2热传导方程地初值问题

合集下载

二维热传导方程求解

二维热传导方程求解

二维热传导方程求解二维热传导方程是描述平面内物体温度分布随时间变化的数学模型,被广泛应用于工业制造、城市规划和环境模拟等领域。

本文将介绍二维热传导方程的求解方法及其应用。

一、二维热传导方程的基本形式二维热传导方程可以写成以下形式:∂u/∂t = α(∂^2u/∂x^2+∂^2u/∂y^2)其中,u表示温度分布,t表示时间,x和y分别表示平面内的水平和竖直坐标,α为热传导系数。

二、二维热传导方程的求解方法为了求解二维热传导方程,需要确定初始条件和边界条件。

初始条件指在t=0时刻温度分布的初始状态,边界条件指平面内边界的温度(或热流)分布。

常见的求解方法有有限差分法、有限元法和边界元法等。

这里以有限差分法为例。

有限差分法是将待解区域划分成一个个小网格,用数值方法近似代替微分方程,然后逐步迭代求解。

假设在(x_i,y_j,t_n)处的温度为u_(i,j,n),则可以用以下式子近似代替热传导方程:u_(i,j,n+1) = u_(i,j,n) + αΔt/Δx^2(u_(i+1,j,n)+u_(i-1,j,n)-2u_(i,j,n))+ αΔt/Δy^2(u_(i,j+1,n)+u_(i,j-1,n)-2u_(i,j,n))其中,Δt为时间步长,Δx和Δy为空间步长。

通过迭代计算,即可得到平面内任意位置随时间的温度变化规律。

三、应用实例二维热传导方程的应用范围非常广泛。

在工业制造中,可以用来分析材料的热处理过程,优化生产工艺;在城市规划中,可以用来预测城市内部的热岛效应,为城市绿化提供科学依据;在环境模拟中,可以用来模拟地下水温度变化、河流水温变化等。

例如,在炼钢过程中,需要控制钢材的温度分布,以保证钢材的物理性能。

通过建立二维热传导方程模型,可以计算出钢材表面的温度分布,进而调整生产参数,达到最佳的钢材质量。

在城市规划中,针对不同的城市形态和环境条件,可以建立相应的二维热传导方程模型,预测城市内不同区域的温度分布情况,并提出合理建议。

热传导方程的初值问题

热传导方程的初值问题

§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。

将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。

定义 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞--有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ公式称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m Λ则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f mΛ则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeA A f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g xy i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义 设),(),,,()(21nn R L x x x f x f ∈=Λ那么积分())(ˆ)(21λπλf dx e x f nRx i n=⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式.定理(反演公式)若)()()(1nn R L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=nRx i nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换.定理表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论: 8. 若),()()()(2211n n x f x f x f x f Λ=其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= () 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i i eAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()在方程()两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dt u d 其中 ⎰+∞∞--=dx et x u t uxi λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=t t a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=tt a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ ()由(),21422AAx e Aeiλ-∧-=取t a A 241=则ta x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a ee t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]t a e t x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 ()同理我们有()()g f t g f ef t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21()于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=x ux u at u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,202x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a t u ),()0,(0,),,(222ϕ的解。

热传导热传导方程的推导与应用

热传导热传导方程的推导与应用

热传导热传导方程的推导与应用导语:热传导是物质内部由高温传递到低温的过程,其过程可通过热传导方程进行描述。

本文将对热传导方程的推导进行详细介绍,并探讨其在实际应用中的一些例子。

一、热传导方程的基本原理:热传导方程描述了热量在各种物质中的传导现象。

其基本原理是热量会沿着温度梯度从高温区域传递到低温区域,传递速度与温度变化率成正比。

二、热传导方程的推导:在推导热传导方程之前,需要明确一些基本概念,如热传导系数、热导率等。

假设我们有一个具有一维温度分布的物体,可以将其分割成无数个微小元素。

每个微小元素的长度为Δx,其温度为T,热传导系数为λ。

根据热传导定律,热流密度(单位面积内传导热量)与温度梯度成正比。

即,q = -λ * ∂T/∂x其中,q表示单位面积内的热流密度,负号表示热量从高温区域流向低温区域。

对上式进行微分得到:∂q/∂x = -λ * (∂²T/∂x²)根据物质的热容定律,热量的变化率与物质的热容、密度及温度变化率相关。

由此可得到:∂q/∂t = ρ * c * (∂T/∂t)将前两个方程相等并结合热容定律的方程,得到一维情况下的热传导方程:∂T/∂t = α * (∂²T/∂x²)其中,α = λ / (ρ * c)为热扩散系数。

