2014年7月浙江学考-数学试题
2014年普通高等学校招生全国统一考试数学(浙江卷)文 (2)
2014年普通高等学校招生全国统一考试(浙江卷)数学(文科)本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014浙江,文1)设集合S={x|x≥2},T={x|x≤5},则S∩T=().A.(-∞,5]B.[2,+∞)C.(2,5)D.[2,5]答案:D解析:由已知得S∩T={x|2≤x≤5}=[2,5],故选D.2.(2014浙江,文2)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:当四边形ABCD为菱形时,其对角线互相垂直,必有AC⊥BD;但当AC⊥BD时,四边形不一定是菱形(如图),因此“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.故选A.3.(2014浙江,文3)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是().A.72 cm 3B.90 cm 3C.108 cm 3D.138 cm 3答案:B解析:由三视图可知,该几何体是一个组合体,其左侧是一个直三棱柱,右侧是一个长方体.其中三棱柱的底面是一个直角三角形,其两直角边长分别是3 cm 和4 cm,三棱柱的高为3 cm,因此其体积V 1=Sh=12×4×3×3=18(cm 3).长方体中三条棱的长度分别为4 cm,6 cm,3 cm,因此其体积V 2=4×6×3=72(cm 3).故该几何体的体积V=V 1+V 2=18+72=90(cm 3),故选B .4.(2014浙江,文4)为了得到函数y=sin 3x+cos 3x 的图象,可以将函数y=√2cos 3x 的图象( ).A.向右平移π12个单位B.向右平移π4个单位 C.向左平移π12个单位 D.向左平移π4个单位 答案:A解析:由于y=sin 3x+cos 3x=√2sin (3x +π4),y=√2cos 3x=√2sin (3x +π2),因此只需将y=√2cos 3x 的图象向右平移π12个单位,即可得到y=√2sin [3(x -π12)+ π2]=√2sin (3x +π4)的图象,故选A . 5.(2014浙江,文5)已知圆x 2+y 2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a 的值是( ). A.-2 B.-4 C.-6 D.-8 答案:B解析:圆的方程可化为(x+1)2+(y-1)2=2-a ,因此圆心为(-1,1),半径r=√2-a .圆心到直线x+y+2=0的距离d=√2=√2,又弦长为4,因此由勾股定理可得(√2)2+(42)2=(√2-a )2,解得a=-4.故选B .6.(2014浙江,文6)设m ,n 是两条不同的直线,α,β是两个不同的平面.( ). A.若m ⊥n ,n ∥α,则m ⊥α B.若m ∥β,β⊥α,则m ⊥α C.若m ⊥β,n ⊥β,n ⊥α,则m ⊥α D.若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 答案:C解析:当m ⊥n ,n ∥α时,可能有m ⊥α,但也有可能m ∥α或m ⊂α,故A 选项错误;当m ∥β,β⊥α时,可能有m ⊥α,但也有可能m ∥α或m ⊂α,故选项B 错误; 当m ⊥β,n ⊥β,n ⊥α时,必有α∥β,从而m ⊥α,故选项C 正确;在如图所示的正方体ABCD-A 1B 1C 1D 1中,取m 为B 1C 1,n 为CC 1,β为平面ABCD ,α为平面ADD 1A 1,这时满足m ⊥n ,n ⊥β,β⊥α,但m ⊥α不成立,故选项D 错误.7.(2014浙江,文7)已知函数f (x )=x 3+ax 2+bx+c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ). A.c ≤3 B.3<c ≤6C.6<c ≤9D.c>9答案:C解析:由于f (-1)=f (-2)=f (-3),所以-1+a-b+c=-8+4a-2b+c=-27+9a-3b+c.由-1+a-b+c=-8+4a-2b+c ,整理得3a-b=7, 由-8+4a-2b+c=-27+9a-3b+c ,整理得5a-b=19,由{3a -b =7,5a -b =19,解得{a =6,b =11.于是f (-1)=f (-2)=f (-3)=c-6, 又因为0<f (-1)=f (-2)=f (-3)≤3, 因此0<c-6≤3,解得6<c ≤9,故选C .8.(2014浙江,文8)在同一直角坐标系中,函数f (x )=x a (x>0),g (x )=log a x 的图象可能是( ).答案:D解析:若a>1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈(0,1)时,y=x a (x>0)的图象应在直线y=x 的下方,故C 选项错误;若0<a<1,则函数g (x )=log a x 的图象过点(1,0),且单调递减,函数y=x a (x>0)的图象应单调递增,且当x ∈(0,1)时图象应在直线y=x 的上方,因此A,B 均错,只有D 项正确.9.(2014浙江,文9)设θ为两个非零向量a ,b 的夹角.已知对任意实数t ,|b +t a |的最小值为1.( ). A.若θ确定,则|a |唯一确定 B.若θ确定,则|b |唯一确定 C.若|a |确定,则θ唯一确定 D.