最新24.4弧长和扇形面积(1).ppt_图文.ppt
24.4弧长及扇形面积(第1课时)课件
r
例1 如图,圆心角为60°的扇形的半径为10厘 米,求这个扇形的面积和周长.(π≈3.14) 解:因为n=60°,r=10厘米,所以扇形面积为
nr 2 60 3.14 10 2 S ≈52.33(平方厘米); 360 360
扇形的周长为
l nr 60 3.14 10 2r 20 180 180
90 图 23.3.2 360
图 23.3.2
45 360 n 360
图 23.3.2
n r 2 360
图 23.3.2
结论:
如果扇形面积为s,圆心角度数为n,圆半径 是r,那么扇形面积计算公式为
Q l n° r O
扇形面 积S
n 2 s r 360 nr r 1
180
lr 2 2
D
有水部分的面积 = S扇+ S△
A
E
B
0
0.24 0.09 3
C
4、如图所示,分别以n边形的顶点为圆心, 以单位1为半径画圆,则图中阴影部分的面积之 和为 个平方单位.
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
n 1 2 s r 或s lr 360 2
n nr 50 l 2r = 3 cm 360 180
50 答:此圆弧的长度为 cm 3
例2制造弯形管道时,要先按中心线计算“展直长 度”,再下料,试计算图所示管道的展直长度 L(单 位:mm,精确到1mm)
解:由弧长公式,可得弧AB
180
的长
L 100 900 500 1570(mm)
3
2
3
cm
人教版九年级数学上册第24章 圆 弧长和扇形面积
第1课时 弧长和扇形面积
1.通过自主探究得出弧长的计算公式,体验从特殊到一般的学习
方法,发展学生的推理能力.
2.通过小组讨论推导出扇形面积公式,会推导弧长和扇形面积之
间的关系,学会利用类比的思想方法解决问题.
3.通过练习恰当熟练地运用公式计算弧长、扇形的面积,增强学
生的数学运用能力.
3
4.试着总结圆心角为 ᵒ的扇形面积公式.
扇形 =
=
教师讲评
知识点1.弧长(重点)
n°的圆心角所对的弧长为l= .
知识点2.扇形面积(重点)
1.扇形:由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.如
图,黄色部分是一个扇形,记作扇形OAB.
2.扇形面积:
旧知回顾
还记得小学学过的圆的周长和面积公式吗?
(C=πd=2πr,S=πr²)
“欲穷千里目,更上一层楼”是唐朝诗人王之涣在《登鹳雀楼》一诗中的诗句
,那么同学们想过没有,如果真的要看千里之遥,要“站”多高呢?
如图,地球上B、C两点间的距离指的是球面上两点间的距离,也就是什么的
长?(弧BC的长)
假设弧BC的长为500km,如果地球的半径是6400km,你能算出视线AC的
(2)由(1)易得 =
,
=
, ∠
= °.
∴阴影部分的面积=扇形OAB的面积 −△ 的面积
=
×
− × ×
×
= −
.
【课件】24.4弧长和扇形面积
∴AF= AB2+BF2= 22+12= 5.由平行四边形的性质,△FEC≌
△CGF,∴S△FEC=S△CGF,∴S 阴影=S 扇形 BAC+S△ABF+S△FGC-S 扇形 FAG
=90×3π60×22+12×2×1+12×(1+2)×1-90×π
×( 360
5)2=52-π4
16.(2014·昆明)如图,在△ABC 中,∠ABC=90°,D 是边 AC 上的一点,连接 BD,使∠A=2∠1,E 是 BC 上的一点,以 BE 为直径的⊙O 经过点 D.
(1)求证:AC 是⊙O 的切线; (2)若∠A=60°,⊙O 的半径为 2,求阴影部分的面积.(结果
保留根号和π)
解:(1)连接 OD,∵OB=OD,∴∠1=∠BDO,∴∠DOC=2 ∠1=∠A.在 Rt△ABC 中,∠A+∠C=90°,即∠DOC+∠C=90 °,∴∠ODC=90°,即 OD⊥DC,∴AC 为圆 O 的切线
3.已知扇形的圆心角为 45°,弧长等于π2 ,则该扇形的半径是 ___2__.
