数字电路中的几个基本概念
数字电路后端设计中的一些概念
天线效应:小尺寸的MO S 管的栅极与很长的金属连线接在一起,在刻蚀过程中 ,这根金属线有可能象一根天线一样收集带电粒子 ,升高电位,而且可以击穿 MO S 管的栅氧化层,造成器件的失效。
这种失效是不可恢复的。
不仅是金属连线 ,有时候多晶硅也可以充当天线。
Antenna Ratio(N 冷 G J 二铲包J A rea丫A rea(G K ) MO S 管的输入端开始算起,直至到达该回路最顶层金属线之下的所有金属互连线 (N i ,j ,i 为互连节点所属的金属层号,j 为金属层上的互连节点编号)的面积总和。
在这些金属互连线上将会累积电荷并导致输入端MO S 管栅氧化层出现可能被击穿的潜在危险。
而顶层金属线之下连至输出端晶体管栅极的金属线并不会被计算在内,这是因为在芯片的制造过程中其上多余的游离电荷可以通过低阻的输出端 MO S 管顺畅泻放。
同理,顶层金属线也不会对 A R 的值做出任何贡献,因其最后被刻蚀完成的同时,就标志着从输入 MO S 管到 输出MO S 管的通路正式形成,多余的电荷此时全部可以通过输出端得到泻放。
栅氧化层面积 A re a ga t e则是指各个输入端口所连接到的不同晶体管 (GK )的栅氧化层的面积总和。
以图1所 A 口聞门缸R 日込严铲Z Totallnpu tPorL-X 怕日* 工[inpuu+A 上 匕厲口 12 # inpct (2 )EM (电迁移):电迁移是指金属材料中存在大电流的情况下,金属离子在电流作用下出现宏观移动的现象,日常生活中的家用电线等金属导线由于没有良好 这里的导体面积 A r e a m e t a l 是指从图 1 M eta!3 l\ 实Pli A ri te nn a 的计门的散热能力,稍大的电流强度就会导致保险丝熔断而断路,移现象。
集成电路芯片中的金属连线则不同:它们有良好的散热环境,通常能够承受高达105A/cm2(约为普通家用电线承受极限的100倍)以上的电流强度和由此导致的大约100°C的高温。
数字电路基本概念
数字电路基本概念第一章由于模拟信息具有连续性,实用上难于存储、分析和传输,应用二值数值逻辑构成的数字电路或数字系统较易克服这些困难,其实质是利用数字1和0来表示这些信息。
1.二值数值逻辑:常用数字0和1来表示数字信号,这里的0和1不是十进制的数字,而是逻辑0和逻辑1。
2.二值数字逻辑的产生,是基于客观世界的许多事物可以用彼此相关又相互对立的两种状态表示;而且在电路上,可用电子器件的开关特性来实现,由此形成离散信号电压或数字电压。
(1)技术上容易实现。
用双稳态电路表示二进制数字0和1是很容易的事情。
(2)可靠性高。
二进制中只使用0和1两个数字,传输和处理时不易出错,因而可以保障计算机具有很高的可靠性。
(3)运算规则简单。
与十进制数相比,二进制数的运算规则要简单得多,这不仅可以使运算器的结构得到简化,而且有利于提高运算速度。
(4)与逻辑量相吻合。
二进制数0和1正好与逻辑量“真”和“假”相对应,因此用二进制数表示二值逻辑显得十分自然。
(5)二进制数与十进制数之间的转换相当容易。
人们使用计算机时可以仍然使用自己所习惯的十进制数,而计算机将其自动转换成二进制数存储和处理,输出处理结果时又将二进制数自动转换成十进制数,这给工作带来极大的方便。
3.逻辑状态:客观世界的许多事物可以用彼此相关又相互对立的状态。
4.脉冲波形:当某波形仅有两个离散值时。
数字波形是逻辑电平对时间的图形表示。
5..占空比表示脉冲宽度占整个周期的百分数。
6.上升时间:从脉冲幅值的10%到90%所经历的时间。
7.下降时间:从脉冲幅值的90%下降到10%所经历的时间。
8.脉冲宽度:脉冲幅值的50%的两个时间点跨越的时间。
9.数据率或比特率:每秒钟所传输数据的位数。
10.时序图:表示时间关系的多重数字波形图。
11.存储器:用来存储二值数据的数字电路。
12.正逻辑:1表示高电平,0表示低电平。
13.负逻辑:与正逻辑相反。
14.表达电路功能主要用:功能表、真值表、逻辑表达式、波形图。
数字电子技术基础知识点总结
时序逻辑电路分析的一般步骤 :
1. 观察电路的结构,确定电路是同步时序逻辑电路还是 异步时序逻辑电路,是米里型电路还是莫尔型电路。
2. 根据给定的时序电路图,写出下列各逻辑方程式:
(1) 写出各触发器的时钟方程。 (2) 写出时序逻辑电路的输出方程。 (3) 写出各触发器的驱动方程。 (4) 将各触发器的驱动方程代入其特性方程,求得各触发器的次态方 程.