若|b |确定,则θ唯一确定 答案:B解析:|b +t a |2=(b +t a )2=|b |2+|a |2t 2+2a ·b t ,令f (t )=|a |2t 2+2a ·b t+|b |2,由于|b +t a |的最小值为1,所以函数f (t )的最小值也为1,即4|a |2|b |2-4(a ·b )24|a |2=1.又a ,b 均为非零向量,且夹角为θ, 因此|b |2-|b |2cos 2θ=1,于是|b |2=11-cos 2θ, 因此当θ确定时,|b |2的值唯一确定,亦即|b |唯一确定,故选B .10.(2014浙江,文10)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.(仰角θ为直线AP 与平面ABC 所成角).若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是( ).A.√305B.√3010C.4√39D.5√39答案:D解析:由于AB ⊥BC ,AB=15 m,AC=25 m,所以BC=√252-152=20 m . 过点P 作PN ⊥BC 交BC 于N , 连接AN (如图),则∠PAN=θ,tan θ=PN AN.设NC=x (x>0),则BN=20-x ,于是AN=√AB 2+BN 2=√152+(20-x )2 =√x 2-40x +625, PN=NC ·tan 30°=√33x ,所以tan θ=√33x √x 240x+625=√33√-40x +625x 2√33√625x2-40x +1, 令1x=t ,则625x 2−40x+1=625t 2-40t+1, 当t=4125时,625t 2-40t+1取最小值925,因此√625x 2-40x +1的最小值为√925=35,这时tan θ的最大值为√33×53=5√39(此时x =1254).故选D .非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.(2014浙江,文11)已知i 是虚数单位,计算1-i (1+i )2=.答案:-12−12i 解析:1-i(1+i )2=1-i 2i=(1-i )·i 2i ·i=1+i -2=-12−12i . 12.(2014浙江,文12)若实数x ,y 满足{x +2y -4≤0,x -y -1≤0,x ≥1,则x+y 的取值范围是 .答案:[1,3]解析:画出约束条件所确定的可行域(如图中阴影部分所示).令z=x+y ,则y=-x+z ,画出直线l :y=-x ,平移直线l ,当l 经过可行域中的点A (1,0)时,z 取最小值,且z min =1+0=1; 当l 经过可行域中的点B (2,1)时,z 取最大值,且z max =2+1=3,故x+y 的取值范围是[1,3].13.(2014浙江,文13)若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是 .答案:6解析:第一次执行循环体S=2×0+1=1,i=1+1=2;第二次执行循环体S=2×1+2=4,i=2+1=3; 第三次执行循环体S=2×4+3=11,i=3+1=4; 第四次执行循环体S=2×11+4=26,i=4+1=5; 第五次执行循环体S=2×26+5=57,i=5+1=6, 这时S=57>50,跳出循环,输出i=6.14.(2014浙江,文14)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是 . 答案:13解析:甲、乙两人各抽取1张,一共有3×2=6种等可能的结果,两人都中奖的结果有2×1=2种,由古典概型计算公式可得所求概率为P=26=13.15.(2014浙江,文15)设函数f (x )={x 2+2x +2,x ≤0,-x 2,x >0,若f (f (a ))=2,则a= .答案:√2解析:当a ≤0时,f (a )=a 2+2a+2=(a+1)2+1>0,于是f (f (a ))=f (a 2+2a+2)=-(a 2+2a+2)2, 令-(a 2+2a+2)2=2,显然无解;当a>0时,f (a )=-a 2<0,于是f (f (a ))=f (-a 2)=(-a 2)2+2(-a 2)+2=a 4-2a 2+2, 令a 4-2a 2+2=2,解得a=√2(a=0,-√2舍去).综上,a 的取值为√2.16.(2014浙江,文16)已知实数a ,b ,c 满足a+b+c=0,a 2+b 2+c 2=1,则a 的最大值是 . 答案:√63解析:由a+b+c=0可得c=-(a+b ).又a 2+b 2+c 2=1,所以a 2+b 2+[-(a+b )]2=1, 整理得2b 2+2ab+2a 2-1=0.又由a 2+b 2+c 2=1易知0≤b 2≤1,-1≤b ≤1,因此关于b 的方程2b 2+2ab+2a 2-1=0在[-1,1]上有解,所以{Δ=4a 2-8(2a 2-1)≥0,-1≤-a 2≤1,2-2a +2a 2-1≥0,2+2a +2a 2-1≥0,解得a ≤√63,即a 的最大值是√63.17.(2014浙江,文17)设直线x-3y+m=0(m ≠0)与双曲线x 2a 2−y 2b2=1(a>0,b>0)的两条渐近线分别交于点A ,B.若点P (m ,0)满足|PA|=|PB|,则该双曲线的离心率是 . 答案:√52解析:双曲线x 2a 2−y 2b2=1的两条渐近线方程分别是y=b a x 和y=-b ax.由{y =ba x ,x -3y +m =0,解得A (-am a -3b ,-bm a -3b),由{y =-ba x ,x -3y +m =0,解得B (-am a+3b ,bm a+3b).设AB 中点为E ,则E (-a 2ma 2-9b2,-3b 2m a 2-9b2).