三、热传导方程的应用:热传导方程在热学领域有着广泛的应用,下面将就几个常见的应用例子进行讨论。

1. 材料传热性能分析:热传导方程可以用于分析材料的传热性能。

通过测量材料表面的温度变化以及对应的时间,可以利用热传导方程推导出材料的热扩散系数,从而评估材料的传热性能。

2. 热传导问题的数值模拟:通过对热传导方程进行数值求解,可以模拟各种复杂的热传导问题。

例如,在工程中可以通过数值模拟分析建筑物、电子元器件等的热传导特性,以便提高其热管理性能。

3. 热传导传感器的设计与制造:热传导方程可以用于热传导传感器的设计与制造。

通过在传感器中设置温度传感器和热源,利用热传导方程计算传感器的响应特性,可以实现对温度变化的精确监测与测量。

热传导方程初边值问题

热传导方程初边值问题

热传导方程初边值问题介绍热传导方程是描述物体内部温度分布随时间变化的一类偏微分方程。

在实际生活和工程中,了解和解决热传导问题对于保护环境和优化工艺非常重要。

本文将详细介绍热传导方程的初边值问题及其解决方法。

初边值问题的定义初边值问题是指在给定一定空间区域和时间区域内,求解偏微分方程在这些区域内满足一定初值和边界条件的解。

对于热传导方程,我们通常关注的是物体内部的温度分布随时间的变化,因此需要给出初始时刻物体内各点的温度,并指定物体表面与周围介质之间的热量交换方式。

热传导方程热传导方程描述了物体内部温度分布随时间变化的规律,其一维形式为:∂u ∂t =α∂2u∂x2其中,u(x,t)代表了某一点(x,t)处的温度,α代表热扩散系数,t代表时间,x代表空间位置。

初边值条件为了求解热传导方程的初边值问题,我们需要给出一些初始条件和边界条件。

常见的初边值条件包括: - 初始条件:u(x,0)=f(x),给出初始时刻物体内各点的温度分布,f(x)代表初始时刻的温度函数。

- 边界条件:u(a,t)=g(t)和u(b,t)=ℎ(t),指定物体表面与周围介质之间的热量交换方式,a和b分别为空间区域的起始和结束位置,g(t)和ℎ(t)为边界处的温度函数。

初边值条件的选择对于求解问题的精确性和适用范围具有重要影响。

解法针对热传导方程的初边值问题,我们可以通过数值方法或解析方法来求解。

下面介绍两种常见的解法。

球坐标系下的分离变量法对于某些具有球对称性的问题,可以采用球坐标系下的分离变量法来求解。

通过假设解具有分离变量形式u(r,θ,ϕ,t)=R(r)Θ(θ)Φ(ϕ)T(t),将热传导方程分解成径向、角度和时间三个单变量函数的形式,然后带入原方程得到各个变量的微分方程。

最后通过求解单变量微分方程和利用边界条件,确定解的具体形式。

差分方法差分方法是一种常用的数值方法,通过将连续的空间和时间区域离散化,将热传导方程转化为有限差分方程组,并通过迭代求解来逼近真实的解。

求解偏微分方程的几种特殊方法

求解偏微分方程的几种特殊方法

求解偏微分方程的几种特殊方法程哲 PB06001070(中国科学技术大学数学系, 合肥, 230026)摘要:经过一个学期偏微分方程课程的学习,我们掌握了几种求解初等拟(半)线性方程,特别是三种典型方程的方法,如特征曲线法、反射法、降维法、分离变量法、特征函数展开法、求解非齐次方程的Duhamel 原理等。

此外,我们通过学习还掌握了求解波动方程的D'Alembert 公式,求解高维波动方程的Kirchhoff 公式和Poisson 公式,求解位势方程的Green 公式等等。

这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的。

本文还将总结作者了解的几种求解偏微分方程的特殊方法,它们是:级数法,Laplace 变换法,Fourier 变换法。

关键词:偏微分方程 级数法Laplace 变换 Fourier 变换1. 级数法求解偏微分方程1.1 波动方程Cauchy 问题的级数解法1.1.1 问题引入我们以三维波动方程的初值问题(P)为例:2()0,(1)()(,,,0)(,,),(,,,0)(,,)tt xx yy zz t u a u u u P u x y z x y z u x y z x y z ⎧−++=⎪⎨=Φ=Ψ⎪⎩ 由叠加原理易知问题(P)可分解为两个问题的叠加:2()0,()(,,,0)0,(,,,0)(,,)tt xx yy zz t u a u u u I u x y z u x y z x y z ⎧−++=⎪⎨==Ψ⎪⎩ 2()0,()(,,,0)(,,),(,,,0)0tt xx yy zz t u a u u u II u x y z x y z u x y z ⎧−++=⎪⎨=Φ=⎪⎩首先,受一维波动方程的D'Alembert 公式启发,我们可以假设问题()I 有如下形式的解:221(,,,)(,,)(2)4at w x y z t t dS a t ξηζπ=⋅Ψ∑∫∫其中球面22222:()()()atx y z a t ξηξ−+−+−=∑。

热传导方程初值问题解的性质的证明

热传导方程初值问题解的性质的证明
第 29 卷 第 11 期 2011 年 11 月
文章编号:1004-3918(2011)11-1261-06
河南科学 HENAN SCIENCE
Vol.29 No.11 Nov. 2011
热传导方程初值问题解的性质的证明
邢家省 1, 张军民 2
(1. 北京航空航天大学 数学与系统科学学院,数学、信息与行为教育部重点实验室,北京 100191; 2. 河南省工业情报标准信息中心,郑州 450011)
d ξ=
1
-∞
姨π
乙+∞ (f x+2a姨 t
y,t)e-y2dy,
-∞
有 坠w 坠t
,坠2w 坠x2
在(-∞,+∞)×[0,T]×[0,T]上连续 .
定理 8 设(f x,t)∈C2,(0(-∞,+∞)×[0,T]),且满足条件(13),
乙t
u(x,t)= w(x,t-t;t)dt, 0
(13) (14)
其中常数 a>0,则有 lim u(x,t)=φ(x0);进一步若假设函数 (f x,t),φ(x)关于 x 都是解析的,则 u(x,t)可以写 x→x0 t→0+

