高中数学三角函数的对称性奇偶性与周期性解题方法知识点总结与经典例题专题训练及答案解析
高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性
高考数学复习考点知识与题型专题讲解函数的奇偶性、周期性与对称性考试要求1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )为奇函数,则f (0)=0.(×)(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.(×)(3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.(√)(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.(√)教材改编题1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案B解析根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2023)=______.答案1 2解析∵f(x)的周期为2,∴f(2023)=f(1)=2-1=1 2.3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性命题点1判断函数的奇偶性例1判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0; (3)f (x )=log 2(x +x 2+1).解(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为R,f(-x)=log2[-x+(-x)2+1]=log2(x2+1-x)=log2(x2+1+x)-1=-log2(x2+1+x)=-f(x),故f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.命题点2函数奇偶性的应用例2(1)(2022·哈尔滨模拟)函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4答案C解析依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,而f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.(2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=________.答案1解析方法一(定义法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.方法二(取特殊值检验法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )() A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数答案C解析由9-x 2≥0且|6-x |-6≠0,解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0},关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x, 又f (-x )=9-(-x )2x =-9-x 2-x =-f (x ), 所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎨⎧ g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 答案-1解析∵f (x )为奇函数且f (-1)=g (-1),∴f (-1)=-f (1)=-(-1)=1,∴g (-1)=1,∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1(1)(2021·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是() A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案B解析f(x)=1-x1+x=2-(x+1)1+x=21+x-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f(x-1)+1.(2)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.答案-1-2-x-2x+1解析∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.题型二函数的周期性例3(1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫132等于() A .-94B .-14C.14D.94答案A解析由f (x -2)=f (x +2),知y =f (x )的周期T =4,又f (x )是定义在R 上的奇函数,∴f ⎝ ⎛⎭⎪⎫132=f ⎝ ⎛⎭⎪⎫8-32 =f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-94. (2)函数f (x )满足f (x )=-f (x +2),且f (1)=2,则f (2023)=________.答案-2解析f (x )=-f (x +2),∴f (x +4)=-f (x +2)=f (x ),∴f (x )的周期为4,∴f (2023)=f (3)=-f (1)=-2.教师备选若函数f (x )=⎩⎨⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2023)=________.答案-1解析当x>0时,f(x)=f(x-1)-f(x-2),①∴f(x+1)=f(x)-f(x-1),②①+②得,f(x+1)=-f(x-2),∴f(x)的周期为6,∴f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339答案B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2021)+f(2022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2021)+f(2022)=0.题型三函数的对称性例4(1)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是________.(填序号)①f(x)的图象关于直线x=2对称;②f(x)的图象关于点(2,0)对称;③f(x)的周期为4;④y=f(x+4)为偶函数.答案①③④解析∵f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故①正确,②错误;∵函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),∴f(x+4)=f(x),∴T=4,故③正确;∵T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故④正确.(2)函数f(x)=lg|2x-1|图象的对称轴方程为________.答案x=1 2解析内层函数t=|2x-1|的对称轴是x=12,所以函数f(x)=lg|2x-1|图象的对称轴方程是x =12.教师备选已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案-1解析因为f (x )关于点(0,1)对称,所以f (x )+f (-x )=2,故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2,解得a =0,所以f (x )=x 3+bx +1,又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1,所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3(1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2025)=________.答案1解析∵f (x )的周期为6,则f (2025)=f (3),又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称,∴f (3)=f (1)=1,∴f (2025)=1.(2)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是________.(填序号)①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的图象关于点(π,0)对称.答案②③④解析∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,图象关于原点对称,故①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故③正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故④正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上()A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5答案C解析因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5.2.若函数f (x )=12x -1+a 为奇函数,则a 的值为() A .-2B .-12C.12D .2答案C解析方法一(定义法)∵f (x )为奇函数,∴f (-x )=-f (x ),∴12-x -1+a =-⎝ ⎛⎭⎪⎫12x -1+a , ∴2a =-⎝ ⎛⎭⎪⎫12-x -1+12x -1=1, ∴a =12.方法二(特值法)f (x )为奇函数,且x ≠0,∴f (-1)=-f (1),∴a -2=-(a +1),∴a =12.3.(2022·南昌模拟)函数f (x )=9x +13x 的图象()A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案B解析f(x)=32x+13x=3x+3-x,f(-x)=3-x+3x,∴f(-x)=f(x),故f(x)为偶函数,其图象关于y轴对称.4.已知函数f(x)的图象关于原点对称,且周期为4,f(3)=-2,则f(2021)等于()A.2B.0C.-2D.-4答案A解析依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(3)=-2,则有f(2021)=f(-3+506×4)=f(-3)=-f(3)=2,所以f(2021)=2.5.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=|f(x)|C.y=xf(x) D.y=f(x)+x答案D解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,|f(-x)|=|-f(x)|=|f(x)|,为偶函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.6.(2022·南昌模拟)已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于()A.0B.-1C.-2D.2答案C解析因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x),又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案1 3解析因为f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则有(a-1)+2a=3a-1=0,则a=13,同时f(-x)=f(x),即ax2+bx+1=a(-x)2+b(-x)+1,则有bx =0,必有b =0.则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝ ⎛⎭⎪⎫352=12,则m =______. 答案12解析由f (1-x )=f (1+x ),f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫352=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12=12, ∴14+12m =12,∴m =12.9.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于()A .-7B .-3C .3D .7答案B解析设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ),即f (x )-2=-f (-x )+2,故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=2x +a ,则g (1)等于()A .a +54B.54C.34D .a +34答案C解析依题意⎩⎨⎧ f (1)+g (1)=2+a ①f (-1)+g (-1)=12+a ,②又f (x )为偶函数,g (x )为奇函数,∴②式可化为f (1)-g (1)=12+a ,③由①③可得g (1)=34. 