Rb
1
20kΩ
+VCC( +12V ) RC 1kΩ
3
VO
β=50
2
(a)
(b)
(c)
R b1
1
15kΩ
R b2 51kΩ
+VCC (+12V ) RC 1kΩ
V
3
O
β=50
2
5V
R b1
1
15kΩ R b2
51kΩ
+VCC (+15V ) RC 2kΩ
V
3
O
β=50
2
-3V (d)
-3V (e)
基本定律和恒等式
第四章 触发器
基本要求 1.熟练掌握各类触发器的逻辑功能(功能表、特性方 程、状态转换图、驱动表)。 2. 熟练掌握各种不同结构的触发器的触发特点,并能 够熟练画出工作波形。 3.熟悉触发器的主要参数。 4.熟悉各类触发器间的相互转换。 5.了解各类触发器的结构和工作原理。
1 写出图示各电路的状态方程。
5. 根据逻辑函数 表达式画出逻辑 电路图。
第三章 组合逻辑模块及其应用
基本要求 1.熟练掌握译码器、编码器、数据选择器、数值比 较器的逻辑功能及常用中规模集成电路的应用。 2.熟练掌握半加器、全加器的逻辑功能,设计方法。 3.正确理解以下基本概念:
数字电路第2章逻辑代数基础及基本逻辑门电路
(5)AB+A B = A (6)(A+B)(A+B )=A 证明: (A+B)(A+B )=A+A B+AB+0 A( +B+B) = 1 JHR A =
二、本章教学大纲基本要求 熟练掌握: 1.逻辑函数的基本定律和定理; 门、 2.“与”逻辑及“与”门、“或”逻辑及“或”
“非”逻辑及“非”门和“与”、“或”、“非” 的基本运算。 理解:逻辑、逻辑状态等基本概念。 三、重点与难点 重点:逻辑代数中的基本公式、常用公式、 基本定理和基本定律。
JHR
难点:
JHR
1.具有逻辑“与”关系的电路图
2.与逻辑状态表和真值表
JHR
我们作如下定义: 灯“亮”为逻辑“1”,灯“灭”为逻辑“0” 开关“通”为逻辑“1”,开关“断”为逻辑 “0” 则可得与逻辑的真值表。 JHR
3.与运算的函数表达式 L=A·B 多变量时 或 读作 或 L=AB L=A·B·C·D… L=ABCD… 1.逻辑表达式 2.逻辑符号
与非逻辑真值表
Z = A• B
3.逻辑真值表
逻辑规律:有0出1 全1 出0
JHR
A 0 0 1 1
B 0 1 0 1
Z 1 1 1 0
二、或非逻辑 1.逻辑表达式 2.逻辑符号
Z = A+ B
先或后非
3.逻辑真值表
JHR
三、与或非逻辑 1.逻辑表达式 2.逻辑符号
1.代入规则 在任一逻辑等式中,若将等式两边出现的同 一变量同时用另一函数式取代,则等式仍然成立。
JHR
代入规则扩大了逻辑代数公式的应用范围。例如摩 根定理 A+B = A ⋅ B 若将此等式两边的B用B+C 取代,则有
数字电路的基础知识
数字电路的基础知识数字电路是电子电路的一种,它使用离散的电压和电流信号来处理和存储数字信息。
数字电路由逻辑门、触发器和寄存器等基本逻辑单元组成。
逻辑门是数字电路的基础构建模块,常见的逻辑门包括与门、或门、非门和异或门等。
它们根据输入信号的真值表来决定输出信号的逻辑运算结果。
触发器是一种存储器件,用于存储和传输二进制数据。
最常见的触发器是D触发器,它具有一个数据输入端和一个时钟输入端,通过时钟上升沿或下降沿来传输数据。
触发器还可以用来实现计数器和状态机等功能。
寄存器是一种具有多个存储单元的存储器件,用于存储多位二进制数据。
寄存器通常由多个触发器级联构成,可以在时钟信号的控制下进行数据的并行或串行传输。
数字电路的设计和分析常常使用布尔代数和逻辑表达式。
布尔代数是一种数学系统,用于表示和操作逻辑关系。
逻辑表达式使用布尔运算符(如与、或、非)和变量(如A、B、C)来描述逻辑关系,进而用于设计和分析数字电路的功能和性能。
在数字电路中,信号一般使用二进制编码。
常用的二进制编码方式有二进制码、格雷码和BCD码等。
二进制码是最常见的编码方式,将每个数位上的值表示为0或1。
格雷码是一种特殊的二进制编码,相邻的编码只有一个比特位的差异,用于避免由于数字信号传输引起的误差。
BCD码是二进制编码的十进制形式,用于表示和处理十进制数字。
数字电路在计算机、通信、控制系统等领域有广泛的应用,例如计算机的中央处理器、内存和输入输出接口等都是基于数字电路的设计实现。
希望这些基础知识能够帮助你对数字电路有更好的理解。
数字电路与逻辑设计
数字电路与逻辑设计数字电路是现代电子技术的基础,它在计算机、通信、嵌入式系统等领域扮演着重要的角色。
数字电路可以将输入信号转换为相应的输出信号,通过逻辑门和触发器等元件的组合和连接实现不同的功能。