Σ Σ 乙 u(x,t)= ∞ (a2t)n φ(2n)(x)+ ∞ t[a(2 t-t)]n f(x 2n)(x,t)dt,
n=0 n!
3 非齐次热传导方程初值问题的形式解是古典解的一些充分条件
对非齐次热传导方程初值问题

∞∞ut
-a2uxx
=
(f x,t)
(-∞<x<+∞,0<t≤T),

∞∞∞u(x,0)=φ(x) (-∞<x<+∞),

热传导方程初值问题的解在概率统计中的应用

热传导方程初值问题的解在概率统计中的应用

( 2a 槡πt )
1
n
e-
| x - ξ| 2 4 a2 t
其实可看作 n

+∞
-∞
φ( x ) e

( x -a) 2 b2
dx,

0
φ( x ) e

( x -a) 2 b2
X2 , …, X n ) 的联合密度函数, 维随机变量 ( X1 , 所以 结合定理 2 有以下命题: 命题 2
2 …, n ) 相互独 若 Xi ~ N( μi , σ ) ( i = 1,
imX
4
=e-
cosmμ + ie -
sinmμ;
2
另一方面由期望的线性性有: ) = E ( cosmX ) + iE ( sinmX ) 。 1 2πσ 槡
+∞
( x - μ) 2 2σ2 σ2m2 2
3 σ4 4 - 3 = 0。 σ 利用常规的分部积分法积分前要进行变量代 换, 而 且 还 要 用 到 重 要 的 尤 拉普阿桑积分

+∞
-∞
e
-x2
dx t = 槡 2x
1 2槡 2

+∞
-∞
e
-2
t2
( sinnX cosmX ) 等 的 积 分。 这 些 无 非 就 是 形 如 dt = =
1 π 槡 · 2 2π 槡 π 槡 。 2

+∞
-∞
t2 π e - 2 dt = 槡 E( 1 ) 2
∫ ∫
+∞
-∞ +∞
e nx sinmxe -
- φ( x ) e
( x - μ) 2 2 σ2

2热传导方程的初值问题

2热传导方程的初值问题

§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具.可积函数,设)(x f f =是定义在),(+∞-∞上的函数,且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。

将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。

定义 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞--有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ公式称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具.3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m 则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f m则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质 3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeAA f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g x y i iyx⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21)()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义 设),(),,,()(21nn R L x x x f x f ∈= 那么积分())(ˆ)(21λπλf dx e x f nRx i n =⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式. 定理(反演公式)若)()()(1nnR L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=nRxi nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换. 定理表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier 变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论:8. 若),()()()(2211n n x f x f x f x f =其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= () 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i ieAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ ()在方程()两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dtu d 其中 ⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=tt a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=t t a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ () 由(),21422AAx e Aeiλ-∧-=取t a A 241=则t a x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a e e t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]ta et x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 ()同理我们有()()g f t gf e f t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21()于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=xuxu a t u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,22x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u atu ),()0,(0,),,(222ϕ的解。

热传导方程的解析解及应用

热传导方程的解析解及应用

热传导方程的解析解及应用热传导方程是描述物体内部热量传递的一种数学模型。

它在工程、物理学和数学等领域中有着广泛的应用。

本文将介绍热传导方程的解析解以及其在实际问题中的应用。

首先,我们来看一下热传导方程的基本形式。

热传导方程可以用偏微分方程的形式表示:∂u/∂t = α∇²u其中,u是温度的分布函数,t是时间,α是热扩散系数,∇²是拉普拉斯算子。

这个方程描述了温度随时间和空间的变化规律。

要解决这个方程,我们需要找到u 关于t和空间坐标的解析解。

解析解是指能够用已知的数学函数表达出来的解。

对于热传导方程,有一些特殊的边界条件和初始条件,可以得到一些已知的解析解。

例如,对于一个无限长的棒状物体,两端保持恒定的温度,我们可以得到如下的解析解:u(x, t) = T1 + (T2 - T1)erf(x/2√(αt))其中,x是空间坐标,T1和T2分别是两端的温度,erf是误差函数。