13.已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则下列结论正确的是________.(填序号)①f (x )的图象关于点(2,0)对称;②f (x )的图象关于直线x =2对称;③f (x )的周期为4;④f (x )的周期为8.答案①④解析∵f (x )为偶函数,∴f (x )的图象关于y 轴对称,f (-x )=f (x ),又∵f (x +2)是奇函数,∴f (-x +2)=-f (x +2),∴f (x )的图象关于(2,0)对称,又∵f (x +8)=-f (x +4)=f (x ),∴f (x )为周期函数且周期为8.14.已知函数f (x )对任意实数x 满足f (-x )+f (x )=2,若函数y =f (x )的图象与y =x +1有三个交点(x 1,y 1),(x 2,y 2),(x 3,y 3),则y 1+y 2+y 3=________.答案3解析因为f (-x )+f (x )=2,则f (x )的图象关于点(0,1)对称,又直线y =x +1也关于点(0,1)对称,因为y =f (x )与y =x +1有三个交点,则(0,1)是一个交点,另两个交点关于(0,1)对称,则y 1+y 2+y 3=2+1=3.15.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=________. 答案11011解析因为f (x )=4x4x +2, 所以f (x )+f (1-x )=4x 4x +2+41-x41-x +2=4x 4x +2+44x 44x +2=4x 4x +2+44x 4+2·4x 4x=4x 4x +2+44+2·4x=2·4x +44+2·4x =1,设f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=m ,① 则f ⎝ ⎛⎭⎪⎫20222023+…+f ⎝ ⎛⎭⎪⎫32023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫12023=m ,② ①+②得2022=2m ,即m =1011,故f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=1011. 16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P .(1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值.解(1)因为函数y =x 是增函数,所以函数y =x 不具有性质P ,当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立,所以y =cos x 具有性质P .(2)设x ∈(-π,0],则x +π∈(0,π], 由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝ ⎛⎭⎪⎫-π2=12.。
高中数学三角函数经典例题及详解
高中数学三角函数专题复习考试要求三角函数是一类最典型的周期函数。
本单元的学习,可以帮助学生在用锐角三角函数刻画直角三角形中边角关系的基础上,借助单位圆建立一般三角函数的概念,体会引入弧度制的必要性;用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最大(小)值等性质;探索和研究三角函数之间的一些恒等关系;利用三角函数构建数学模型,解决实际问题。
内容包括:角与弧度、三角函数概念和性质、同角三角函数的基本关系式、三角恒等变换、三角函数应用。
(1)角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。
(2)三角函数概念和性质①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、奇偶性、最大(小)值。
借助单位圆的对称性,利用定义推导出诱导公式(α ±,α ±π的正弦、余弦、正切)。
②借助图象理解正弦函数在、余弦函数上、正切函数在 上的性质。
③结合具体实例,了解的实际意义;能借助图象理解参数ω,φ,A 的意义,了解参数的变化对函数图象的影响。
(3)同角三角函数的基本关系式理解同角三角函数的基本关系式。
(4)三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。
②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。
③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。
(5)三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模2π[0,2]π(,)22ππ-sin()y A x ωϕ=+22sin sin cos 1,tan cos xx x x x+==型经 典 题 型一、求值化简型这类问题常常用到的公式包括三角函数定义、同角三角函数关系式、诱导公式、和差倍公式、降幂公式、辅助角公式 1、公式运用【例】(1)已知tan α=3,求:αα22cos 41sin 32+的值。
最全最详细抽象函数的对称性、奇偶性与周期性常用结论
最全最详细抽象函数的对称性、奇偶性与周期性常用结论直线Ax By ^0成轴对称;2Ax By C =0成轴对称。
9, y_2B(A X + B 罗C))= o 关于直线③ F (x, y) = 0与F (x _经A 二二2 A 2 B 2Ax ? By ? C =0成轴对称。
、函数对称性的几个重要结论(一)函数y = f(x)图象本身的对称性(自身对称)若f(x a^_f(x b),则f(x)具有周期性;若f (a ?x)=:「f(b -x),则f (x)具有对称性:“内同表示周期性,内反表示对称性”。
1、f(a+x) = f(b —x) u y = f(x)图象关于直线 x =l a Z x LL (b _x) =a £b 对称2 2推论1: f (a ? x) = f (a - x) = y = f (x)的图象关于直线 x = a 对称推论2、f (x) = f (2a - x) = y = f (x)的图象关于直线 x = a 对称推论3、f(-x)二f (2a ? x) := y = f (x)的图象关于直线 x = a 对称2、 f(a+x) + f (b —x) =2c 二y=f(x)的图象关于点(兰匕c)对称2推论 1、f (a ? x) ? f (a -x) = 2b := y = f (x)的图象关于点(a,b)对称推论2、f (x) ? f (2a - x) = 2b := y = f (x)的图象关于点(a,b)对称推论3、f (-x) ? f(2a ? x) =2b = y = f(x)的图象关于点(a,b)对称(二)两个函数的图象对称性(相互对称) (利用解析几何中的对称曲线轨迹方程理解)1、偶函数y =f(x)与y = f(-x)图象关于Y 轴对称2、奇函数y =f(x)与y 二-f(-x)图象关于原点对称函数3、函数y = f (x)与y - - f (x)图象关于X 轴对称4、互为反函数y 二f (x)与函数y 二f'(x)图象关于直线y =x 对称② 函数…(x)与一2驚¥。
三角函数的周期性、奇偶性及对称性考点与提醒归纳
三角函数的周期性、奇偶性及对称性考点与提醒归纳考点一 三角函数的周期性[典例] (1)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则正整数k 的值为________. [解析] (1)由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin xcos x cos 2x +sin 2x cos 2x =sin x cos x =12sin 2x ,所以f (x )的最小正周期为T =2π2=π.(2)由题意知1<πk <2,即π2<k <π.又因为k ∈N *,所以k =2或k =3. [答案] (1)C (2)2或3[解题技法]1.三角函数最小正周期的求解方法 (1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx+φ)的最小正周期T =π|ω|;(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|.(2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.[题组训练]1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析:选A 因为y =cos|2x |=cos 2x , 所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π; 函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π; 函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③. 2.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π考点二 三角函数的奇偶性[典例] 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3C.5π6D.2π3[解析] 因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6. [答案] C[解题技法] 判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.[题组训练]1.(2018·日照一中模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( ) A .y =sin ⎝⎛⎭⎫2x +3π2 B .y =cos ⎝⎛⎭⎫2x -π2 C .y =cos ⎝⎛⎭⎫2x +π2 D .y =sin ⎝⎛⎭⎫π2-x解析:选C y =sin ⎝⎛⎭⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎫2x -π2=sin 2x 在⎣⎡⎦⎤π4,π2上为减函数,排除B ;y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 为奇函数,在⎣⎡⎦⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝⎛⎭⎫π2-x =cos x 为偶函数,排除D.故选C.2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 解析:f (x )=3cos(3x -θ)-sin(3x -θ) =2sin ⎝⎛⎭⎫π3-3x +θ =-2sin ⎝⎛⎭⎫3x -π3-θ, 因为函数f (x )为奇函数, 所以-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θ=tan ⎝⎛⎭⎫-k π-π3=- 3. 答案:-3考点三 三角函数的对称性[典例] (1)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称 C .关于直线x =π3对称D .关于直线x =5π3对称(2)(2018·江苏高考)已知函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________.[解析] (1)因为函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12, 即f (x )=2sin ⎝⎛⎭⎫x 2+π6.令x 2+π6=π2+k π(k ∈Z),解得x =2π3+2k π(k ∈Z), 故f (x )的对称轴为x =2π3+2k π(k ∈Z),令x 2+π6=k π(k ∈Z),解得x =-π3+2k π(k ∈Z). 故f (x )的对称中心为⎝⎛⎭⎫-π3+2k π,0(k ∈Z),对比选项可知B 正确. (2)由题意得f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=±1, ∴2π3+φ=k π+π2(k ∈Z ),∴φ=k π-π6(k ∈Z ). ∵φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π6.[答案] (1)B (2)-π6[解题技法]三角函数图象的对称轴和对称中心的求解方法求三角函数图象的对称轴及对称中心,须先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再把(ωx +φ)整体看成一个变量,若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .[题组训练]1.