系统的能控性与能观性
2t 0 2t
M
2
(t
)
A(t)M1(t)
d dt
M 1 (t )
t t
2 4
1
2t
t
2
1
t4 2t
M0(t) M1(t) M2(t) 秩为3,所以系统是完全能控
第四章 线性系统的能控性与能观性
推论(秩判据):假设矩阵A(t)和B(t)在时间区间
N1 ( t )
t 2 1 4t 2 3t 2 (t 2 t )2 (2t 1)
N0 (t1 )
1 1 1
于是
rank
(k 1, 2,L , n 1)

现代控制理论(12-17讲:第4章知识点)

现代控制理论(12-17讲:第4章知识点)

0 1 1 0 0 1 1 1 0 1 0 1 0 0 x y x 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0
MIMO系统,n=5,r=5,独立特征向量为2, C阵对应列 (1、4列),线性无关, 故系统状态完全能观。
4-4 线性定常离散系统的能控性和能观性
故系统是不能观测的。
y 3 2 0 x
18
例2:判定如下系统的能观性。
1 0 3 x x 7 u 0 3

0 0 1 y x 0 u 1 1
故系统是能观测的。
特别要注意特征值互异的条件,否则会影 响判定结论的正确性。
解: n=3、 r=1 有

0 2 8 Q c B AB A 2 B 0 0 0 1 3 11
显然:
rankQc 2( n)
4
故系统是不能控的。
3、能控性判据之二 (1)、系统特征值互异的情况:
若线性定常系统: Ax + Bu , 具有n个互不相同的 x 特征值,则其状态完全能控的充分必要条件是,系统经非 奇异变换后的状态方程式:
C 1 1 rankQo rank 1 n CA 5 5
故系统是不能观测的.(detQo=0)
16
例2:判定如下系统的能观性。
2 1 1 x x 1 u 1 3

1 0 y x 1 0
b1 0
故系统状态不可控。
特别要注意特征值互异的条件,否则会影 响判定结论的正确性。
(2)、系统具有重特征值的情况: 若线性定常系统: Ax + Bu , 具有重特征值,且 x 每一个重特征值只对应一个独立特征向量,则其状态完全能 控的充分必要条件是,系统经非奇异变换后的Jordan规范形:

线性系统能控性能控性与能观性

线性系统能控性能控性与能观性

时变系统
能达性定义及判据 能观性定义及判据
①Gram 判据 ①Gram 矩阵非奇异
离散时间线性
能控性判据 ①Gram 判据②秩判据
rank H GH G n 1 H n
时不变系统
能达性判据 能观性判据 ①Gram 判据②秩判据 ①Gram 判据②秩判据


三、连续时间线性时不变系统的结构分解
* * 于物理构成,问题的提法;取输出反馈控制律 u Fy v ,对任意给定期望极点组 1 , * 2 , n ,确定
一个反馈矩阵 F ,使导出的输出反馈闭环系统
x A BFC x Bv y Cx

的所有特征值实现期望的配置,即有 i A BFC * i , i 1,2, , n 。 输出反馈局限性: (1)对完全能控连续时间线性时不变受控系统,输出反馈一般不能任意配置系 统全部极点。 (2)对完全能控 n 维 SISO-LTIC 受控系统,输出反馈只能使闭环极点配置到根轨迹上。 扩大输出反馈配置功能的一个途径是采用动态输出反馈, 即在采用输出反馈同时附加引入补偿器。 可以证明,通过合理选取补偿器机构和特性,可对带补偿器输出反馈系统的全部极点进行任意配置。 4.2 状态反馈镇定问题 4.2.1 所谓的镇定问题就是,对给定的线性时不变受控系统,确定状态反馈控制律 u Kx v ,使 导出的状态反馈闭环系统 x A BK x Bv 为渐进稳定,即闭环系统特征值均具有负实部。 镇定问题实质上属于极点区域配置问题,对于镇定问题,系统闭环极点的综合目标,并不要求配 置于任意指定期望位置,而只要求配置于复平面的左半开平面上。 4.2.2 可镇定条件
4.1.2 极点配置问题的算法 [极点配置定理] 对 n 维连续时间线性时不变系统,系统可通过状态反馈任意配置全部 n 个极点 即特征值的充分必要条件是 A, B完全能控。 [多输入状态反馈阵算法] 给定 n 维多输入连续时间时不变受控系统 A, B 和一组任意的期望闭

线性系统理论(第四章)线性系统的能控性和能观测性

线性系统理论(第四章)线性系统的能控性和能观测性

An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!