这个解析解表达了棒状物体内部温度随时间和空间的变化规律。

除了解析解,我们还可以使用数值方法来求解热传导方程。

数值方法通过将空间和时间离散化,将偏微分方程转化为代数方程组的形式,然后利用计算机进行求解。

数值方法的优势在于可以处理较为复杂的边界条件和几何形状。

然而,数值方法的精度和计算效率通常不如解析解。

热传导方程的解析解在实际问题中有着广泛的应用。

例如,在工程中,我们可以利用解析解来分析材料的热传导性能。

通过解析解,我们可以计算出材料内部温度的分布,进而评估材料的热稳定性和热传导性能。

这对于设计高效的散热系统和防止热损伤非常重要。

此外,热传导方程的解析解还可以应用于热传感器的设计和优化。

热传感器是一种用于测量温度变化的装置,常见的应用包括温度计和红外线热像仪。

通过解析解,我们可以计算出热传感器的响应时间、灵敏度和测量精度,从而指导热传感器的设计和制造。

总之,热传导方程的解析解及其应用是一个重要的研究领域。

解析解可以提供物理过程的详细信息,对于理解和优化热传导问题具有重要意义。

热传导方程的初边值问题

热传导方程的初边值问题

热传导方程的初边值问题热传导方程是研究物体在热传导过程中温度随时间和空间的变化规律的数学模型。

初边值问题是给定某个初始条件和边界条件,求解热传导方程的问题。

本文将讨论热传导方程的初边值问题,并介绍一些求解方法。

1. 热传导方程的基本概念热传导方程描述了物体内部的温度随时间和空间的变化规律。

它的数学表达式为:$$\frac{\partial u}{\partial t} - a^2\nabla^2u=0$$其中,$u$表示物体内每个点的温度,$a$代表物体的热传导系数,$\nabla^2u$表示温度的梯度。

这个方程可以描述一维、二维和三维的情况。

2. 初边值问题的基本概念在研究热传导方程时,通常需要解决初边值问题。

这个问题是在一定的时间范围内,在某些区域内确定某些温度和温度梯度的初始值和边界条件,然后根据热传导方程求解温度随时间和空间的变化规律。

初边值问题的形式可以表示为:$$\left \{\begin{aligned}&\frac{\partial u}{\partial t} - a^2\nabla^2u=0&\quad\Omega\times(0,T)\\&u(x,t)=u^0(x,t)&\quad\text{on }\ \partial\Omega\times(0,T)\\&u(x,0)=u_0(x)&\quad \text{in }\ \Omega\end {aligned}\right .$$其中,$\Omega$表示问题所在的区域,$T$表示时间范围,$u^0(x,t)$表示边界条件,$u_0(x)$表示初始条件。

3. 求解初边值问题的方法对于初边值问题,常见的求解方法有以下几种:(1)分离变量法分离变量法是一种常用的求解偏微分方程的方法。

可以根据问题的对称性,将其解分解成一个时间函数和一个空间函数的乘积。

通过对每一部分采用不同的数学处理方法,最终得到问题的解。

热传导方程

热传导方程

3这时可记2λμ=,此时关于X 的方程的解为:cos sin .X A x B x μμμμμ=+从而我们得到满足泛定方程的一系列解:()22cos sin .a tu T X A x B x eμμμμμμμμ−==+为了得到满足初始条件的解,需要把这一系列解叠加起来;由于此时μ的取值没有限制,可以取所有实数值从而需要求积分:()22cos sin a tu u d A x B x ed μμμμμμμμ∞∞−−∞−∞==+∫∫10例8.1 一个具有常初温0u 的细杆,已知它的一端保持温度为零,求杆上以后的温度分布。

解:该问题可以归结为求解如下定解问题:()()()()()200,0,0,0 0,,0 0.t xx u a u x t u t t u x u x =<<∞>=≥=<<∞12二维和三维情形传导和扩散通常是在三维情况中进行的,这时泛定方程应该包含三个空间变量:()223.t xx yy zz u a u u u a u =++=Δ 就像在特殊情况下可以得到一维传导和扩散问题一样,在某些情况下,我们也可以得到二维问题:()222.t xx yy u a u u a u =+=Δ 类似地,三维无界介质中的热传导问题可以归结为如下定解问题(Cauchy 问题):()()23,,,,0,,t u a u u x y z x y z ϕ⎧=Δ⎪⎨=⎪⎩第九章Lapalce方程的Fourier 解1316讨论可知,该本征值问题在2,0,1,2,n n λ=="时有非平凡解:()cos sin n n n a n b n θθθΘ=+。

同时关于r 的方程变为:22'''-0r R rR n R +=。

该方程的通解为:-000ln ,.n nn n n R c d r R c r d r =+=+为得到满足边界条件的解,叠加这些特解得到:()()()0,,n n u l u l f θθθ∞===∑。

数理方程第三章热传导方程

数理方程第三章热传导方程

关于一维Fourier变换的性质(1)-(7)对于多 维Fourier变换也成立。此外还有 性质8.若
f ( x ) f1 ( x1 ) f 2 ( x2 ) f n ( xn ), 其中 f i ( xi ) L( , ), 则有
F ( f ) F ( f i ) i

(1i ) x
Hale Waihona Puke 0例2:设 f ( x ) e
Ax 2
( A 0),
求F ( f )( )
2 1 Ax i x 解: F f e e dx 2 1 i Ax2 i x Ax 2 i x {e e 2 A xe e dx} 2 2 Ai Ax 2 F ( xe ) 2 A dF ( f ) d
为此在u(x,t)的积分表达式中做变量替换 ( x) ( 2a t ), 则 1 2 u x, t e x 2a t d
x x0 , t 0