若函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0对称,则|φ|的最小值为( ) A.π6 B.π4C.π3D.π2解析:选A 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z. 取k =0,得|φ|的最小值为π6.2.(2018·长春质检)函数f (x )=2sin(2x +φ)⎝⎛⎭⎫0<φ<π2,且f (0)=1,则下列结论中正确的是( )A .f (φ)=2B.⎝⎛⎭⎫π6,0是f (x )图象的一个对称中心 C .φ=π3D .x =-π6是f (x )图象的一条对称轴解析:选A 由f (0)=1且0<φ<π2,可得φ=π6,故选项C 错误;可得f (x )=2sin ⎝⎛⎭⎫2x +π6,把x =π6代入f (x )=2sin ⎝⎛⎭⎫2x +π6,得f (φ)=2,选项A 正确;f ⎝⎛⎭⎫π6=2,f (x )取得最大值,选项B 错误;而f ⎝⎛⎭⎫-π6=-1,非最值,选项D 错误,故选A.3.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 解析:∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴,∴f ⎝⎛⎭⎫π6=±2. 答案:2或-2[课时跟踪检测]A 级1.下列函数中,周期为2π的奇函数为( ) A .y =sin x 2cos x2B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确,故选A.2.已知函数f (x )=sin ⎝⎛⎭⎫3x +π6-1,则f (x )的图象的一条对称轴方程是( ) A .x =π9B .x =π6C .x =π3D .x =π2解析:选A 令3x +π6=k π+π2,k ∈Z ,解得x =k π3+π9,k ∈Z ,当k =0时,x =π9.因此函数f (x )的图象的一条对称轴方程是x =π9.3.(2018·南宁二中、柳州高中联考)同时具有以下性质:“①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎡⎦⎤-π6,π3上是增函数;④图象的一个对称中心为⎝⎛⎭⎫π12,0”的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =sin ⎝⎛⎭⎫2x +π3 C .y =sin ⎝⎛⎭⎫2x -π6 D .y =sin ⎝⎛⎭⎫2x -π3解析:选C 因为最小正周期是π,所以ω=2,排除A 选项;当x =π3时,对于B ,y =sin ⎝⎛⎭⎫2×π3+π3=0,对于D ,y =sin ⎝⎛⎭⎫2×π3-π3=32,因为图象关于直线x =π3对称,所以排除B 、D 选项,对于C ,sin ⎝⎛⎭⎫2×π3-π6=1,sin ⎝⎛⎭⎫2×π12-π6=0,且在⎣⎡⎦⎤-π6,π3上是增函数,故C 满足条件.4.函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为π,则f (x )满足( ) A .在⎝⎛⎭⎫0,π3上单调递增 B .图象关于直线x =π6对称C .f ⎝⎛⎭⎫π3=32D .当x =5π12时有最小值-1解析:选D 由函数f (x )=cos ⎝⎛⎭⎫ωx +π6 (ω>0)的最小正周期为π,得ω=2,则f (x )=cos ⎝⎛⎭⎫2x +π6.当x ∈⎝⎛⎭⎫0,π3时,2x +π6∈⎝⎛⎭⎫π6,5π6,显然此时f (x )不单调递增,故A 错误;当x =π6时,f ⎝⎛⎭⎫π6=cos π2=0,故B 错误;f ⎝⎛⎭⎫π3=cos 5π6=-32,故C 错误;当x =5π12时,f ⎝⎛⎭⎫5π12=cos ⎝⎛⎭⎫5π6+π6=cos π=-1,故D 正确.5.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2内单调递减 B .f (x )在⎝⎛⎭⎫π4,4π3内单调递减 C .f (x )在⎝⎛⎭⎫0,π2内单调递增 D .f (x )在⎝⎛⎭⎫π4,4π3内单调递增解析:选A 由题意知f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4. ∵f (x )的最小正周期为π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +φ+π4. 由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z).又∵|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .当0<2x <π,即0<x <π2时,f (x )单调递减.故选A.6.(2018·昆明调研)已知函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,且f (x )在⎣⎡⎦⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6解析:选A 因为函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,所以2ω3π=k π(k ∈Z),即ω=32k (k ∈Z),①又因为函数f (x )=sin ωx 在区间⎣⎡⎦⎤0,π4上为增函数, 所以π4≤π2ω且ω>0,所以0<ω≤2,②由①②得ω=32.7.若函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω∈N *)的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为________. 解析:因为f ⎝⎛⎭⎫π6=0,所以cos ⎝⎛⎭⎫π6ω+π6=0, 即πω6+π6=π2+k π(k ∈Z),故ω=2+6k (k ∈Z), 又因为ω∈N *,故ω的最小值为2. 答案:28.若函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2图象的一条对称轴为x =π12,则φ=________. 解析:因为y =sin x 图象的对称轴为x =k π+π2(k ∈Z),所以3×π12+φ=k π+π2(k ∈Z),得φ=k π+π4(k ∈Z).又因为|φ|<π2,所以k =0,故φ=π4.答案:π49.若函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π3=________. 解析:由题设及周期公式得T =πω=π,所以ω=1,即f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3,所以f ⎝⎛⎭⎫π3=⎪⎪⎪⎪sin 2π3=32.答案:3210.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:f (x )=3sin ⎝⎛⎭⎫π2x +π4的周期T =2π×2π=4, f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.答案:211.已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4. (1)求函数的最大值及相应的x 值集合; (2)求函数f (x )的图象的对称轴与对称中心.解:(1)当sin ⎝⎛⎭⎫2x -π4=1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2.故f (x )的最大值为2,使函数取得最大值的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =3π8+k π,k ∈Z . (2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z ,即函数f (x )的图象的对称轴为x =3π8+12k π,k ∈Z.由2x -π4=k π,k ∈Z ,得x =π8+12k π,k ∈Z ,即对称中心为⎝⎛⎭⎫π8+12k π,0,k ∈Z.12.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:由f (x )的最小正周期为π,得T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ). (1)当f (x )为偶函数时,有φ=π2+k π(k ∈Z).因为0<φ<2π3,所以φ=π2.(2)因为f ⎝⎛⎭⎫π6=32, 所以sin ⎝⎛⎭⎫2×π6+φ=32, 即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z), 故φ=2k π或φ=π3+2k π(k ∈Z),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎝⎛⎭⎫2x +π3. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z),得k π-5π12≤x ≤k π+π12(k ∈Z),故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z).B 级1.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4内单调递增B .偶函数且在⎝⎛⎭⎫0,π2内单调递增 C .偶函数且在⎝⎛⎭⎫0,π2内单调递减 D .奇函数且在⎝⎛⎭⎫0,π4内单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,所以8π3+φ=k π+π2,k ∈Z , 即φ=k π-13π6,k ∈Z. 又因为-π2<φ<π2,所以φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x , 所以该函数为奇函数且在⎝⎛⎭⎫0,π4内单调递减,故选D. 2.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0,x ∈R ).若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为( )A.12B .2 C.π2 D.π2解析:选D 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z , 所以ω2=π4+2k π,k ∈Z. 又ω-(-ω)≤12·2πω, 即ω2≤π2,即ω2=π4,所以ω=π2. 3.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈R .(1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3)当x ∈⎣⎡⎦⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围.解:(1)因为f (x )=-cos ⎝⎛⎭⎫π2+2x -3cos 2x =sin 2x -3cos 2x=2⎝⎛⎭⎫12sin 2x -32cos 2x =2sin ⎝⎛⎭⎫2x -π3, 故f (x )的最小正周期为T =2π2=π. (2)由(1)知h (x )=2sin ⎝⎛⎭⎫2x +2t -π3. 令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z), 得t =k π2+π3(k ∈Z), 又t ∈(0,π),故t =π3或5π6. (3)当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3, 所以f (x )∈[1,2].又|f (x )-m |<3,即f (x )-3<m <f (x )+3, 所以2-3<m <1+3,即-1<m <4.故实数m 的取值范围是(-1,4).。
专题33 三角函数的单调性、奇偶性、对称性与周期性题2021高中数学必做黄金100题(解析版
一.题源探究·黄金母题
(求函数 的单调递增区间.
【解析】设 ,函数 的单调递增区间为 .由 ,得 .易知 .
【试题来源】人教版A版必修4第39页例5.
【母题评析】本题考查三角函数单调区间的求法,是历年来高考的一个常考点.
【思路方法】限定区间上三角函数单调区间的求法:先用整体思想求
【技能方法】解决三角函数的单调性有关的问题,要结合函数的图象及其性质。
考向6已知三角函数的奇偶性、对称性或周期求参数的值
已知函数 ( , ),其图像与直线 相邻两个交点的距离为 ,若 对于任意的 恒成立,则 的取值范围是()
A. B. C. D.
【答案】C
【解析】令 ,可得 ,
∵函数 ( , )的图像与直线 相邻两个交点的距离为 ,
∴函数 的图象与直线 相邻两个交点的距离为 ,
∴函数 的周期为 ,故 ,∴ .∴ .
由题意得“ 对于任意的 恒成立”等价于“ 对于任意的 恒成立”.∵ ,∴ ,
∴ ,∴ .
故结合所给选项可得C正确.选C.
【技能方法】本题难度较大,解题时根据题意得 在 上的取值范围是 的子集去处理,由此通过不等式可得 的范围,结合选项得解.
④将 的图象向右平移 个单位可得到图像 .
【答案】①②③
【解析】对于 ,
令 ,求得f(x)=−1,为函数的最小值,故它的图象C关于直线 对称故①正确.