第三章线性系统的能控性与能观性2

第三章线性系统的能控性与能观性2
试判断该系统的能控性.
Hale Waihona Puke .解:Sc [b Ab]
Sc b Ab b1 b2
1b1 b1b2 (2 1 ) 2b2
0
如果rank Sc =2, 则必须要求 b1 0, b2
4. 定理3:设 x Ax Bu , 若A为约当标准形,且每个约当块所 对应的特征值均不相同,则状态完全能控 的充要条件是:

ri1 ri 2 rii i
由 Bik (k 1,2,, i ) 的最后一行组 成的矩阵:
bri1 r bri 2 对i 1, 2, , l均为行线性无关 Bi bri i 则系统能控
例:设 x Ax Bu ,已知
第三章 线性系统的能控性和能观性
3.1 能控性的定义 3.2 线性定常系统的能控性判别 3.3 线性定常连续系统的能观性 3.4 离散时间系统的能控性与能观性 3.5 时变系统的能控性与能观性 3.6 能控性与能观性的对偶关系 3.7 状态空间表达式的能控标准型与能观标准型 3.8 线性定常系统结构分解 3.9 传递函数矩阵的实现 3.10传递函数中零极点对消与状态能控性、能观性之间 的关系
定理2:若
x Ax Bu
若A为对角型,且对角线上的元素均不相同, 则状态完全能控的充要条件为: B中没有任意一行的元素全为零.
x1 1 x1 b11u1b12u2 b1 pu p
x2 2 x2 b21u1b22u2 b2 pu p
例:线性系统的状态方程为 x Ax bu 其中: 1 0 b1 A b 0 2 b2
Ci C1i1 C1i2 C1ii

线性系统能观性能控性判定

线性系统能观性能控性判定

rank[ λi I − A ⋮ B ] = n ( i = 1, 2 , ⋯ , n ) 证明略) (证明略)
(10) )
定理3 互异, 定理3-4 (2)式的线性定常系统的矩阵 A 的特征值 λ i 互异, )
( i = 1, 2 , ⋯ , n ) 将系统经过非奇异线性变换变换成对角阵
0 λ1 λ2 x + Bu (11) ) ɺ x= ⋱ 0 λn 中不包含元素全为零的行。 则系统能控的充分必要条件是矩阵 B 中不包含元素全为零的行。
y 电路如下图所示。 为输入量, 为输出量, 例3-3 电路如下图所示。选取 u (t ) 为输入量, (t )为输出量,两个电 感上的电流分别作为状态变量, 感上的电流分别作为状态变量,则系统方程为
- 2 1 1 ɺ x = Ax + Bu = x + u 1 - 2 0
y = Cx = [0 1]x
系统状态转移矩阵为
0 x (0) = 如果初始状态为 0
e At
1 e −t + e −3t = − t − 3t 2 e − e
e −t − e −3t −t − 3t e +e
系统状态方程的解为 1 t −(t − τ ) x(t ) = ∫ e u(τ ) d τ 0 1 可见, 可见,不论加入什么样的 输入信号, 输入信号,总是有 x1 = x2
对于不能观测的系统,其不能观测的状态分量与 既无直接关系, 对于不能观测的系统,其不能观测的状态分量与y 既无直接关系, 又无间接关系。状态是否能观测不仅取决于C,还与A 有关。 又无间接关系。状态是否能观测不仅取决于 ,还与 有关。
3.2 能控性及其判据