由的有界性,当x (-, ),t>0时,积分关于x,t是 一致收敛的,当x x0 , t 0 时可在积分号下取极限,

t
K ( x , t ) d

d K ( x , t ) f , d
0
()
u x , t K ( x , t ) d
t

d K ( x , t ) f , d
2) 微分性质 设 f ,
3)乘多项式 设
f , xf , x m f绝对可积,则 (m 1)
d F xf i F f d m d F xm f i m F f m d

热传导方程的推导与求解

热传导方程的推导与求解

热传导方程的推导与求解热传导方程是描述物体内部温度分布随时间变化的方程,常用于研究热传导过程和热能传递的问题。

在物理学和工程学中,热传导是一种重要的热传递方式,热传导方程的推导与求解对于理解热传导现象和解决实际问题具有重要意义。

热传导方程基于热传导定律,即热量在热传导过程中沿温度梯度方向从高温区传向低温区。

假设我们考虑一个一维热传导问题,研究物体中某一点的温度随时间的变化。

我们使用x轴表示物体的空间坐标,t表示时间。

首先,我们需要建立热传导方程的基本框架。

根据热传导定律,我们可以得到热传导方程的一般形式:∂T/∂t = α ∂²T/∂x²其中,T表示温度,t表示时间,α表示热扩散系数。

该方程说明了温度随时间和空间的变化率与热扩散系数α和温度梯度的平方成正比。

热扩散系数α反映了物体对热传导的难易程度,是与物体材料性质相关的参数。

根据热传导方程的一般形式,我们可以继续推导具体问题的热传导方程。

以一根长为L的均匀杆以及杆的初始温度分布T(x,0)为例,我们可以推导出热传导方程的初始和边界条件。

首先,我们考虑初始条件,即t=0时刻的温度分布。

假设杆的初始温度分布为T(x,0) = f(x),其中f(x)是一个已知函数。

那么在t=0时刻,温度分布满足T(x,0) = f(x)。

其次,我们需要确定边界条件。

根据实际问题的不同特点,边界条件可以是温度的固定值或者温度梯度的固定值。

以杆的两端温度固定为T(0,t) = T0和T(L,t) = TL为例,我们可以得到边界条件。

有了初始条件和边界条件,我们可以开始求解热传导方程。

一种常用的方法是使用分离变量法。

假设温度分布可以表示为T(x,t) = X(x)T(t),其中X(x)是与x有关的函数,T(t)是与t有关的函数。

将该形式的温度分布代入热传导方程,我们可以得到两个方程:X(x)T'(t) = αX''(x)T(t)将这两个方程变量分离,并将常数项记为-k²,我们可以得到两个独立的常微分方程:T'(t)/T(t) = αk²,X''(x)/X(x) = -k²分别求解这两个常微分方程,我们可以得到X(x)和T(t)的解。

热传导动方程

热传导动方程

数学物理方程
第二章 热传导方程
分析:(两个物理定律) 1、热量守恒定律: 温度变 化吸收 的热量

通过边 界流入 的热量

热源放 出的热 量
2、傅里叶(Fourier)热传导定律:
u dQ k ( x , y , z ) dS dt , n k ( x , y, z ) 为热传导系数。

[ F ( x , y, z , t )dV ]dt
t1
t2
由 及 t1 , t 2 的任意性知 u u u u c (k ) (k ) (k ) F ( x, y, z, t ).(1.4) t x x y y z z

数学物理方程
数学物理方程
上述定解问题可分解为下面两个混合问题:
第二章 热传导方程
(I )
ut a 2 uxx 0, 0 x l , t 0, 0 x l, t 0 : u ( x ), x 0 : u 0, x l : u hu 0, t 0; x
第二章 热传导方程
三维有热源的热传导方程: (均匀且各向同性物 体,即 c , , k 都为常数的物体)
2 2 2 u u u u 2 a 2 2 2 f ( x , y , z , t ), t y z x
(1.5)
k , 其中 a c

( II ) ut a 2 uxx f ( x , t ), 0 x l , t 0, t 0 : u 0, 0 x l , x 0 : u 0, x l : u hu 0, t 0. x
t
则(II)的解为: u( x , t ) 0 w ( x , t ; )d ,