令x= ,求得f(x)=0,可得它的图象C关于点( ,0)对称,故②正确.
令 ,可得 ,故函数f(x)在区间 是增函数,故③正确,
由 的图象向右平移 个单位长度可以得到 故排除④,
【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,难度中等.
高中数学函数对称性、周期性和奇偶性的规律总结大全
函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
三角函数的周期性、奇偶性与对称性-高考数学复习
π
π
, k ∈Z,所以函数 f ( x )的图象关于直线 x = 对称.
3
3
目录
高中总复习·数学
三角函数性质的综合应用
【例4】 (多选)已知函数 f ( x )= sin
π
(2 x + ),则(
3
2
4
2
π
π
π
3π
π
3π
+ , k ∈Z,故B错误; <2 x < , < x < ,所以 f ( x )
4
2
2
2
4
π
π
π
π
点,B对;对于C选项,当- ≤ x ≤ 时,- ≤2 x + ≤ ,所以
12
12
2
3
2
5π
π
函数 f ( x )在区间[- , ]上单调递增,C对;对于D选项,因
12
12
π
π
π
π
为对称轴满足2 x + = + k π, k ∈Z,解得 x = + , k ∈Z,当 k
3
2
12
2
π
=0时, x = ,D对.故选B、C、D.
6
2
6
π
5π
(2 x - ), f (- )= A sin
6
12
5π
π
(-2× - )=0.
12
6
目录
高中总复习·数学
解题技法
三角函数图象的对称轴和对称中心的求法
求三角函数图象的对称轴及对称中心,须先把所给三角函数式化
为 y = A sin (ω x +φ)+ b 或 y = A cos (ω x +φ)+ b 的形式,再把
第4节 第2课时 三角函数的周期性、奇偶性与对称性--2025年高考数学复习讲义及练习解析
第2课时三角函数的周期性、奇偶性与对称性考点探究——提素养考点一三角函数的周期性例1(1)函数f (x )=a tan xa的最小正周期是()A .πaB .π|a |C .πa D .π|a |答案B解析对于函数f (x )=a tan xa,显然a ≠0,所以函数的最小正周期T =π|1a |=π|a |.故选B.(2)函数f (x )=cos x +2cos 12x 的一个周期为()A .πB .2πC .3πD .4π答案D解析易知y 1=cos x ,y 2=2cos 12x 的最小正周期分别为2π,4π,则2π,4π的公倍数4π是f (x )的一个周期.故选D.【通性通法】求三角函数周期的常用方法【巩固迁移】1.(多选)(2023·山东临沂调研)下列函数中,最小正周期为π的是()A .y =cos|2x |B .y =|cos x |C .y =xD .y =x 答案ABC解析对于A ,y =cos|2x |=cos2x ,最小正周期为π;对于B ,由图象知y =|cos x |的最小正周期为π;对于C ,y =cos x T =2π2=π;对于D ,y =tan x 期T =π2.2.已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则ω=________.答案1解析因为f (x )=ωx -12cos f (x )的最小正周期为2π,所以ω=2π2π=1.考点二三角函数的奇偶性、对称性(多考向探究)考向1奇偶性例2(1)下列函数中周期是π的偶函数是()A .y =|cos x |B .y =|cos2x |C .y =-sin xD .y =sin x +1答案A解析对于A ,y =|cos x |为偶函数,且最小正周期为π,所以A 符合题意;对于B ,y =|cos2x |为偶函数,最小正周期为π2,所以B 不符合题意;对于C ,y =-sin x 为奇函数,所以C 不符合题意;对于D ,y =sin x +1为非奇非偶函数,所以D 不符合题意.故选A.(2)(2024·广东茂名模拟)已知f (x )=2sin(x -α)+cos x 是奇函数,则tan α=()A .1B .±1C .3D .±3答案B解析因为f (x )是定义在R 上的奇函数,所以f (0)=0,即2sin(-α)+cos0=0,解得sin α=22,所以cos α=±22,此时f (x )=2sin x cos α-2cos x sin α+cos x =2sin x cos α=±sin x ,是奇函数,所以tan α=±1.故选B.【通性通法】三角函数型函数奇偶性的判断除可以借助定义外,还可以借助其图象与性质,在y =A sin(ωx +φ)中代入x =0,若y =0,则为奇函数,若y 为最大或最小值,则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).【巩固迁移】3.(2024·北京房山模拟)已知函数f (x )=2cos 2(x +θ)-1,则“θ=π4+k π(k ∈Z )”是“f (x )为奇函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析因为f (x )=2cos 2(x +θ)-1=cos(2x +2θ),若函数f (x )为奇函数,则2θ=π2+k π(k ∈Z ),解得θ=π4+k π2(k ∈Z ),|θ=π4+k π2,k ∈|θ=π4+k π,k ∈因此“θ=π4+k π(k ∈Z )”是“f (x )为奇函数”的充分不必要条件.故选A.4.(2023·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案±22解析f (x )=sin x +cos x =2sin由y =f (x +θ)是偶函数,得f (-x +θ)=f (x +θ),即2sin +π4-=2sin +π4+所以θ+π4-x =θ+π4+x +2k π,k ∈Z 恒成立或θ+π4-x +θ+π4+x =π+2k π,k ∈Z 恒成立.显然θ+π4-x =θ+π4+x +2k π,k ∈Z 不恒成立,故由θ+π4-x+θ+π4+x =π+2k π,k ∈Z ,得θ=π4+k π,k ∈Z ,当k =2n ,n ∈Z 时,cos θ=2n cos π4=22;当k =2n +1,n ∈Z 时,cos θ=cos π4+(2n +1)π=cos 5π4=-22.所以cos θ=±22.考向2对称性例3(2023·武汉模拟)已知函数f (x )=x f (x )的图象关于()A B C .直线x =π6对称D .直线x =π3对称答案C解析由题意,设2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z ,所以函数f (x )图象的对称中心-π12,k ∈Z ).设2x +π6=k π+π2,k ∈Z ,解得x =k π2+π6,k ∈Z ,所以函数f (x )图象的对称轴为直线x =k π2+π6(k ∈Z ),通过对比选项可知,f (x )的图象关于直线x =π6对称.故选C.【通性通法】三角函数图象的对称轴和对称中心的求解思路和方法(1)思路:函数y =A sin(ωx +φ)图象的对称轴和对称中心可结合y =sin x 图象的对称轴和对称中心求解.(2)方法:利用整体代换的方法求解,令ωx +φ=k π+π2,k ∈Z ,解得x =(2k +1)π-2φ2ω,k ∈Z ,即对称轴方程;令ωx +φ=k π,k ∈Z ,解得x =k π-φω,k ∈Z ,即对称中心的横坐标(纵坐标为0).对于y =A cos(ωx +φ),y =A tan(ωx +φ),可以利用类似的方法求解(注意y =A tan(ωx +φ)的图象无对称轴).【巩固迁移】5.函数f (x )=x x 23cos 2x 的图象的一个对称中心是()A -π3,B .(0,33)C D 答案C解析f (x )=x x 23cos 2x =sin2x cos π3+cos2x sin π3+cos2x cos π6-sin2x sinπ6+23cos 2x =12sin2x +32cos2x +32cos2x -12sin2x +23cos 2x =3cos2x +3(1+cos2x )=23cos2x +3.由2x =k π+π2,k ∈Z ,得x =k π2+π4,k ∈Z ,此时f (x )=3,所以f (x )图象的对+π4,k ∈Z ),当k =0时,f (x )故选C.6.(2023·全国乙卷)已知函数f (x )=sin(ωx +φ)x =π6和x =2π3为函数y =f (x )的图象的两条对称轴,则()A .-32B .-12C .12D .32答案D解析由题意,T 2=2π3-π6=π2,不妨设ω>0,则T =π,ω=2πT =2,当x =π6时,f (x )取得最小值,则2·π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f (x )=x则==32.故选D.考点三三角函数的图象与性质的综合例4(多选)(2024·厦门模拟)已知函数f (x )=coscos2x ,则()A .f (x )的最小正周期为πB .f (x)C .f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z )D .f (x )在[0,2π]上有4个零点答案ACD解析f (x )cos2x =12+x +32sin2cos2x =34sin2x -34cos2x +12=32sin x +12,则f (x )的最小正周期为π,A 正确;易知f (x )图象的对称中心的纵坐标为12,B 错误;令2x -π3=π2+k π(k ∈Z ),得x =5π12+k π2(k ∈Z ),即为f (x )图象的对称轴方程,C 正确;由f (x )=32sin x+12=0,得x =-33,当x ∈[0,2π]时,2x -π3∈-π3,11π3,作出函数y =sin x ∈-π3,,如图所示.由图可知方程x =-33在[0,2π]上有4个不同的实根,即f (x )在[0,2π]上有4个零点,D 正确.