线性系统理论第4章 线性系统的能控性和能观测性

线性系统理论第4章  线性系统的能控性和能观测性
解??33112201112?????????????????kckcrankqhgghhq系统是能控的2u1011u1210u3214122223xhugx??????????????????????????????????????????????????582145令03x?????????????11?????????????????????????????????????????????????852u1u0u41222u1u0u101121321若令02x????????????????????????????????0621u0u101121无解
满秩,即rankQ o=n
结论5
n 维连续时间线性时不变系统完全能观测的充分必要条件为:
SI A rank n S C C

i I A 为系统特征值 rank n , 1 , 2 ,n C
Wc [0, t1 ] e At BBe A t dt
T

t1
0
为非奇异。
结论3:n 维连续时间线性时变系统 x A(t ) x B(t )u x(t 0 ) x0
设A(t),B(t)对t为n-1阶连续可微,定义
t, t0 J
M 0 (t ) B (t ) d M 0 (t ) dt d M 2 (t ) A(t ) M 1 (t ) M 1 (t ) dt d M n 1 (t ) A(t ) M n 2 (t ) M n 2 (t ) dt M 1 (t ) A(t ) M 0 (t )
6/8,9/45
1 L QC [b, Ab] 0
R3 R4 1 R1 R2 2 L R1 R2 R3 R4 1 R2 R4 LC R1 R2 R3 R4

第6章 线性系统的能控性和能观性(第四章)

第6章 线性系统的能控性和能观性(第四章)
ˆ y = [ 0 L 0 1] x
1 α n −1 L α1 CAn −1 O O M M Q= O α n −1 CA 1 A
给定完全能观测单输入单输出连续时间线性时不变系统: 例 4.21 给定完全能观测单输入单输出连续时间线性时不变系统:
ϕ T = BT (t )ψ T
对偶原理: 对偶原理:
Σ 完全能控 ⇔ Σ d完全能观测 Σ 完全能观测 ⇔Σ d完全能控
4.8 能控规范形和能观测规范形
单输入单输出情形 能控规范形
Σ:
& x = Ax + Bu,
y = Cx
线性非奇异变换下,能控性、能观测性, 线性非奇异变换下,能控性、能观测性, 可控指数、可控指数集,能观测指数和能观测 可控指数、可控指数集, 指数集保持不变。 指数集保持不变。
4.2 连续时间线性时不变系统的能控性判据
& x = Ax + Bu, x (0) = x0 ,
t≥0
系统完全能控的充分必要条件为: 系统完全能控的充分必要条件为:
rankQC = rank B
例:
AB L An −1 B = n
4 0 1 & x = x + u 0 −5 2
t∈J
说明: 说明:
表征系统状态可到达任意目标的定性属性, (1) 表征系统状态可到达任意目标的定性属性, 不关注运动的轨迹形态; 不关注运动的轨迹形态; 对控制无限制; (2) 对控制无限制; (3) 线性时不变系统与 t0 无关; 无关; 线性时不变系统能控性与能达性等价。 (4) 线性时不变系统能控性与能达性等价。 系统完全能控/能达: 系统完全能控/能达:指所有非零状态 系统不完全能控/能达: 系统不完全能控/能达:

现代控制工程-第5章能控性和能观性分析

现代控制工程-第5章能控性和能观性分析

传递函数判据
如果系统的传递函数的极点和零 点都位于复平面的左半部分,则 该系统是能控的。
能控性的应用
系统设计和ห้องสมุดไป่ตู้化
在系统设计和优化过程中,能控性分析可以帮助确定系统的可控性 和可观性,从而更好地选择和设计控制器和观测器。
控制性能评估
通过能控性分析,可以对系统的控制性能进行评估和比较,从而选 择更优的控制方案。
现代控制工程-第5章能控性 和能观性分析
目录
• 能控性分析 • 能观性分析 • 能控性和能观性的关系 • 系统设计中的能控性和能观性 • 现代控制工程其他章节概述
01
能控性分析
定义与概念
能控性定义
对于一个给定的线性时不变系统,如果存在一个状态反馈控制器,使得系统的任何初始状态都能通过 该控制器在有限的时间内被控制到任意指定的状态,则称该系统是能控的。
快速性
系统应具有快速的响应能力,以便在短时间 内达到设定值或消除外部扰动。
准确性
系统应具有高精度的输出,以满足各种控制 要求和保证产品质量。
可靠性
系统应具有高的可靠性和稳定性,以确保长 期稳定运行和减少故障率。
系统设计中的能控性和能观性考虑
能控性考虑
在系统设计中,需要考虑系统的能控性,即 能否通过输入信号控制系统的输出状态。对 于不能控制的系统,需要采取措施进行改进 或重新设计。
描述
分解性是控制系统分析中的一个重要性质。在大型复杂系统中,如果系统具有分解性, 那么我们可以将系统分解为若干个子系统,分别对子系统进行能控性和能观性分析,从
而简化系统分析和设计的难度。
04
系统设计中的能控性和能观 性
系统设计的基本原则
稳定性