热传导方程初边值问题

热传导方程初边值问题

热传导方程初边值问题热传导方程初边值问题引言•热传导方程是描述物质内部温度分布随时间变化的重要方程之一。

•初边值问题是研究热传导方程在给定初始条件和边界条件下的解的问题。

•本文将介绍热传导方程的基本概念以及求解初边值问题的方法。

热传导方程的基本概念•热传导方程描述了物质内部温度分布随时间变化的规律。

•方程的形式为:∂u∂t =k⋅∂2u∂x2,其中u是温度分布函数,t是时间变量,x是空间变量,k是热传导系数。

•热传导方程的解依赖于初始条件和边界条件。

初边值问题的定义•初边值问题是指在给定初始条件和边界条件下求解热传导方程的解的问题。

•初始条件是指在t=0时刻的温度分布情况。

•边界条件是指在空间边界上温度的分布情况。

求解初边值问题的方法•求解初边值问题的方法多种多样,下面介绍两种常用的方法。

分离变量法•分离变量法是一种常用的求解热传导方程初边值问题的方法。

•首先将温度分布函数u(x,t)表示为两个变量x和t的乘积:u(x,t)=X(x)T(t)。

•然后将乘积形式的温度方程带入原方程,得到两个单独的方程:1 kX ∂2X∂x2=1T∂T∂t=−λ2。

•分别解这两个方程,得到X(x)和T(t)的表达式。

•最后将X(x)和T(t)相乘,即可得到最终的温度分布函数u(x,t)。

使用数值方法•当无法使用分离变量法求解热传导方程初边值问题时,可以使用数值方法进行求解。

•常见的数值方法包括有限差分法、有限元法等。

•有限差分法将连续的空间和时间离散化为网格点,通过近似求解差分方程得到温度分布。

•有限元法将连续的空间离散化为有限个单元,建立代表温度分布的函数空间,通过求解变分问题得到温度分布。

结论•热传导方程初边值问题在工程和科学研究中具有重要的应用价值。

•本文介绍了热传导方程的基本概念和求解初边值问题的方法。

•分离变量法和数值方法是常用的求解初边值问题的方法。

•进一步深入研究和应用这些方法,可以帮助我们更好地理解和解决热传导问题。

热传导方程的初边值问题的差分解法

热传导方程的初边值问题的差分解法

热传导方程的初边值问题的差分解法毕业论文设计题目: 热传导方程初边值问题的差分解法院系: 数学与计算机科学学院 _专业年级: 2008级数学与应用数学系姓名: XXX__ _ 学号: 200808101134 __ _指导教师: XXX______ _2012年5月摘要文章目的是为了探讨热传导方程初边值问题的差分解法。

本文包括以下两部分主要内容:第一部分即是对比传统热传导方程初边值问题的变量分离法的差分解法;第二部分即是热传导方程初边值问题差分解法的具体例子。

其中主要涉及到的方法有热传导方程初边值问题的分离变量法和有限差分法。

那么先具体介绍有限差分法。

基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。

有限差分法求解偏微分方程的步骤如下: 1.区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;2.近似替代,即采用有限差分公式替代每一个格点的导数;3.逼近求解。

换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。

对比与分离变量法,有限差分法有着其特性,方便且更精确的特性。

经过下面的一番比较,我们有理由相信有限差分法是大有用途的。

关键词: 差分格式步长网络节点截断误差 AbstractThe article aims to explore the heat conduction equation initial boundary value problem of the finite difference method This paper includes the following two parts of the main content:The first part is compared with the traditional heat conduction equation initial boundary value problem of the separation of variables method finite difference method;The second part is the heat conduction equation initial boundary value problem of difference methods for specific examples Which mainly relates to a method for heat conduction equation initial boundary value problem of the separation of variables method and finite difference method. It first introduces the finite difference method. The basic idea is to use a continuous solution region using finite discrete points constitute a grid to replace, the discrete points are called grid node; the continuous solution of continuous variable function is used in the grid defined on a discrete variables function to approximate; the original equations and boundary conditions of the difference quotient to micro commercial approximation, integralintegral and to approximate, and the differential equations and boundary conditions is approximately replaced by algebraic equations, finite difference equation, the solution to this equation can get the original problem in the discrete points on the approximate solution. And then using interpolation methods can be determined from the discrete solution solution of the approximate solution on the entire region. In the use of numerical methods for solving partial differential equations, if every derivative by finite difference approximation formula substitution, the solution of partial differential equations of the problem is transformed into solving algebraic equations, the so-called finite difference method Finite difference method for solving partial differential equations: 1discrete regions, which are for solving partial differential equations by the finite region is subdivided into a lattice grid consisting of;2approximate substitution, i.e. finite difference formula one substitution per lattice points of the derivative;3approximation solution. In other words, this process can be viewed as a polynomial interpolation and its differential instead of partial differential equation solution process.In contrast with the method of separation of variables, the finite difference method has the characteristics of convenient, and more precise characteristics. After following a comparison, we have reason to believethat the finite difference method is of great use Key words: differential format step network node truncation error 目录绪论 (1)1热传导初边值问题分离变量法的介绍21.1热传导初边值问题分离变量法的具体应用32热传导初边值问题有限差分法的介绍52.1 对于显式与隐式有限元的理解.72.1.1 两种算法的比较72.1.1.1 显式算法82.1.1.2 隐式算法8 2.1.2 求解时间..82.1.3 两种方法的应用范围82.1.4 总结.92.2有限差分法求解此热传导方程初边值问题92.3 初边值问题差分法的实例.10致谢 (11)参考文献.12绪论关于有限差分法的目的即是如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。

热传导方程的数值求解

热传导方程的数值求解

热传导方程的数值求解热传导方程是描述热传导现象的一种常见偏微分方程。

它在物理学、工程学以及其他领域中都有广泛的应用。

在本文中,我们将讨论热传导方程的数值求解方法。

通过数值求解,我们可以得到方程的近似解,从而更好地理解和分析热传导过程。

热传导方程的一般形式可以写作:$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$其中,$u$是温度分布随时间和空间变化的函数,$\alpha$是热扩散系数。