【通性通法】解决三角函数图象与性质综合问题的方法先将y =f (x )化为y =a sin ωx +b cos ωx 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【巩固迁移】7.(多选)(2024·九省联考)已知函数f (x )=x x ()A .函数fB .曲线y =f (x )的对称轴为直线x =k π,k ∈ZC .f (x )D .f (x )的最小值为-2答案AC解析f (x )=x x sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin 3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f (x )=-2sin2x .对于A ,-2sinx =2cos2x ,易知为偶函数,故A 正确;对于B ,令2x =π2+k π,k ∈Z ,则x=π4+k π2,k ∈Z ,故B 错误;对于C ,当x ,2x y =sin2x 单调递减,则f (x )=-2sin2x 单调递增,故C 正确;对于D ,因为sin2x ∈[-1,1],所以f (x )∈[-2,2],故D 错误.故选AC.课时作业一、单项选择题1.下列函数中,是周期函数的为()A .y =sin|x |B .y =cos|x |C .y =tan|x |D .y =(x -1)0答案B解析∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数.故选B.2.(2024·广东汕头模拟)函数y =tan ()A .(0,0)BC D .以上选项都不对答案B解析令x +π6=k π2,k ∈Z ,当k =1时,x =π3,y =tan 中心.故选B.3.函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为()答案D解析由f (-x )=sin(-x )+(-x )cos(-x )+(-x )2=-sin x -xcos x +x 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ;又=1+π2=4+2ππ2>1,f (π)=π-1+π2>0,排除B ,C.故选D.4.给出下列函数:①y =sin|x |;②y =|sin x |;③y =|tan x |;④y =|1+2cos x |,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4答案B解析①的图象如下,根据图象可知,图象关于y 轴对称,y =sin|x |是偶函数,但不是周期函数,所以排除①;②的图象如下,根据图象可知,图象关于y 轴对称,y =|sin x |是偶函数,最小正周期为π,所以②正确;③的图象如下,根据图象可知,图象关于y 轴对称,y =|tan x |是偶函数,最小正周期为π,所以③正确;④的图象如下,根据图象可知,图象关于y 轴对称,y =|1+2cos x |是偶函数,最小正周期为2π,所以排除④.故选B.5.函数f (x )=ω>0)图象的相邻两对称轴之间的距离为π2,若该函数图象关于点(m ,0)中心对称,则当m ∈0,π2时,m 的值为()A .π6B .π4C .π3D .5π12答案D解析因为函数f (x )图象的相邻两对称轴之间的距离为π2,所以T =2×π2=π(T 为f (x )的最小正周期),所以ω=2πT =2,所以f (x )=x 令f (x )=0,则2x +π6=k π(k ∈Z ),得x =k π2-π12(k ∈Z ),当k =1时,x =5π12,故m =5π12.故选D.6.(2023·安徽校考三模)已知函数f (x )=3sin x 2cos x 2-sin 2x 2+12,则下列结论正确的是()A .|f (x )|的最小正周期为2πB .直线x =-π3是f (x )图象的一条对称轴C .f (x )D .若f (x )在-π2,m 上的最大值为1,则m ≥π3答案D解析f (x )=3sin x 2cos x 2-sin 2x 2+12=32sin x -1-cos x 2+12=所以|f (x )|的最小正周期为π,A 错误;因为=-12≠±1,所以直线x =-π3不是f (x )图象的一条对称轴,B 错误;当0<x <π2时,π6<x +π6<2π3,而函数y =sin x ,C 错误;当-π2≤x ≤m时,-π3≤x +π6≤π6+m ,因为f (x )在-π2,m 上的最大值为1,所以π6+m ≥π2,解得m ≥π3,D正确.7.(2023·山东济南三模)已知函数f (x )=sin x +sin2x 在(0,a )上有4个零点,则实数a 的最大值为()A .4π3B .2πC .8π3D .3π答案C解析f (x )=sin x +sin2x =sin x +2sin x cos x =sin x (1+2cos x ),令f (x )=0,得sin x =0或cos x =-12,作出y =sin x 和y =cos x 的图象,如图.函数f (x )在(0,a )上有4个零点,则2π<a ≤2π+2π3=8π3,故实数a 的最大值为8π3.8.已知函数f (x )=sin(ωx +φ>0,|φ,其图象相邻两条对称轴之间的距离为π2,且函数f()A .函数f (x )的最小正周期为2πB .函数f (x )C .函数f (x )在3π4,π上单调递增D .函数f (x )的图象关于直线x =-7π12对称答案C解析因为函数f (x )=sin(ωx +φ)图象的相邻两条对称轴之间的距离为π2,所以最小正周期T=π,ω=2πT =2,所以f (x )=sin(2x +φ),因为f ,所以x 即直线x =π12是函数f (x )图象的对称轴,所以2×π12+φ=k π+π2(k ∈Z ),解得φ=k π+π3(k ∈Z ),又|φ|<π2,所以φ=π3,所以f (x )=x 函数f (x )的最小正周期为π,A 错误;因为=sin 3π2=-1,f (x )图象的对称中心,B 错误;因为当3π4≤x ≤π时,11π6≤2x +π3≤7π3,所以f (x )=sin x 3π4,π上单调递增,C 正确;因为=-12,所以直线x =-7π12不是函数f (x )图象的对称轴,D 错误.故选C.二、多项选择题9.(2024·苏州模拟)已知函数f (x )=3sin x ()A .f (x )的最大值为3B .f (x )的最小正周期为πC .fD .f (x )的图象关于直线x =11π12对称答案ABD解析因为函数f (x )=3sin x 所以f (x )的最大值为3,A 正确;f (x )的最小正周期T =2π2=π,B 正确;=3sin 2-π3=3sin x =-3cos2x ,为偶函数,C 错误;令2x -π3=π2+k π,k ∈Z ,得x =5π12+k π2,k ∈Z ,当k =1时,x =11π12,所以f (x )的图象关于直线x =11π12对称,故D 正确.故选ABD.10.(2023·广东江门统考一模)已知函数f (x )=|x ,则下列说法正确的是()A .f (x )的值域为[0,1]B .f (x )C .f (x )的最小正周期为πD .f (x )的单调递增区间为k π2+π6,k π2+5π12(k ∈Z )答案AD解析因为-1≤x 1,所以0≤f (x )≤1,A 正确;|2×π6-=0,但f (x )≥0,因此f (x ),B 错误;y =sin x是2π2=π,所以f (x )=|x 的最小正周期是π2,C 错误;由f (x )=|x =0,得2x -π3=k π,k ∈Z ,解得x =k π2+π6,k ∈Z ,当x ∈π6,2π3时,x 0,易得x ∈π6,5π12时,f (x )单调递增,x ∈5π12,2π3时,f (x )单调递减,又f (x )的最小正周期是π2,所以f (x )的单调递增区间是k π2+π6,k π2+5π12(k ∈Z ),D 正确.故选AD.三、填空题11.若函数f (x )=|(ω>0)的最小正周期为π,则________.答案32解析由题设及周期公式得T =πω=π,所以ω=1,即f (x )=|,所以|sin2π3|=32.12.(2024·山东威海模拟)已知函数f (x )=sin x cos(2x +φ)(φ∈[0,π])是偶函数,则φ=________.答案π2解析∵f (x )的定义域为R ,且为偶函数,∴-cos(-π+φ)=cos(π+φ),∴cos φ=-cos φ,∴cos φ=0,又φ∈[0,π],∴φ=π2.13.已知函数f (x )=sin(ωx +φ)cos φ+cos(ωx +φ)sin ω>0,0<φ轴之间的距离为π2,且满足φ=________.答案π6解析由两角和的正弦公式得f (x )=sin(ωx +2φ),又相邻的两条对称轴之间的距离为π2,所以最小正周期为π,所以π=2πω,解得ω=2.又所以函数f (x )的图象关于直线x =π12对称,所以2×π12+2φ=k π+π2,k ∈Z ,解得φ=k π2+π6,k ∈Z ,又0<φ<π2,所以取k =0,得φ=π6.14.已知函数f (x )=ω>0)的图象关于直线x =π2对称,且在则f (x )在区间-π2,π3上的最小值为________.答案-2解析因为函数f (x )=ω>0)的图象关于直线x =π2对称,所以π2ω+π4=k π(k ∈N *),解得ω=2k -12(k ∈N *).又f (x ),所以πω≥π2,故0<ω≤2,所以ω=32,即f (x )=当-π2≤x ≤π3时,-π2≤32x +π4≤3π4,故f (x )在区间-π2,π3上的最小值为-2.四、解答题15.已知函数f (x )=sin x -cos x (x ∈R ).(1)求函数y =f (x )f (π-x )的单调递增区间;(2)求函数y =[f (x )]2+f x 解(1)∵y =(sin x -cos x )[sin(π-x )-cos(π-x )]=(sin x -cos x )(sin x +cos x )=sin 2x -cos 2x =-cos2x ,令2k π≤2x ≤2k π+π(k ∈Z ),得k π≤x ≤k π+π2(k ∈Z ),∴函数的单调递增区间为k π,k π+π2(k ∈Z ).