4.(2014·兰州)如图,在△ABC 中,∠ACB=90°,∠ABC=30
°,AB=2.将△ABC 绕直角顶点 C 逆时针旋转 60°得△A′B′C,则点
B 转过的路径长为(B )
π A. 3
3π B. 3
2π C. 3
∠FAB=90°.∵线段 AF 绕点 F 顺时针旋转 90°得线段 FG,∴∠
AFB+∠CFG=∠AFG=90°,∴∠CFG=∠FAB=∠ECB,∴EC
∥FG.∵AF=EC,AF=FG,∴EC=FG,∴四边形 EFGC 是平行四
边形,∴EF∥CG
(2)∵AB=2,E 是 AB 的中点,∴FB=BE=12AB=12×2=1,
24.4 弧长和扇形面积(第1课时)
24.4 弧长和扇形面积(第1课时)一、学习目标:1. 了解扇形的概念,理解n •°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用。
2. 通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=2180n Rπ和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目。
二、学习重点、难点:1. 重点:n°的圆心角所对的弧长L=180n R π,扇形面积S 扇=2360n R π及其它们的应用。
2. 难点:两个公式的应用。
三、学习过程: (一)温故知新1.圆的周长公式是 。
2.圆的面积公式是 。
3.什么叫弧长? (二)自主学习自学教材P 110----P 111,思考下列内容:1.圆的周长可以看作______度的圆心角所对的弧. 1°的圆心角所对的弧长是_______。
2°的圆心角所对的弧长是_______。
4°的圆心角所对的弧长是_______。
……n°的圆心角所对的弧长是_______。
2.什么叫扇形?3.圆的面积可以看作 度圆心角所对的扇形的面积; 设圆的半径为R ,1°的圆心角所对的扇形面积S 扇形=_______。
设圆的半径为R ,2°的圆心角所对的扇形面积S扇形=_______。
设圆的半径为R ,5°的圆心角所对的扇形面积S 扇形=_______。
……设圆的半径为R ,n°的圆心角所对的扇形面积S 扇形=_______。
4.比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?(三)合作探究例1.如右图,水平放置的圆柱形排水管道的界面半径是0.6m,其中水面高0.3m。
求截面上有水部分的面积(结果保留小数点后两位)例2.如图,已知扇形AOB的半径为10,∠AOB=60°,求AB的长(•结果精确到0.1)和扇形AOB的面积结果精确到0.1)(四)巩固练习1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81度,求这段圆弧的半径R(精确到0.1m)2.如图,正三角形ABC的边长为a,分别以A、B、C为圆心,以a/2为半径的圆相切于点D、E、F,求图中阴影部分的面积。
人教版九年级数学上册《弧长和扇形面积》圆PPT课件(第1课时)
创设情境
探究新知
应用新知
巩固新知
做一做
弧长公式
:
l=
π
180
1.在半径为24 cm的圆中,30°的圆心角所对的弧长为 4π cm,
60°的圆心角所对的弧长为 8π cm,120°的圆心角所对的弧
长为
16π cm.
2.半径为6 cm的圆中,75°的圆心角所对的弧长是 2.5π cm;
D.80°
,扇形OAB的面积为15π,则
(
巩固新知
π,半径是6,那么此扇形的
AB 所对的圆心角是( B )
课堂小结
布置作业
A.120°
B.72°
C.36°
D.60°
创设情境
随堂练习
3.如图,水平放置的圆柱形排水管道的截面半径是0.6 m,其中水
探究新知
面高0.9 m,求截面上有水部分的面积(结果保留小数点后两位).
线,垂足为D,交
于点C,连接
O●
巩固新知
课堂小结
布置作业
AC.
∵OC=0.6 m,DC=0.3 m,
∴OD=OC-DC=0.3(m).
∴OD=DC.
又AD⊥DC,
∴AD是线段OC的垂直平分线.
∴AC=AO=OC.