本文将介绍数字电路与逻辑设计的基本概念和原理。
一、数字电路的基本概念数字电路是由数字信号进行处理和传输的电路系统。
数字信号是以离散的数值表示的信息信号,可以取两个离散值,分别表示逻辑0和逻辑1。
数字电路由逻辑门、触发器、时钟等基本元器件组成。
逻辑门是实现不同逻辑运算的基本单元,包括与门、或门、非门等。
触发器用于存储和传递信号,在时钟信号的控制下进行状态变化。
二、数字电路的组成和工作原理数字电路由多个逻辑门和触发器等元件组成,通过它们的连接和相互作用实现特定的功能。
逻辑门根据输入信号的逻辑值进行逻辑运算,最终产生输出信号。
触发器用于存储和传递信号,其状态随时钟信号的变化而改变。
数字电路的工作原理是基于信号的逻辑运算和状态的变化,通过适当的电路连接和时序控制实现不同的功能。
三、数字电路的逻辑设计方法数字电路的逻辑设计是指根据特定的功能需求,选择适当的逻辑门和触发器进行电路设计和连接。
逻辑设计的基本步骤包括功能定义、真值表的编制、逻辑方程的推导、电路的化简和时序控制的设计等。
逻辑设计要求准确、简洁、可靠,通过合理的电路设计使系统达到预期的功能。
四、数字电路的应用领域数字电路广泛应用于计算机、通信、嵌入式系统等领域。
在计算机中,各种数字电路协同工作,实现数据的处理和存储。
在通信系统中,数字电路用于数据的传输和编解码。
在嵌入式系统中,数字电路被用于控制和驱动各个外设,实现系统的功能。
总结:数字电路与逻辑设计是现代电子技术领域的重要基础知识。
它不仅是计算机、通信和嵌入式系统等领域的核心,也是电子工程师必备的技能。
数字电路通过逻辑门和触发器等基本元器件的组合和连接,实现了信号的处理和传输。
合理的逻辑设计方法可以确保数字电路的功能准确、可靠。
数字电路基本概念的理解
数字电路基本概念的理解1)数字电路中工作的信号是数字信号,这种信号在时间上和数值上都是离散的。
在二进制系统中,数码只有1和0两种可能,反映到电路上就是高电平和低电平或开关通断、电流有无等。
而在模拟电路中工作的信号是模拟信号,这种信号在时间上和数值上都是连续变化的。
时间上连续是指任意时刻有一个相对的值。
数值上连续是指可以是在肯定范围内的任意值。
2)数字电路是处理和传输数字信号的电路。
三极管工作在开关状态,即饱和区或截止区。
放大区只是一种过渡状态。
抗干扰力量强、精度高。
而模拟电路是处理和传输模拟信号的电路。
三极管工作在线性放大区,即放大状态。
3)数字电路讨论的主要问题是电路的输入和输出状态之间的规律关系,即电路的规律功能。
具有"规律思维"力量。
数字电路能对输入的数字信号进行各种算术运算和规律运算、规律推断,故又称为数字规律电路。
而模拟电路讨论的主要问题是怎样不失真地放大模拟信号。
4)数字电路中,分析和设计数字电路的重要工具是规律代数,描述电路规律功能的主要方法是真值表、规律函数表达式、状态转换图、波形图和和卡诺图。
常常遇到的问题则是怎样利用它们对已知电路进行规律分析,依据实际要求进行规律设计。
而在模拟电路中,常常利用图解法和微变等效电路法等对电路进行静态和动态的定量分析,以确定放大倍数是多少、波形是否失真、怎样改善电路的放大性能等问题。
5)从电路结构上看,模拟电路的主要单元电路是放大器。
而数字电路的主要单元电路则是规律门和触发器。
虽然适应各种需要的数字电路千变万化,但是分析和设计的方法基本上是一样的。
只要我们对这些单元电路的组成、工作原理和性能把握得比较好,而且又学会了规律分析和规律设计的基本方法,熟识了若干典型电路,那就可以说初步具备了分析和解决一般数字电路问题的力量。
数字芯片设计基础知识点
数字芯片设计基础知识点数字芯片设计是现代电子技术领域的重要分支,它涉及到数字电路设计、逻辑设计和芯片设计等多个方面。
本文将介绍数字芯片设计的基础知识点,包括数字电路的基本概念、逻辑门的种类、计数器和触发器等内容。
一、数字电路的基本概念数字电路是由数字元器件(如逻辑门、触发器等)组成的电路,用于处理和传输数字信号。
在数字电路中,主要涉及到0和1两个离散的信号状态,通过组合和连接不同的逻辑门实现各种逻辑功能。
数字电路的基本概念包括布尔代数、逻辑函数和真值表。
其中,布尔代数是数字电路设计的基础,通过逻辑函数和真值表可以描述电路的输入输出关系,帮助设计师分析和设计数字电路。
二、逻辑门的种类逻辑门是数字电路中最基本的逻辑功能模块,常见的逻辑门包括与门、或门、非门、异或门等。
它们通过不同的输入和输出关系实现不同的逻辑功能。
与门是最基本的逻辑门之一,它的输出只有在所有输入都为1时才为1,否则为0。