第三章线性控制系统的能控性和能观性

第三章线性控制系统的能控性和能观性

第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalman )在1960年首先提出来的,它是最优控制和最优估值的设计基础。

能控性和能观性是分别分析)(t u 对状态)(t x 的控制能力以及输出)(t y 对状态)(t x 的反映能力。

§3-1 能控性的定义能控性所研究的只是系统在控制作用)(t u 的作用下,状态矢量)(t x 的转移情况,而与输出)(t y 无关。

矢量的线性无关与线性相关:如果0x x x x 332211=++++n n C C C C 式中的常数n C C C 21,满足0321====n C C C C ,则把向量n x x ,x 21 叫做线性无关。

例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0102x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1003x 便是线性无关。

若向量n x x ,x 21 中有一个向量i X 为其余向量的线性组合,即:∑≠==nij j jj i C 1x x 则称向量n x x ,x 21 为线性相关。

例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3211x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4223x 便是线性相关。

又例如在式中213x x x +=,0x 3x x 321=++式中系数并不全为零。

故为线性相关。

具有约旦标准型系统的能控性判据 1.单输入系统先将线性定常系统进行状态变换,把状态方程的A 阵和B 阵化为约旦标准型)ˆ,ˆ(B A,再根据B 阵确定系统的能控性。

具有约旦标准型系统矩阵的单输入系统,状态方程为bu x x+=λ ,或bu Jx x+= 。

其中:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n λλλλλ 00321,各根互异。

其中:(特征值有重根的)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=++n m m J λλλλλλ010010121111 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21 下面列举两个二阶系统,对其能控性加以剖析。

(第七、八周)第四章线性控制系统的能控性与能观性

(第七、八周)第四章线性控制系统的能控性与能观性

| Qc
|
b1 b2
b11 b2 b21
b22
0
即:b2 0
推广到n阶系统就有定理3:
18
例3-3 考察如下系统的状态能控性:
(1) x1 1 1 0 x1 0
x2
0
1
0
x2
4
u
完全能控
x3 0 0 2 x3 3
(2)
x1 1
x2
0
x3 0
1 1 0
取 Q AT P PA Q为实对称矩阵
线性定常连续系统渐近稳定判定定理:
线性定常系统x Ax 在平衡点xe 0大范
围渐近稳定的充要条件是对任意给定的正定对 称矩阵Q,存在正定对称矩阵P,满足矩阵方程:
AT P PA Q
x 0 例 3 4
x
0 1
1 1
x
e
解:取 Q I, AT P PA I P是实对称矩阵(P12 P21)
20
输出能控性判据:系统输出能控的充要条件是输出能控 性判别矩阵:
S [ CB CAB CA2B CAn1B D ]
的秩为m。其中m为输出维数。
说明:状态能控性和输出能控性是两个完全不同的 概念,没有必然的联系。某系统状态不完全能 控,输出有可能完全能控。
21
[例]:判断下列系统的状态能控性与输出能控性
4
课前回顾
二、状态转移矩阵 状态转移矩阵的计算方法
▪ 直接求解法:根据定义 ▪ 拉氏变换求解: ▪ 标准型法求解:对角线标准型和约当标准型-非奇异变换
状态转移矩阵的性质
5
课前回顾
三、 非齐次状态方程的求解
强迫运动:
u
x
( A, B)