A
D
C
B
创设情境
典型例题
【例2】如图,水平放置的圆柱形排水管道的截面半径是0.6m,
探究新知
圆心角
有关,
创设情境
典型例题
【例1】制造弯形管道时,要先按中心线计算“展直长度”,
探究新知
再下料,试计算图所示管道的展直长度L (结果取整数) .
A
第二十四章圆 24.4 第1课时
课前预习
1. 圆心角为60°,半径为2 cm的扇形的弧长是 __________cm. 2. 已知扇形的半径为3 cm,面积为6π cm2,则该扇形 的弧长等于___4_π___c_m__ .
3
课堂讲练
典型例题
知识点1:弧长的计算 【例1】 在半径为6 cm的圆中,求120°的圆心角所对 的弧长.
解:(1)∵弧长l=
=20ቤተ መጻሕፍቲ ባይዱ,
∴r=
=24(cm).
(2)扇形面积= lr= ×20π×24=240π(cm2).
10
课堂讲练
3. 如图24-4-3,半圆O的直径AB=2,弦CD∥AB, ∠CAD=30°,求阴影部分的面积. (结果保留π) 解:如答图24-4-2所示,连接OC,OD. ∵∠CAD=30°,∴∠COD=60°. ∵AB∥CD,∴S△ACD=S△COD ∴阴影部分的面积=S弓形CD+S△ACD=扇形OCD的面积=
第二十四章 圆
24.4 弧长和扇形面积
第1课时 弧长和扇形面积(一)
1
课前预习
A. 弧长及扇形面积公式: (1)弧长公式:__________(其中n为弧所对的圆心角 的度数); (2)扇形面积公式:______________或_____=____l_R__ (其中n为弧长所对的圆心角的度数,l为扇形的弧长, R为半径).
A. 175π cm2
C.
cm2
B. 350π cm2 D. 150π cm2
13
分层训练
3. 如图24-4-6,已知扇形AOB的半径为2,圆心角为 90°,连接AB,则图中阴影部分的面积是( A ) A. π-2 B. π-4 C. 4π-2 D. 4π-4 4. (2017菏泽)一个扇形的圆心角为100°,面积为 15πcm2,则此扇形的半径长为__________.
弧长和扇形面积公式课件
06
习题与答案
习题部分
总结词
弧长和扇形面积公式的基本概念 与计算方法
详细描述
本节旨在帮助学员了解弧长和扇形 面积的概念及计算方法。通过典型 例题的解析,让学员掌握弧长和扇 形面积公式的应用。
题目1
求半径为5的圆中,1/4圆的弧长。
习题部分
分析
本题考察弧长公式的应用, 需注意1/4圆的弧长是圆周 长的一部分。
解答
根据弧长公式,弧长=圆 周长×(弧所对圆心角 /360°),1/4圆的弧长为 5π×(1/4/360°)。
题目2
求半径为4的圆中,1/6圆 的扇形面积。
习题部分
分析
本题考察扇形面积公式的应用,需注意1/6 圆的扇形是圆面积的一部分。
解答
根据扇形面积公式,面积=(圆半径^2)×(弧 所对圆心角/360°),1/6圆的扇形面积为 4^2×(1/6/360°)。
常运转。
物理学
在物理学中,弧长和扇形面积被 用来描述和计算各种圆形物体或 粒子的运动轨迹和能量分布等。
04
弧长和扇形面积公式的实践应用
在数学中的运用
弧长公式
弧长公式常用于解决与圆弧或曲线的长 度相关的问题,例如在几何学或解析几 何中。
VS
扇形面积公式
扇形面积公式在解决几何学问题中非常有 用,例如计算多边形的面积或了解星球的 形状和大小。
α=θ/360°×2π,其中θ为 角度制。
角度与弧度转换
1弧度=57.3°,1°=π/180 弧度。
弧长公式的推导
推导过程
由圆的周长公式C=2πR,可得弧长公式L=C×∣θ/360°∣,进一步可得 L=∣α∣×R。
圆周角与圆心角关系
圆周角θ与圆心角α之间的关系为α=θ/360°。