(2)y =(sin x -cos x )2+sinx x 1-sin2x +2sin x 1-sin2x -2cos2x =1-3sin(2x +φ),其中tan φ=2,∴函数的值域为[1-3,1+3].16.(多选)(2023·江苏南通如皋调研)已知函数f (x )=1+cos x +1-cos x ,则下列结论正确的是()A .π为函数f (x )的一个周期B .函数f (x )的图象关于直线x =π2对称C .函数f (x )在0,π2上为减函数D .函数f (x )的值域为[2,2]答案ABD解析因为f (x +π)=1+cos(x +π)+1-cos(x +π)=1-cos x +1+cos x =f (x ),所以π为函数f (x )的一个周期,故A 正确;因为f (π-x )=1+cos(π-x )+1-cos(π-x )=1-cos x +1+cos x =f (x ),所以函数f (x )的图象关于直线x =π2对称,故B 正确;因为f (x )=1+cos x +1-cos x =2cos 2x 2+2sin 2x2,又x∈0,π2,则x 2∈0,π4,故f (x )=2cos x 2+2sin x 2=由于x 2+π4∈π4,π2,故f (x )=2sin 0,π2上为增函数,故C 不正确;因为[f (x )]2=1+cos x +1-cos x +21-cos 2x =2+2|sin x |,又2≤2+2|sin x |≤4,f (x )>0,所以f (x )∈[2,2],故D 正确.故选ABD.17.(多选)(2024·湖北宜昌模拟)已知定义域为R 的函数f (x ),g (x )的最小正周期均为2π,且f (x )+g (x +π)=cos x ,g (x )-f (x +π)=sin x ,则()A .f (0)=g (0)B .C .函数y =f (x )-g (x )是偶函数D .函数y =f (x )g (x )的最大值是24答案BC解析因为f (x ),g (x )的最小正周期均为2π,f (x )+g (x +π)=cos x ,则f (x +π)+g (x +2π)=cos(x+π),即f (x +π)+g (x )=-cos x ,又g (x )-f (x +π)=sin x ,故可得g (x )=sin x -cos x2,g (x +π)=sin(x +π)-cos(x +π)2=-sin x +cos x 2,则f (x )=cos x -g (x +π)=cos x --sin x +cos x2=sin x +cos x 2,综上所述,f (x )=sin x +cos x 2,g (x )=sin x -cos x 2.对于A ,f (0)=12,g (0)=-12,故A错误;对于B =-sin x +cos x 2,=cos x -sin x 2,显然故B 正确;对于C ,f (x )-g (x )=sin x +cos x 2-sin x -cos x2=cos x ,又y =cos x 为偶函数,故函数y =f (x )-g (x )是偶函数,C 正确;对于D ,y =f (x )g (x )=(sin x -cos x )(sin x +cos x )4=-cos2x 4=-14cos2x ,又y =-14cos2x 的最大值为14,故D 错误.故选BC.18.(2023·江苏南京二模)已知f (x )=sin ωx -3cos ωx ,ω>0.(1)若函数f (x )图象的相邻两条对称轴之间的距离为π2,求f(2)若函数f (x )f (x )在0,π4上单调,求ω的值.解(1)f (x )=sin ωx -3cos ωx =ωx -32cos 因为函数f (x )图象的相邻两条对称轴之间的距离为π2,所以12T =π2,则T =π,所以T =2πω=π,解得ω=2,所以f (x )=x所以2×3π2-2sin π3=2×32= 3.(2)由f (x )=函数f (x ),所以πω3-π3=k π,k ∈Z ,所以ω=3k +1,k ∈Z ,由x ∈0,π4,ω>0,则ωx -π3∈-π3,πω4-π3,又函数f (x )在0,π4上单调,-π3≤π2,,解得0<ω≤103,所以当k =0时,ω=1.。
三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
高中数学函数的对称性知识点讲解及典型习题分析
高中数学函数的对称性知识点讲解及典型习题分析新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。
尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。
一、对称性的概念及常见函数的对称性1、对称性的概念:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。
③二次函数:是轴对称,不是中心对称,其对称轴方程为ab x 2-=。
④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。
⑤指数函数:既不是轴对称,也不是中心对称。
⑥对数函数:既不是轴对称,也不是中心对称。
⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。
⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2ππ+=k x 是它的对称轴。
⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。
函数奇偶性、对称性、周期性知识点总结
函数奇偶性、对称性、周期性知识点总结推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x fy-=图象关于直线afay=与)2(xx=对称推论3:函数)fy+=图象关于直线aa2(xf(xy-=与)=x-对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x)性质2 若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f(2a+x)=-f(-x)易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。
2、复合函数的奇偶性定义1、若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。
三角函数_高中数学知识点详细总结
一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必需注意到“极端”环境:或;求集合的子集时能否注意到是任何集合的子集、是任何非空集合的真子集.3.对待含有个元素的无限集合,其子集、真子集、非空子集、非空真子集的个数依次为4.“交的补等于补的并,即”;“并的补等于补的交,即”.5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命题”的真假特性是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆’者‘交流’也”、“‘否’者‘否认’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假定、推矛、得果.注意:听说三角函数。
命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”?.8.充要条件二、函数1.指数式、对数式,,,2.(1)映照是“‘具体射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可以或许没有,事实上知识点。
也可大肆个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至少一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.枯燥性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,听听反三角函数表。
则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相同.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:.(2)若奇函数定义域中有0,则必有.即的定义域时,是为奇函数的必要非充满条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、判断)、导数法;在挑选、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)既奇又偶函数有无量多个(,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“异性得增,想知道三角函数。
高考数学三角函数常考题型及解答方法总结
高考数学三角函数常考题型及解答方法总结
1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。
如(1)已知 , ,那么 的值是_____(答: )
(2)已知 ,且 , ,求 的值(答: );
(2)三角函数名互化(切割化弦),
如(1)求值 (答:1);
(2)已知 ,求 的值(答: )
(3)公式变形使用( 。
如(1)已知A、B为锐角,且满足 ,则 =_____(答: );
(2)设 中, , ,则此三角形是____三角形(答:等边)
(4)三角函数次数的降升(降幂公式: , 与升幂公式: , )。
如(1)若 ,化简 为_____(答: );
(2)函数 的单调递增区间为___________(答: )
(5)常值变换主要指“1”的变换(
等),
如已知 ,求 (答: ).