与门可以用于信号的合并和判断等功能。
或门的输出在至少一个输入为1时为1,否则为0,常用于信号的选择和合并。
非门是一种单输入的逻辑门,它的输出与输入信号相反。
异或门在两个输入不同时输出为1,否则输出为0,常用于信号的比较和判断。
三、计数器和触发器计数器是一种常见的数字电路模块,用于实现计数功能。
常见的计数器包括二进制计数器和BCD码计数器。
计数器可以根据输入的时钟信号进行计数操作,并根据设定的计数范围和触发条件输出相应的计数结果。
触发器是一种用于存储和传递状态信息的数字电路元件。
常见的触发器包括RS触发器、D触发器和JK触发器。
触发器可以存储一个或多个比特的数据,并根据输入信号的变化实现状态的存储和传递。
四、数字芯片设计流程数字芯片设计的整体流程包括需求分析、系统设计、逻辑设计、物理设计和验证等步骤。
需求分析阶段主要确定数字芯片的功能需求、性能指标和设计约束等,为后续的设计提供基础。
系统设计阶段主要进行数字系统的整体设计,包括功能划分、模块选择和接口定义等。
数字电路逻辑门知识点总结
数字电路逻辑门知识点总结一、基本概念1.1 逻辑门的定义逻辑门是数字电路中的基本组成元件,它们用于执行逻辑运算。
逻辑门有不同的类型,比如AND门、OR门、NOT门等。
1.2 逻辑门的功能不同类型的逻辑门执行不同的逻辑运算。
比如,AND门执行逻辑乘法运算,OR门执行逻辑加法运算,而NOT门执行逻辑取反运算。
1.3 逻辑门的符号每种类型的逻辑门都有自己的标准符号,用于表示其在电路图中的位置和连接方式。
比如,AND门的标准符号是一个带有圆点的直线,表示其执行逻辑与运算。
1.4 逻辑门的真值表每种类型的逻辑门都有一个对应的真值表,用于描述其输入和输出之间的关系。
真值表通常包括所有可能的输入组合,以及其对应的输出。
二、基本逻辑门2.1 AND门AND门是逻辑与门的简称,它有两个输入和一个输出。
当所有输入均为高电平时,输出为高电平;否则,输出为低电平。
2.2 OR门OR门是逻辑或门的简称,它同样有两个输入和一个输出。
当任意一个输入为高电平时,输出为高电平;否则,输出为低电平。
2.3 NOT门NOT门是逻辑非门的简称,它只有一个输入和一个输出。
当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
2.4 XOR门XOR门是独占或门的简称,它同样有两个输入和一个输出。
当任一输入为高电平,另一个输入为低电平时,输出为高电平;否则,输出为低电平。
2.5 NAND门NAND门是与非门的简称,它同样有两个输入和一个输出。
当所有输入均为高电平时,输出为低电平;否则,输出为高电平。
2.6 NOR门NOR门是或非门的简称,它同样有两个输入和一个输出。
当任意一个输入为高电平时,输出为低电平;否则,输出为高电平。
2.7 XNOR门XNOR门是独占或非门的简称,它同样有两个输入和一个输出。
当两个输入相等时,输出为高电平;否则,输出为低电平。
三、逻辑门的组合3.1 逻辑门的串联多个逻辑门可以串联在一起,形成更复杂的逻辑功能。
数字电路的基本概念
数字电路的基本概念
一、数字信号
数字信号是一种离散的、不连续的信号形式,它表示两种状态之间的差异,通常是高电平和低电平。
在数字电路中,数字信号用于传递和处理信息。
二、数字电路
数字电路是一种用于处理和操作数字信号的电路。
它由各种逻辑门、触发器、寄存器、时序电路等组成,可以实现算术运算、逻辑运算、存储和时序控制等功能。
数字电路可以分为组合逻辑电路和时序逻辑电路两类。
三、逻辑门
逻辑门是一种基本的数字电路元件,它实现一种特定的逻辑功能。
最基本的逻辑门包括与门、或门、非门等。
通过组合逻辑门,可以实现复杂的逻辑功能。
四、触发器
触发器是一种基本的存储元件,它可以存储一位二进制信息。
触发器有两个稳定状态,通常表示为0和1。
触发器可以在外部信号的作用下实现状态的翻转。
五、寄存器
寄存器是一种用于存储二进制数据的电路元件。
它可以保存一个二进制数,并且可以在时钟信号的控制下进行读取和写入操作。
寄存器是数字系统中常用的元件之一。
六、时序电路
时序电路是一种具有时序关系的数字电路,它由组合逻辑电路和存储元件组成。
时序电路的状态变化取决于时钟信号的周期和相位。
时序电路可以实现复杂的时序控制和定时功能。
七、数字系统
数字系统是由数字电路、逻辑门、触发器、寄存器等组成的复杂系统,可以实现特定的数字功能。
数字系统可以用于计算机、通信、控制等领域。
数字系统的复杂程度取决于其实现的功能和规模。
数字电路的基本知识与应用