线性系统的能控性和能观性

线性系统的能控性和能观性

例3.4 判断下列系统的能控性
(1)、A
2
0
0 1 1, B 0
(2)、A
2
0
0 1 1, B 1
(3)、A
1
0
01B
1 1
3 1 0 0 0
(4)、A
0
3 0, B 2 1
0 0 1 0 3
4 1 0 0
(5)、A
0
4
0 , B 1
0 0 4 2
所以A为约旦阵,但有两个相同特征值的约旦块 对应b虽为最后一行全为0的元素行,仍不能控, 可算出rank[M]<3.
,t0)
tf t0
(
t
f
, )B()u()d
x(t0 )
tf t0
(
t
0
,
)B()u
()d
意义:系统状态x(t0)能控,即[t0,tf]区间上受 u(t)控制。
(三)能控性判据 [定理3.1]系统∑(A(t),B(t),C(t))在t0时刻或[t0,tf]
完全能控的充要条件是矩阵Φ(t0,t)*B(t)是行 线性无关的(满秩的、非奇异的)
例:x
1
0
-
-
02x 10u, y 1 1x
分析: 1、x1与输入u无关,不能 控,x2能控, x1, x2不完 全能控。 2、y= x1+ x2 , x1或x2 都能对y产生影响,通 过y能确定x1或x2 ,能 观测。
3、能控能观是最优制和 最优估计的设计基础。
3.1 线性连续系统的能控性
)d
x(t f ) (t f )x(0) 0t f (t f )B( )u( )d x(0) 0t f ( )Bu( )d

现代控制理论-4-线性系统的能控性和能观测性-第7讲

现代控制理论-4-线性系统的能控性和能观测性-第7讲

能控性的定义
能控性是指对于一个线性系统,如果 存在一个控制输入,使得系统状态能 够在有限的时间内从任意初始状态转 移到任意目标状态,则称该系统为能 控的。
能控性的判断依据是系统的能控性矩 阵,如果该矩阵满秩,则系统能控。
能观测性的定义
能观测性是指对于一个线性系统,如果存在一个观测器,能够通过系统的输出测量并估计出系统的所有状态,则称该系统为 能观测的。
传递函数判据
对于线性时不变系统,如果传递 函数的零点和极点个数满足一定 条件,则系统能观测;否则系统 不能观测。
03
能控性和能观测性的应用
在控制系统设计中的应用
系统性能分析
通过分析系统的能控性和能观测性,可以评估系统的稳定 性和动态性能,从而优化系统设计。
控制器设计
在控制器设计中,需要考虑系统的能控性和能观测性,以 确保控制器能够有效地控制系统的状态并观测系统的状态。
初始状态和目标状态
系统初始和目标状态的定义,以及它们对最优控 制策略的影响。
最优控制问题的求解方法
动态规划
将最优控制问题分解为一系列子问题, 通过求解子问题的最优解逐步逼近原问
题的最优解。
极大值原理
通过求解极值条件来找到最优控制输 入,适用于具有特定性能指标的最优
控制问题。
线性二次调节器
通过最小化状态和控制输入的二次范 数来求解最优控制问题,适用于线性 二次最优控制问题。
现代控制理论-4-线性系统 的能控性和能观测性-第7讲
目录
• 线性系统的能控性和能观测性的 定义
• 能控性和能观测性的判定方法 • 能控性和能观测性的应用 • 线性系统的状态反馈和状态观测
器设计
目录
• 线性系统的最优控制问题 • 现代控制理论的发展趋势和前沿

线性系统的能控性和能观性

线性系统的能控性和能观性

3.约当规范型矩阵
若A是约当阵,且B阵中与每个约当块最后一行相对应 的行的元素不全为零,则系统可控。反之为零一行所 对应的状态不可控。
例.判断能控性
• 4 1. x 0
0 5
x1 x2
12u
7 0 0 2

2. x
0
5
0
x
0
0 0 3 7
1 1 0 4 2
3.