(6)正余弦“三兄妹— ”的内存联系――“知一求二”,
如(1)若 ,则 __(答: ),特别提醒:这里 ;
(4)函数 的最小值是_____,此时 =__________(答:2; );
(5)若 ,求 的最大、最小值(答: , )。特别提醒:在解含有正余弦函数的问题时,你深入挖掘正余弦函数的有界性了吗?
(3)周期性:① 、 的最小正周期都是2 ;② 和 的最小正周期都是 。
如(1)若 ,则 =___(答:0);
高考数学热点问题专题练习——函数的对称性与周期性知识归纳及典型例题分析
函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+⎡⎤⎣⎦ ② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
三角函数的周期性、奇偶性、对称性-高考数学复习
π
直线 x = 对称,则函数 g ( x )=
6
sin x + a cos x 的图象(
C )
(1)因为函数 f ( x )= a sin x + cos x ( a 为常数, x ∈R)的图象关于直线 x
π
π
= 对称,所以 f (0)= f
6
3
= sin x +
3
2 3
cos x =
sin
3
3
,所以1=
π
= k π, k ∈Z,即φ= k π- , k ∈Z.
4
π
++
4
π
为奇函数,所以φ+
4
因此,选项D正确.
3.
π
(2024·河北衡水模拟)已知 x 0= 是函数 f ( x )=
6
cos
π
2
− 3 cos φ+
cos 3 x sin φ的一个极小值点,则 f ( x )的一个单调递增区间是(
+
则f
π
−
4
=- 2 sin 2 −
π
4
= 2 cos 2 x ,为偶函数,A正确.
π
π
令2 x = + k π, k ∈Z,则 x = + π, k ∈Z,
2
4
2
π
即 f ( x )的对称轴为 x = + π, k ∈Z,B错误.
4
2
因为 x ∈
π
π
,
3
2
,所以2 x ∈
所以 f ( x )单调递增,C正确.
(1)(2024·江苏苏州模拟)已知函数 f ( x )= cos (π- x )- cos
C. π
高中数学一轮复习微专题第⑥季三角函数的图像与性质:第7节三角函数的对称性奇偶性与周期性
2
式;正弦余弦函数的最小正周期是 T
,正切函数的最小正周期公式是 T
;注意
一定要注意加绝对值。
om
【典例讲解】
π
5π
【例 1 】 (1) 已知 ω>0,0 < φ< π,直线 x= 和 x= 是函数 f (x)= sin( ωx+ φ)的图
4
4
象的两条相邻的对称轴,则 φ= ( )
ππ A. B.
【规律技巧】
三角函数对称性
先化成 y A sin( x ) B 的形式再求解.其图象的对称轴是直线
x
k
( k Z ) ,凡是该图象与直线 y B 的交点都是该图象的对称中心 , 关键
2
是记住三角函数的图象, 根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对
称中心.
三角函数周期性
1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不
【基础知识】
第 7 节 三角函数的对称性与周期性
对称性:
1. 对称轴与对称中心:
y sin x 的对称轴为 x k 2 ,对称中心为 (k ,0) k Z ;
y cosx 的对称轴为 x k ,对称中心为 (k y tan x 对称中心为 k ,0 k Z .
2
2 ,0) k Z ;
2.对于 y A sin( x ) 和 y A cos( x ) 来说,对称中心与零点相联系,对称轴与最
f ( x ) 的奇偶性,常见的结论如下:
(1) 若 y A sin( x ) 为偶函数,则有 k (k Z) ;
k
(k Z ) ;若为奇函数则有
2
(2) 若 y A cos( x ) 为偶函数,则有
三角函数的周期性、奇偶性及对称性考点与提醒归纳
三角函数的周期性、奇偶性及对称性考点与提醒归纳考点一 三角函数的周期性[典例] (1)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则正整数k 的值为________. [解析] (1)由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin xcos x cos 2x +sin 2x cos 2x =sin x cos x =12sin 2x ,所以f (x )的最小正周期为T =2π2=π.(2)由题意知1<πk <2,即π2<k <π.又因为k ∈N *,所以k =2或k =3. [答案] (1)C (2)2或3[解题技法]1.三角函数最小正周期的求解方法 (1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx+φ)的最小正周期T =π|ω|;(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|.(2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.[题组训练]1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析:选A 因为y =cos|2x |=cos 2x , 所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π; 函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π; 函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③. 2.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π考点二 三角函数的奇偶性[典例] 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3C.5π6D.2π3[解析] 因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6. [答案] C[解题技法] 判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.[题组训练]1.(2018·日照一中模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( ) A .y =sin ⎝⎛⎭⎫2x +3π2 B .y =cos ⎝⎛⎭⎫2x -π2 C .y =cos ⎝⎛⎭⎫2x +π2 D .y =sin ⎝⎛⎭⎫π2-x解析:选C y =sin ⎝⎛⎭⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎫2x -π2=sin 2x 在⎣⎡⎦⎤π4,π2上为减函数,排除B ;y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 为奇函数,在⎣⎡⎦⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝⎛⎭⎫π2-x =cos x 为偶函数,排除D.故选C.2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 解析:f (x )=3cos(3x -θ)-sin(3x -θ) =2sin ⎝⎛⎭⎫π3-3x +θ =-2sin ⎝⎛⎭⎫3x -π3-θ, 因为函数f (x )为奇函数, 所以-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θ=tan ⎝⎛⎭⎫-k π-π3=- 3. 答案:-3考点三 三角函数的对称性[典例] (1)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( ) A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称 C .关于直线x =π3对称D .关于直线x =5π3对称(2)(2018·江苏高考)已知函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________.[解析] (1)因为函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12, 即f (x )=2sin ⎝⎛⎭⎫x 2+π6.令x 2+π6=π2+k π(k ∈Z),解得x =2π3+2k π(k ∈Z), 故f (x )的对称轴为x =2π3+2k π(k ∈Z),令x 2+π6=k π(k ∈Z),解得x =-π3+2k π(k ∈Z). 故f (x )的对称中心为⎝⎛⎭⎫-π3+2k π,0(k ∈Z),对比选项可知B 正确. (2)由题意得f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=±1, ∴2π3+φ=k π+π2(k ∈Z ),∴φ=k π-π6(k ∈Z ). ∵φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π6.[答案] (1)B (2)-π6[解题技法]三角函数图象的对称轴和对称中心的求解方法求三角函数图象的对称轴及对称中心,须先把所给三角函数式化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,再把(ωx +φ)整体看成一个变量,若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .[题组训练]1.若函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0对称,则|φ|的最小值为( ) A.π6 B.π4C.π3D.π2解析:选A 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z. 取k =0,得|φ|的最小值为π6.2.(2018·长春质检)函数f (x )=2sin(2x +φ)⎝⎛⎭⎫0<φ<π2,且f (0)=1,则下列结论中正确的是( )A .f (φ)=2B.⎝⎛⎭⎫π6,0是f (x )图象的一个对称中心 C .φ=π3D .x =-π6是f (x )图象的一条对称轴解析:选A 由f (0)=1且0<φ<π2,可得φ=π6,故选项C 错误;可得f (x )=2sin ⎝⎛⎭⎫2x +π6,把x =π6代入f (x )=2sin ⎝⎛⎭⎫2x +π6,得f (φ)=2,选项A 正确;f ⎝⎛⎭⎫π6=2,f (x )取得最大值,选项B 错误;而f ⎝⎛⎭⎫-π6=-1,非最值,选项D 错误,故选A.3.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. 解析:∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴,∴f ⎝⎛⎭⎫π6=±2. 