数字电路的基本知识与应用数字电路是电子技术中的一种重要技术,广泛应用于各个领域,如计算机、通信、工业自动化等。
掌握数字电路的基本知识与应用能够帮助我们理解和设计数字系统,提高工作效率。
本文将介绍数字电路的基本知识和应用,并分步详细列出相关内容。
一、数字电路的基本概念1.1 什么是数字电路?数字电路是由数字信号(即二进制信号)为基础的电路,其输入和输出信号只能取有限个离散值。
1.2 数字信号与模拟信号的区别数字信号是离散的,只能取有限个值,如0和1;而模拟信号是连续的,可以取无限个值。
1.3 逻辑门逻辑门是数字电路中的基本单元,用于对输入信号进行逻辑运算并产生输出信号。
常见的逻辑门有与门、或门、非门等。
二、数字电路的基本原理2.1 布尔代数布尔代数是数字电路设计的理论基础,它使用逻辑运算符(如与、或、非)来描述和分析逻辑关系。
2.2 逻辑门的真值表逻辑门的真值表是描述逻辑门在不同输入条件下输出的结果,通过真值表可以确定逻辑门的功能和特性。
三、数字电路的基本构成3.1 组合逻辑电路组合逻辑电路由逻辑门组成,其输出仅取决于当前输入状态。
常见的组合逻辑电路包括加法器、减法器、译码器等。
3.2 时序逻辑电路时序逻辑电路不仅取决于当前输入状态,还与之前的输入状态有关,它包括锁存器、触发器等。
四、数字电路的应用4.1 计算机计算机是数字电路的典型应用之一,其中包括中央处理器、存储器、输入输出设备等。
4.2 通信数字电路在通信系统中起到了关键作用,如调制解调器、电话交换机等。
4.3 工业自动化数字电路在工业自动化领域中广泛应用,如PLC(可编程逻辑控制器)、传感器、执行器等。
五、数字电路的设计步骤5.1 确定需求首先要明确设计的目的和需求,例如设计一个加法器还是译码器。
5.2 选择逻辑门根据需求选择适合的逻辑门,如与门、或门、非门等。
5.3 绘制逻辑图根据选定的逻辑门和功能需求,绘制逻辑图表示电路的工作原理和连接方式。
数字电子技术知识点汇总-数字电子技术基础知识点总结
《数字电子技术》重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD 2.逻辑门电路: (1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。
3)OC 门和OD 门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。
要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。
3.基本逻辑运算的特点:与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零; 与非运算:见零为1,全1为零;或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非 运 算:零 变 1, 1 变 零; 要求:熟练应用上述逻辑运算。
4. 数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
数字逻辑电路基础
5421 码
0000 0001 0010 0011 0100 1000 1001 1010 1011 1100 5421
1.3 基本逻辑运算
一、基本逻辑运算
1.与运算
设:开关闭合=“1” 开关不闭合=“0”V 灯亮,L=1 灯不亮,L=0
与逻辑表达式:
L A B
A
B
A
B
灯L
不闭合 不闭合 不亮
用四位自然二进制码中的前十个码字来表示十进制数 码,因各位的权值依次为8、4、2、1,故称8421 BCD码。
常用 BCD 码
十进制数 8421 码 余 3 码 格雷码 2421 码
0
0000 0011 0000 0000
1
0001 0100 0001 0001
2
0010 0101 0011 0010
八进制数
0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
十六进制数
0 1 2 3 4 5 6 7 8 9 A B C D E F
二进制数的波形表示:
二、数制转换
1、N进制数转换为10进制数
将N进制数按权展开,即可以转换为十进制数。 2、二进制数与八进制数的相互转换
(1)二进制数转换为八进制数: 将二进制数由小数点开始, 整数部分向左,小数部分向右,每3位分成一组,不够3位补 零,则每组二进制数便是一位八进制数。
Vm——信号幅度。 T——信号的重复周期。
tW——脉冲宽度。 q——占空比。其定义为:
q(%) tW
100%
T
实际的矩形脉冲
上升时间
tr
0.9Um
0.5Um
0.1Um
tw
第1章 数字电路基础知识
1.3 逻辑函数及其化简
1.3.1 1.3.2 1.3.3 1.3.4 1.3.5
逻辑代数基础 常用的组合逻辑运算 逻辑函数的表示方法 逻辑代数 逻辑函数的化简
1.3.1 逻辑代数基础
1.与运算(逻辑乘)
与逻辑运算的定义为一个事件的发生 如果具有多个条件,必须同时满足全部条 件,此事件才会发生。 以三变量为例,布尔表达式为: F=A· B· C
2.逻辑函数表式
逻辑函数表达式是描述输入逻辑变量 与输出逻辑变量之间逻辑函数关系的代数 式,是一种用与、或、非等逻辑运算复合 组合起来的表达式。逻辑函数的表达式不 是唯一的,可以有多种形式,并且能互相 转换。 逻辑函数的特点是:简洁、抽象,便 于简化和转换。
3.逻辑图
将逻辑函数表达式中各变量间的与、 或、非等运算关系用相应的逻辑符号表示 出来,就是逻辑函数的逻辑图。 逻辑图表示法的优点是:逻辑图与数 字电路的器件有明显的对应关系,便于制 作实际电路。缺点是不能直接进行逻辑推 演和变换。
1.1.4 数字电路的特点
数字电路主要具有以下一些优点: (1)基本单元电路简单,电路成本低。 (2)抗干扰能力强。 (3)通用性强。 (4)容易实现算术和逻辑运算功能。 (5)数据便于存储、携带和交换。 (6)系统故障诊断容易。 (7)保密性好。
1.2 数制与编码
1.2.1 常用的几种进位计数制 1.2.2 数制转换 1.2.3 编码
3.逻辑代数三项规则
逻辑代数除基本定律外,还有三项重 要规则。 (1)代入规则 对于任一个含有变量A的逻辑等式, 可以将等式两边的所有变量A用同一个逻 辑函数替代,替代后等式仍然成立。这个 规则称为代入规则。 (2)反演规则 (3)对偶规则
4.逻辑代数常用的公式
数电
第一章 数字电路基础1.1 数字电路的基本概念一. 模拟信号和数字信号电子电路中的信号可以分为两大类:模拟信号和数字信号。
模拟信号——时间连续、数值也连续的信号。
数字信号——时间上和数值上均是离散的信号。
(如电子表的秒信号、生产流水线上记录零件个数的计数信号等。
这些信号的变化发生在一系列离散的瞬间,其值也是离散的。
)数字信号只有两个离散值,常用数字0和1来表示,注意,这里的0和1没有大小之分,只代表两种对立的状态,称为逻辑0和逻辑1,也称为二值数字逻辑。
数字信号在电路中往往表现为突变的电压或电流,如图1.1.1所示。
该信号有两个特点: (1)信号只有两个电压值,5V 和0V 。
我们可以用5V 来表示逻辑1,用0V 来表示逻辑0;当然也可以用0V 来表示逻辑1,用5V 来表示逻辑0。
因此这两个电压值又常被称为逻辑电平。
5V 为高电平,0V 为低电平。
(2)信号从高电平变为低电平,或者从低电平变为高电平是一个突然变化的过程,这种信号又称为脉冲信号。
二.正逻辑与负逻辑如上所述,数字信号是一种二值信号,用两个电平(高电平和低电平)分别来表示两个逻辑值(逻辑1和逻辑0)。
那么究竟是用哪个电平来表示哪个逻辑值呢?两种逻辑体制:(1)正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。
(2)负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。
如果采用正逻辑,图1.1.1所示的数字电压信号就成为如图1.1.2所示逻辑信号。
图1.1.2 逻辑信号三. 数字信号的主要参数一个理想的周期性数字信号,可用以下几个参数来描绘,见图1.1.3。
V m ——信号幅度。
它表示电压波形变化的最大值。
T ——信号的重复周期。
信号的重复频率f =1/T 。
t W ——脉冲宽度。
它表示脉冲的作用时间。
q ——占空比。
它表示脉冲宽度t W 占整个周期T 的百分比,其定义为: %100(%)W⨯=Tt q 逻辑0逻辑1逻辑0逻辑1逻辑0V t (V)(ms)5(ms)图1.1.3 理想的周期性数字信号图1.1.4所示为三个周期相同(T =20ms ),但幅度、脉冲宽度及占空比各不相同的数字信号。
1.1数字电路的基本知识
模拟电路:传递、处理模拟信号的电路。
双极型电路:TTL、ECL
单级型电路:NMOS、PMOS、CMOS
3、按电路逻辑功能分
组合逻辑电路
时序逻辑电路
1.1.4矩形脉冲的主要参数
1.脉冲参数
(1)脉冲的幅度:脉冲的底部到脉冲的顶部之间的变化量称为脉冲的幅度,用Um表示。
(2)脉冲的宽度:从脉冲出现到脉冲消失所用的时间称为脉冲的宽度,用t w表示。