x
0
e3t
0
te3t
e3t
t
x(t) e At x(0) e A(t )Bu( )d
0
x1(t)
x2
(t
)
e3t
0
te3t e3t
x1(0)
x2
(0)
t 0
e 3(t
0
)
(t
)e3(t e3(t )
)
10u(
)d
t
x1(t) e3t x1(0) te3t x2 (0) (t )e3(t )u( )d
0
t
x2 (t) e3t x2 (0) e3(t )u( )d
0
t
y(t) x1(t) e3t x1(0) te3t x2 (0) (t )e3(t )u( )d
可见:1.两个状态变量中均有输入的作用,可0 控
2.输出中有两个状态变量的出现,输出可以反映初始状态,可测
例.如图所示,1、2表示蓄水池,u1、u2表示输入流量,R1、 R2液阻,H1、H2液面高度A1、A2截面积,问 (1)仅用一个调节阀,应放在何处? (2)仅用一个液位计,应放在何处?
Z (S ) U (S )
S
2.5 1
S2
1 1.5S

[理学]专业研_线性系统第四章

[理学]专业研_线性系统第四章

1 2 1 0 0 1 0 x 0 u x 1 0 3 1

rank (Qc ) 3
系统不能控
4.2 线性定常系统能控性判别
例题 4-2判别系统的可控性
解:
1 2 2 , A2 B 0 AB 0 1 1 0 4 1 0 1 2 2 Qc 0 1 0 1 0 0 0 1 0 4
4.1 能控性和能观性定义
3 线性连续系统能控性定义
(t ) A(t ) x B(t )u x x(t0 ) x0 , x(t f ) x f
定义4.3(系统能控/能达)t0,系统在t0,能控/能达,如果 状态空间中所有非零状态在t0时刻为能控/能达。 定义4.4(系统不完全能控/能达) t0,系统在t0不能控/不 能达 定义4.5 系统一致能控/能达 达。 :任意初始时刻为能控/能
1 x 0
2 (2).x 0 0 0 1 x u 1 2 2 (3).x 0 0
4.2 线性定常系统能控性判别
例题 3-5 判别 系统 的可 控性
1 0 x
0 2 0 0 3
1
sys1与 sys2
具有相同的传递函数。 (1阶,2阶系统)什么 原因造成?
s 2 0 2 G ( s ) 3 0 1 0 s 1 2 s 2 6 3 0 1 s2 s 1
4.1 能控性和能观性定义
R u R y R
当x(0) 0
将x(0) 0
x
R
当u (0) 0 不论x(0)取任何值,y(t) 0
图4.1的电路

根据约当规范形来判别线性系统的能控性和能观测性

根据约当规范形来判别线性系统的能控性和能观测性

用约当规范形判别线性系统的能控性赛耀樟控制科学与工程学院 检测技术与自动化装置 2009010189摘要:60年代初期卡尔曼提出了能控性和能观测性概念。

能控性和能观测性分别是从状态的控制能力和状态的测辨能力两个方面揭示了控制系统的两个基本属性。

现代控制理论的许多基本问题,如最优控制和最优估计,都是以能控性和能观测性为存在条件的。

一 能控性约当规范形判据内容线性定常系统的能控性约当规范形判据 线性定常系统状态方程(1)当矩阵A 的特征值两两互质时.,,,,)3(0,)0(,0常阵为维输入向量为维状态向量为p n n n B A p u n t x x Bu A ⨯⨯≥=+=x x x ()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+==++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⨯⨯⨯⨯i i i i i i i i pi i i i i l p n l n n l l n B B B B J J J J B B B BJ J J A u B A n A B u B ααδδδδδδδλδλδλλλλˆˆˆˆˆˆˆˆˆ:ˆˆˆˆ3,),(,),(),()2(.,2121,21,2121221121 其中导出的约当规范形由时且重重重的特征值为当矩阵不包含元素全为零的行中x x x x二 能控性约当规范形判据推导为使推证过程中的符号不致过于复杂,不失普遍性,不妨取为..,,2,1ˆˆˆ),,2,1(ˆ,)(ˆˆˆˆ11212121,证略均为行线性无关对阵的最后一行所组成的矩由而l i ri b b b kB r r r rik b b b B Ji ri ri i ik i i i i ik ikp r ik i i i r r i i ik ikik =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==+++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⨯⨯ααδλλλα对s可以证出约当规范性判据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档