上式表示了温度分布随时间变化的速率与温度分布的曲率之间的关系。

要求解这个方程,并得到温度分布随时间变化的近似解,我们可以使用一些常见的数值方法。

其中,有限差分法是最常见的一种方法。

有限差分法是将求解区域离散化,将连续的空间和时间分割成有限的小区域。

通过在这些小区域上近似描述方程,我们可以用差分方程代替原方程,进而得到方程的数值解。

对于热传导方程,我们可以将时间和空间分割成一系列网格点。

在每个网格点上,我们可以用温度的数值逼近代替温度的连续函数值。

这样,我们可以得到在每个时间步长和空间步长上的温度逼近。

通过迭代计算,我们可以得到整个时间和空间范围内的温度近似解。

在具体的计算过程中,我们可以采用显式差分法或隐式差分法。

显式差分法是一种较为简单的方法,它根据当前时间步的温度逼近来计算下一个时间步的温度逼近。

然而,显式差分法需要满足一定的稳定性条件。

在一些情况下,显式差分法可能会导致数值解不稳定和发散。

为了克服这些限制,我们可以使用隐式差分法。

隐式差分法通过在时间步迭代过程中使用未知的时间步温度逼近,可以得到更加稳定的数值解。

然而,隐式差分法的计算复杂度较高,需要求解一个线性方程组。

除了有限差分法之外,还有其他的数值方法可以用于求解热传导方程。

例如,有限元法、辛方法等。

每种方法都有其优缺点和适用范围。

根据具体的问题和计算需求,选择适合的数值方法是至关重要的。

在实际求解过程中,还需要注意数值参数的选择。

1.2热传导方程和定解条件(0)

1.2热传导方程和定解条件(0)

17
而 Q2 可化为 (利用牛顿-莱布尼兹公式)
Q2 c[u(x, y, z,t2 ) u(x, y, z,t1)]dv

c( t2 udt)dv

t1 t
因此由
(t2
t1

c udv)dt,
t

c[u(x, y, z,t2 ) u(x, y, z,t1)]dv
对于弦振动问题而言,有三种基本类型: 1、第一类边界条件(狄利克雷Dirichlet)
弦的一端的运动规律已知, 以 x 0 为例,若以
1(t) 表示其运动规律,则边界条件可以表达为
u |x0 1(t);
非齐次边界 条件
特别的,若 x 0 端被固定,则相应的边界条件为
u |x0 0.
k / c a2, 则得
u t

a
2
(
2u x 2

2u y 2

2u z 2
).
齐次热传导 方程
19
如果所考察的物体内部有热源(例如物体中通有
电流,或有化学反应等情况), 设热源密度(单位时
间内单位体积所产生的热量)为 F(x, y, z,t),
则在时间间隔 (t1,t2 ) 中区域 内所产生的热量为
根据定解条件的不同,定解问题又细分为:
初值问题或柯西(Cauchy)问题; 边值问题 混合问题或初边值问题;
12
1.2 热传导方程与定解条件
热传导现象: 如果空间某物体G内各处的温度 不同,则热量就从温度较高的点处向温度较 低的点流动。
一、下面先从物理G内的热传导问题出发来导出 热传导方程。
为此,我们用函数 u(x, y, z,t) 表示物体G
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2热传导方程的初值问题一维热传导方程的初值问题(或Cauchy 问题)⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ (2.1)偏导数的多种记号xx x t u xuu x u u t u =∂∂=∂∂=∂∂22,,. 问题(2.1)也可记为⎩⎨⎧+∞<<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0,,),(2ϕ.2.1 Fourier 变换我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。

将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L , 即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。