(3)脉冲的重复周期:在重复的周期信号中两个相邻脉冲对应点之间的时间间隔称为脉冲的重复周期,用T表示。
实际的矩形脉冲往往与理想的矩形脉冲不同,即脉冲的前沿与脉冲的后沿都不是陡直的,如图1-4所示。
实际的矩形脉冲可以用如下的五个参数来描述。
(1)脉冲的幅度Um:脉冲的底部到脉冲的顶部之间的变化量。
(2)脉冲的宽度t w:从脉冲前沿的0.5Um到脉冲后沿的0.5Um两点之间的时间间隔称为脉冲的宽度,又可以称为脉冲的持续时间。
(3)脉冲的重复周期T:在重复的周期信号中两个相邻脉冲对应点之间的时间间隔称为脉冲的重复周期。
(4)脉冲的上升时间t r :指脉冲的上升沿从0.1Um上升到0.9Um所用的时间。
(5)脉冲的下降时间t f :指脉冲的下降沿从0.9Um下降到0.1Um所用的时间。
2.脉冲信号分类
若脉冲信号跃变后的值比初始值高称正脉冲
若脉冲信号跃变后的值比初始值低称负脉冲。
数字电路与逻辑设计
数字电路与逻辑设计数字电路与逻辑设计是电子与电气工程领域中的重要分支,它涉及到数字信号的处理、电路的设计与优化等方面。
本文将从数字电路的基本概念入手,介绍数字电路的组成和逻辑设计的基本原理。
1. 数字电路的基本概念数字电路是由数字信号进行处理和传输的电路系统。
与模拟电路不同,数字电路采用离散的信号表示信息,信号的取值只能是0和1。
数字电路可以实现逻辑运算、存储数据和控制系统等功能。
2. 数字电路的组成数字电路由基本的逻辑门电路组成,逻辑门电路是实现逻辑运算的基本单元。
常见的逻辑门包括与门、或门、非门、与非门、或非门等。
通过逻辑门的组合和连接,可以构建出各种复杂的数字电路,如加法器、多路选择器、触发器等。
3. 逻辑设计的基本原理逻辑设计是指根据系统的功能需求,将逻辑门和触发器等组合连接,设计出满足特定功能的数字电路的过程。
逻辑设计的基本原理包括布尔代数、卡诺图和状态转换图等。
布尔代数是一种用代数符号表示逻辑运算的方法,通过逻辑运算符号和逻辑运算规则,可以描述和分析数字电路的逻辑功能。
卡诺图是一种图形化的逻辑运算方法,通过绘制真值表,将逻辑函数化简为最小项或最大项,并通过卡诺图的规则进行布尔代数化简,从而得到简化后的逻辑表达式。
状态转换图是描述时序逻辑电路行为的图形化方法,它通过状态和状态之间的转换来描述电路的功能。
状态转换图对于时序逻辑电路的设计和分析非常重要。
4. 数字电路的应用数字电路在现代电子与电气工程中有着广泛的应用。
它被应用于计算机、通信系统、嵌入式系统、数字信号处理等领域。
例如,计算机的中央处理器(CPU)中包含了大量的数字电路,用于实现各种算术逻辑运算和控制功能。
数字电路的设计和优化对于提高电路的性能和可靠性非常重要。
通过合理的电路设计和优化,可以降低功耗、提高速度和减小面积,从而实现更高效的数字电路。
总结数字电路与逻辑设计是电子与电气工程领域中的重要分支,它涉及到数字信号的处理、电路的设计与优化等方面。
数字电路设计与逻辑门电路原理
数字电路设计与逻辑门电路原理数字电路设计是现代电子技术的重要组成部分,广泛应用于各种数字系统和计算机中。
而数字电路的基本组成单元则是逻辑门电路。
逻辑门电路原理是数字电路设计的基础,对于了解和掌握数字电路的设计和工作原理至关重要。
一、数字电路的基本概念和分类1. 数字电路数字电路是由逻辑门电路组成的电路,通过对输入信号进行逻辑运算,得到相应的输出信号。
它分为组合逻辑电路和时序逻辑电路两种类型。
2. 组合逻辑电路组合逻辑电路的输出只与当前输入有关,与之前的输入信号和输出状态无关。
它通过逻辑门的组合来实现逻辑运算,如与门、或门、非门等。
3. 时序逻辑电路时序逻辑电路的输出不仅与当前输入有关,还与之前的输入和输出状态有关。
它通过触发器等时序元件实现存储功能,在此基础上完成复杂的逻辑功能。
二、逻辑门电路的基本原理及应用逻辑门电路是数字电路设计中最基本的逻辑元件,用于实现各种逻辑运算。
以下介绍几种常用的逻辑门电路及其原理和应用。
1. 与门电路与门的输出只有在所有输入都为高电平时才为高电平,否则为低电平。
它的符号为“&”,常用于逻辑运算和数据筛选等场合。
2. 或门电路或门的输出只要有一个输入为高电平就为高电平,否则为低电平。
它的符号为“|”,常用于逻辑运算和数据合并等场合。
3. 非门电路非门的输出与输入正好相反,即输入为高电平时输出为低电平,输入为低电平时输出为高电平。
它的符号为“¬”,常用于信号反转和控制开关等场合。
4. 异或门电路异或门的输出只有在输入信号不相同时才为高电平,否则为低电平。