答案:2或-2[课时跟踪检测]A 级1.下列函数中,周期为2π的奇函数为( ) A .y =sin x 2cos x2B .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:选A y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确,故选A.2.已知函数f (x )=sin ⎝⎛⎭⎫3x +π6-1,则f (x )的图象的一条对称轴方程是( ) A .x =π9B .x =π6C .x =π3D .x =π2解析:选A 令3x +π6=k π+π2,k ∈Z ,解得x =k π3+π9,k ∈Z ,当k =0时,x =π9.因此函数f (x )的图象的一条对称轴方程是x =π9.3.(2018·南宁二中、柳州高中联考)同时具有以下性质:“①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎡⎦⎤-π6,π3上是增函数;④图象的一个对称中心为⎝⎛⎭⎫π12,0”的一个函数是( )A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =sin ⎝⎛⎭⎫2x +π3 C .y =sin ⎝⎛⎭⎫2x -π6 D .y =sin ⎝⎛⎭⎫2x -π3解析:选C 因为最小正周期是π,所以ω=2,排除A 选项;当x =π3时,对于B ,y =sin ⎝⎛⎭⎫2×π3+π3=0,对于D ,y =sin ⎝⎛⎭⎫2×π3-π3=32,因为图象关于直线x =π3对称,所以排除B 、D 选项,对于C ,sin ⎝⎛⎭⎫2×π3-π6=1,sin ⎝⎛⎭⎫2×π12-π6=0,且在⎣⎡⎦⎤-π6,π3上是增函数,故C 满足条件.4.函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为π,则f (x )满足( ) A .在⎝⎛⎭⎫0,π3上单调递增 B .图象关于直线x =π6对称C .f ⎝⎛⎭⎫π3=32D .当x =5π12时有最小值-1解析:选D 由函数f (x )=cos ⎝⎛⎭⎫ωx +π6 (ω>0)的最小正周期为π,得ω=2,则f (x )=cos ⎝⎛⎭⎫2x +π6.当x ∈⎝⎛⎭⎫0,π3时,2x +π6∈⎝⎛⎭⎫π6,5π6,显然此时f (x )不单调递增,故A 错误;当x =π6时,f ⎝⎛⎭⎫π6=cos π2=0,故B 错误;f ⎝⎛⎭⎫π3=cos 5π6=-32,故C 错误;当x =5π12时,f ⎝⎛⎭⎫5π12=cos ⎝⎛⎭⎫5π6+π6=cos π=-1,故D 正确.5.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2内单调递减 B .f (x )在⎝⎛⎭⎫π4,4π3内单调递减 C .f (x )在⎝⎛⎭⎫0,π2内单调递增 D .f (x )在⎝⎛⎭⎫π4,4π3内单调递增解析:选A 由题意知f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4. ∵f (x )的最小正周期为π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +φ+π4. 由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z).又∵|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .当0<2x <π,即0<x <π2时,f (x )单调递减.故选A.6.(2018·昆明调研)已知函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,且f (x )在⎣⎡⎦⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6解析:选A 因为函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,所以2ω3π=k π(k ∈Z),即ω=32k (k ∈Z),①又因为函数f (x )=sin ωx 在区间⎣⎡⎦⎤0,π4上为增函数, 所以π4≤π2ω且ω>0,所以0<ω≤2,②由①②得ω=32.7.若函数f (x )=cos ⎝⎛⎭⎫ωx +π6(ω∈N *)的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为________. 解析:因为f ⎝⎛⎭⎫π6=0,所以cos ⎝⎛⎭⎫π6ω+π6=0, 即πω6+π6=π2+k π(k ∈Z),故ω=2+6k (k ∈Z), 又因为ω∈N *,故ω的最小值为2. 答案:28.若函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2图象的一条对称轴为x =π12,则φ=________. 解析:因为y =sin x 图象的对称轴为x =k π+π2(k ∈Z),所以3×π12+φ=k π+π2(k ∈Z),得φ=k π+π4(k ∈Z).又因为|φ|<π2,所以k =0,故φ=π4.答案:π49.若函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π3=________. 解析:由题设及周期公式得T =πω=π,所以ω=1,即f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3,所以f ⎝⎛⎭⎫π3=⎪⎪⎪⎪sin 2π3=32.答案:3210.设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.解析:f (x )=3sin ⎝⎛⎭⎫π2x +π4的周期T =2π×2π=4, f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值, 故|x 1-x 2|的最小值为T2=2.答案:211.已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4. (1)求函数的最大值及相应的x 值集合; (2)求函数f (x )的图象的对称轴与对称中心.解:(1)当sin ⎝⎛⎭⎫2x -π4=1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2.故f (x )的最大值为2,使函数取得最大值的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =3π8+k π,k ∈Z . (2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z ,即函数f (x )的图象的对称轴为x =3π8+12k π,k ∈Z.由2x -π4=k π,k ∈Z ,得x =π8+12k π,k ∈Z ,即对称中心为⎝⎛⎭⎫π8+12k π,0,k ∈Z.12.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:由f (x )的最小正周期为π,得T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ). (1)当f (x )为偶函数时,有φ=π2+k π(k ∈Z).因为0<φ<2π3,所以φ=π2.(2)因为f ⎝⎛⎭⎫π6=32, 所以sin ⎝⎛⎭⎫2×π6+φ=32, 即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z), 故φ=2k π或φ=π3+2k π(k ∈Z),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎝⎛⎭⎫2x +π3. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z),得k π-5π12≤x ≤k π+π12(k ∈Z),故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z).B 级1.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4内单调递增B .偶函数且在⎝⎛⎭⎫0,π2内单调递增 C .偶函数且在⎝⎛⎭⎫0,π2内单调递减 D .奇函数且在⎝⎛⎭⎫0,π4内单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,所以8π3+φ=k π+π2,k ∈Z , 即φ=k π-13π6,k ∈Z. 又因为-π2<φ<π2,所以φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x , 所以该函数为奇函数且在⎝⎛⎭⎫0,π4内单调递减,故选D. 2.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0,x ∈R ).若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为( )A.12B .2 C.π2 D.π2解析:选D 因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z , 所以ω2=π4+2k π,k ∈Z. 又ω-(-ω)≤12·2πω, 即ω2≤π2,即ω2=π4,所以ω=π2. 3.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈R .(1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝⎛⎭⎫-π6,0对称,且t ∈(0,π),求t 的值;(3)当x ∈⎣⎡⎦⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围.解:(1)因为f (x )=-cos ⎝⎛⎭⎫π2+2x -3cos 2x =sin 2x -3cos 2x=2⎝⎛⎭⎫12sin 2x -32cos 2x =2sin ⎝⎛⎭⎫2x -π3, 故f (x )的最小正周期为T =2π2=π. (2)由(1)知h (x )=2sin ⎝⎛⎭⎫2x +2t -π3. 令2×⎝⎛⎭⎫-π6+2t -π3=k π(k ∈Z), 得t =k π2+π3(k ∈Z), 又t ∈(0,π),故t =π3或5π6. (3)当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3, 所以f (x )∈[1,2].又|f (x )-m |<3,即f (x )-3<m <f (x )+3, 所以2-3<m <1+3,即-1<m <4.故实数m 的取值范围是(-1,4).。
函数奇偶性、对称性、周期性知识点总结
抽象函数的对称性、奇偶性与周期性常用结论一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),(Y --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。