定义2.1 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞-- (2.2)有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理2.1 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ (2.3)公式(2.3)称为反演公式.左端的积分表示取Cauchy 主值.通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此(2.3)亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理2.1的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理2.2 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a .由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i xi ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧. 证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x fx f x f m Λ则 ())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f mΛ则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f 证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dy e y f dt e tg dx e t x f dt e t g dt t g t x f dx e g f yi t i t x i ti xi =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf .解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AAx i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x ,求)(ˆ2λf . ⎰+∞--=221)(ˆdx ee f xi x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121.例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx e ef x i xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e xi x i λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x e x f -=求)(ˆ4λf⎰+∞∞---=dx eef xi x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i ex i x λλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()AeAA f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g x y i iyx⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21)()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.最后我们简单地介绍一些有关多维Fourier 变换的基本知识定义2.2 设),(),,,()(21nn R L x x x f x f ∈=Λ那么积分())(ˆ)(21λπλf dx e x f nRx i n =⎰⋅-,有意义,称为)(x f 的Fourier 变换,)(ˆλf 称为)(x f 的Fourier 变式. 定理2.2(反演公式)若)()()(1nnR L R C x f ⋂∈,则有())()(ˆ21limx f d e fNx i nN =⎰≤⋅∞→λλλλπ. ()⎰⋅∨=n Rxi nd e g x g λλπλ)(21)(称为)(λg 的Fourier 逆变换. 定理 2.2表明()()f f f f =∧∨∨=,ˆ容易证明关于一维Fourier 变换的性质1—7对于多维Fourier 变换依然成立.根据上面Fourier 变换的定义,我们还有下面的结论: 8. 若),()()()(2211n n x f x f x f x f Λ=其中),,()(+∞-∞∈L x f i i 则有)(ˆ)(ˆ1ii ni f f λλ=∏= (2.5) 利用这一性质,我们可求出函数221)(i Ax ni xA e ex f -=-∏==的Fourier 变式.事实上()AAx i ieAe42221λ-∧-=,()()AnAni Ax ni Ax ni eAe Ae ef i ii 4411122222121)(ˆλλλ--=∧-=∧-==∏=∏=⎪⎭⎫ ⎝⎛∏=.2.2 Poisson 公式在这一小节中我们应用Fourier 变换解初值问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u a tu ),()0,(0,),,(222ϕ (2.6)在方程(2.6)两边关于变量x 作Fourier 变换,⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ ,利用性质1和性质2,得到⎪⎩⎪⎨⎧==+=),(ˆˆ),,(ˆˆˆ022λϕλλt u t f ua dtu d 其中 ⎰+∞∞--=dx e t x u t ux i λπλ),(21),(ˆ,⎰+∞∞--=dx e x x i λϕπλϕ)(21)(ˆ[]∧=),(),(ˆt x f t f λ.解之得⎰---+=tt a t a d e f e t u 0)(2222),(ˆˆ),(ˆττλϕλτλλ,现在对上式两边求反演,由反演公式,得()()⎰∨--∨-+=t t a ta d e f e t x u 0)(2222),(ˆˆ),(ττλϕτλλ (2.7) 由(),21422AAx e Aeiλ-∧-=取t a A 241=则t a x t a e ta e 2222241211λ-∧-=⎪⎪⎭⎫ ⎝⎛, 即t a x t a e e t a 22224121λ-∧-=⎪⎪⎭⎫ ⎝⎛, 令224121),(x ta eta t x g -=,[]ta et x g 22),(λ-∧=,从而有()()g g e ta *21ˆˆˆ22ϕπϕϕλ==∨∨- ⎰+∞∞--=ξξξϕπd x g )()(21⎰∞+∞---=ξξϕπξd t ata x 224)()(21 (2.8)同理我们有()()g f t gf e f t a *21),(ˆ),(ˆ),(ˆ)(22πτλτλτλτλ=-=∨∨-- ⎰∞+∞-----=ξτξτπτξd e f t a t a x )(4)(22),()(21(2.9)于是得⎰⎰⎰∞+∞----∞+∞----+=ξτπτξτξξϕπτξξd et a f d d t at x u t a x t ta x )(4)(04)(2222)(21),()(21),(在一定条件下,可以证明上述表达式的函数是方程问题的解. 定理2.3 若),()(+∞-∞∈C x ϕ,且)(x ϕ有界,则⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(在),0(+∞⨯R 上连续,且在),0(+∞⨯R 上具有任意阶的连续偏导数,),(t x u 是问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x xu a t u ),()0,(0,,0222ϕ的解,即),(t x u 满足方程和)(),(lim 00x t x u x x t ϕ=→→+. ⎰∞+∞---=ξξϕπξd et at x u ta x 224)()(21),(⎰+∞∞--+-=ηηϕπξηηd e t a x ta x 2)2(12/)(特别说明:当)(x ϕ连续,)(x ϕ是某些无界函数时,),(t x u 的表达式亦是解()(x ϕ无界时,也可以是解).例1 求解⎪⎩⎪⎨⎧=∂∂=∂∂=xux u at u t sin ,0222解 1、直接观察x e t x u t a sin ),(2-=是解. 2、⎰+∞∞--+=ηηϕπηd e t a x t x u 2)2(1),(⎰+∞∞--+=ηηπηd e t a x 2)2sin(1()⎰+∞∞---+=ηηηπηηd e t a x e t ax 222sin cos 2cos sin 1⎰+∞∞--=ηηπηd et a x 22cos sin 1⎰+∞∞---=ηπηηd e e x t ai 22212sin442212sin t a e x -=442212sin t a e x -=x e t a sin 2-=, ()42221λη-∧-=e e .例2求初值问题⎪⎩⎪⎨⎧=∂∂=∂∂=xuxu a t u t cos ,0222的解x e t x u t a cos ),(2-=.例3求初值问题⎪⎩⎪⎨⎧+===1,22x u u a u t xx t 的解. 解1 直接观察t a x t x u 2221),(++= 2. []⎰+∞∞--++=ηηπηd e t a x t x u 21)2(1),(2[]⎰+∞∞--+++=ηηηπηd e t a t ax x 21441222t a x 2221++=从这几个实例上,更直观明显的证明求解公式的正确,对模型方程的正确性,提供保证.⎪⎩⎪⎨⎧++===1cos ,22x x u u a u t xx t 定理 设)(x ϕ在),(+∞-∞上连续且有界,),(t x f ,(,)x f x t 在],0[),(T ⨯+∞-∞上连续且有界,令 ⎰∞+∞---=ξξϕπξd etat x u ta x 224)()(21),(⎰⎰∞+∞-----+ξττξτπτξd e t f d a t a x t )(4)(0221),(21,其中常数0>a ,则有)(),(lim 00,0x t x u t x x ϕ=+→→;(,)u x t 问题⎪⎩⎪⎨⎧+∞<<∞-=>+∞<<∞-=∂∂-∂∂x x x u t x t x f x u atu ),()0,(0,),,(222ϕ的解。

相关文档
最新文档