它的符号为“⊕”,常用于数据比较和错误检测等场合。
三、数字电路设计的流程和注意事项数字电路的设计过程需要按照一定的流程和注意事项进行,以确保设计的正确性和可靠性。
1. 确定需求和规格在设计数字电路之前,首先要明确设计的具体需求和规格,包括输入输出信号的种类、数量和电平要求等。
2. 逻辑功能设计根据需求和规格,进行逻辑功能的设计,确定需要使用的逻辑门电路类型和数量,以及它们之间的连接关系。
数字电路设计大学计算机基础知识逻辑构建
数字电路设计大学计算机基础知识逻辑构建数字电路设计是大学计算机基础课程中的重要内容,它涉及到逻辑构建的各个方面。
本文将从数字电路设计的概念开始,逐步介绍数字电路的基本模块、逻辑门电路、时序逻辑电路、多路选择器和译码器等内容,旨在帮助读者深入了解数字电路设计的基本知识和逻辑构建的过程。
一、数字电路设计的概念数字电路设计是指利用逻辑门电路和其他数字电子元件来设计和实现各种数字电路的过程。
数字电路设计的目标是根据特定的功能需求,设计出满足要求的逻辑电路,并通过电子元器件的连接和组合,使其能够按照预定的逻辑运算规则和时序要求进行工作。
二、数字电路的基本模块数字电路由多个基本模块组成,其中包括逻辑门、触发器、多路选择器、加法器等。
这些基本模块是数字电路设计的基础,通过它们的组合和连接实现各种复杂的数字电路功能。
1. 逻辑门逻辑门是数字电路中最基本的元件,它能够对输入信号进行逻辑运算,并输出运算结果。
常见的逻辑门包括与门、或门、非门、异或门等。
通过逻辑门的组合和连接,可以构建出各种逻辑电路,如加法器、减法器、多路选择器等。
2. 触发器触发器是一种时序逻辑电路,在数字电路设计中起着重要的作用。
它可以存储和传递信息,并根据时钟信号进行状态变化。
常见的触发器包括RS触发器、D触发器、JK触发器等。
触发器的使用可以实现时序逻辑电路的设计,如时序计数器、时序比较器等。
3. 多路选择器和译码器多路选择器是一种能够按照控制信号选择输入信号的元件,它具有多个输入和一个输出。
译码器是一种数字电路,用于将输入的二进制数转换为相应的输出信号。
多路选择器和译码器在数字电路设计中具有重要的作用,它们能够完成各种信号的选择、转换和解码任务。
三、逻辑构建的基本原则在数字电路设计中,逻辑构建是一个重要的步骤,它要求设计者按照一定的规则和原则来完成。
以下是逻辑构建的一些基本原则:1. 模块化设计模块化设计是指将一个大的逻辑电路划分为若干个小模块,并对每个模块进行独立设计和测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路中的几个基本概念
建立时间和保持时间建立时间(setupTIme)是指在触发器的时钟信号上升沿到来以前,数据稳定不变的时间,如果建立时间不够,数据将不能在这个时钟上升沿被打入触发器;保持时间(hold TIme)是指在触发器的时钟信号上升沿到来以后,数据稳定不变的时间,如果保持时间不够,数据同样不能被打入触发器。
数据稳定传输必须满足建立和保持时间的要求。
在设计中,当然希望建立时间越短越好,而保持时间呢,也越短越好。
也就是说,最好信号在时钟边沿到达,而在到达后,马上被采用,这样,理论上效率是最好的。
当然了,理论而已。
竞争和冒险PLD内部毛刺产生的原因
我们在使用分立元件设计数字系统时,由于PCB走线时,存在分布电感和电容,所以几纳秒的毛刺将被自然滤除,而在PLD内部决无分布电感和电容,所以在PLD/FPGA设计中,竞争和冒险问题将变的较为突出。
这一点用模拟电路的观点很容易理解,例如在一个延迟链条上,加两个电容,就把这个毛刺给滤掉。
FPGA中的冒险现象
信号在FPGA器件内部通过连线和逻辑单元时,都有一定的延时。
延时的大小与连线的长短和逻辑单元的数目有关,同时还受器件的制造工艺、工作电压、温度等条件的影响。
信号的高低电平转换也需要一定的过渡时间。
由于存在这两方面因素,多路信号的电平值发生变化时,在信号变化的瞬间,组合逻辑的输出有先后顺序,并不是同时变化,往往会出现一些不正确的尖峰信号,这些尖峰信号称为毛刺。
如果一个组合逻辑电路中有毛刺出现,就说明该电路存在冒险。
(与分立元件不同,由于PLD内部不存在寄生电容电感,这些毛刺将被完整的保留并向下一级传递,因此毛刺现象在PLD、FPGA设计中尤为突出)我们无法保证所有连线的长度一致,所以输入信号在输入端同时变化,但经过PLD内部的走线,到达或门的时间也是不一样的,毛刺必然产生。
可以概括的讲,只要输入信号同时变化,(经过内部走线)组合逻辑必将产生毛刺。
将它们的输出直接连接到时钟输入端、清。