由于|PA|=|PB|,所以PE 与直线x-3y+m=0垂直,而k PE =3b 2m a 2-9b 2m --a 2m a 2-9b2=3b22a 2-9b2,于是3b22a 2-9b2·13=-1.所以a 2=4b 2=4(c 2-a 2). 所以4c 2=5a 2,解得e=c a=√52.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)(2014浙江,文18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知4sin 2A -B2+4sin A sin B=2+√2.(1)求角C 的大小;(2)已知b=4,△ABC 的面积为6,求边长c 的值.分析:(1)利用二倍角的余弦公式及两角和的余弦公式,将已知条件化简.由A+B 的余弦值,求出A+B 的值,从而得出角C 的大小.(2)利用三角形的面积公式求出a 值,再由余弦定理即可求出c 值. 解:(1)由已知得2[1-cos(A-B )]+4sin A sin B=2+√2,化简得-2cos A cos B+2sin A sin B=√2, 故cos(A+B )=-√22.所以A+B=3π4,从而C=π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b=4,C=π4,得a=3√2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c=√10.19.(本题满分14分)(2014浙江,文19)已知等差数列{a n }的公差d>0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m+1+a m+2+…+a m+k =65.分析:(1)利用等差数列前n 项和公式与已知进行基本量运算,即可求出公差d ,进而求出S n .(2)利用等差数列的通项公式或前n 项和公式可得出m ,k 的关系式,再由m ,k ∈N *,通过2m+k-1=13,k+1=5,求出m ,k 的值.解:(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式解得d=2或d=-5. 因为d>0,所以d=2.从而a n =2n-1,S n =n 2(n ∈N *).(2)由(1)得a m +a m+1+a m+2+…+a m+k =(2m+k-1)(k+1). 所以(2m+k-1)(k+1)=65. 由m ,k ∈N *知2m+k-1>k+1>1, 故{2m +k -1=13,k +1=5,所以{m =5,k =4.20.(本题满分15分)(2014浙江,文20)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=√2.(1)证明:AC⊥平面BCDE;(2)求直线AE与平面ABC所成的角的正切值.分析:(1)先由勾股定理的逆定理,证出线线垂直,再利用面面垂直的性质定理,推出线面垂直,即得结论.(2)由面面垂直的性质可得线面垂直,利用线面垂直的转化,可求作并证明所求线面角(为∠EAF).将空间角转化为平面角,再利用解直角三角形,求出线面角的正切值.(1)证明:连接BD.在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=√2,由AC=√2,AB=2,得AB2=AC2+BC2,即AC⊥BC.又平面ABC⊥平面BCDE,从而AC⊥平面BCDE.(2)解:在直角梯形BCDE中,由BD=BC=√2,DC=2,得BD⊥BC,又平面ABC⊥平面BCDE,所以BD⊥平面ABC.作EF∥BD,与CB延长线交于F,连接AF,则EF⊥平面ABC.所以∠EAF是直线AE与平面ABC所成的角.在Rt△BEF中,由EB=1,∠EBF=π4,得EF=√22,BF=√22.在Rt△ACF中,由AC=√2,CF=3√22,得AF=√262.在Rt△AEF中,由EF=√22,AF=√262,得tan∠EAF=√1313.所以直线AE与平面ABC所成的角的正切值是√1313.21.(本题满分15分)(2014浙江,文21)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.分析:(1)由于f(x)解析式中含绝对值,因此要去绝对值符号.化简解析式必须对a>0分情况讨论,并对x所属区间讨论.再通过求导数判断函数的单调性,利用函数单调性求出函数f(x)的最小值g(a).(2)令h(x)=f(x)-g(a),问题转化为h(x)≤4在x∈[-1,1]上恒成立.对恒成立问题,常转化为函数最值问题处理,即只需求出函数h(x)在[-1,1]上的最大值为4.因此,根据g(a)分情况讨论h(x)的最大值,借助于导数,利用函数单调性法求最值即可得解.(1)解:因为a>0,-1≤x≤1,所以①当0<a<1时,若x∈[-1,a],则f(x)=x3-3x+3a,f'(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a,f'(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.②当a≥1时,有x≤a,则f(x)=x3-3x+3a,f'(x)=3x2-3<0.故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)={a3,0<a<1,-2+3a,a≥1.(2)证明:令h(x)=f(x)-g(a),①当0<a<1时,g(a)=a3.若x ∈[a ,1],h (x )=x 3+3x-3a-a 3,得h'(x )=3x 2+3,则h (x )在(a ,1)上是增函数, 所以,h (x )在[a ,1]上的最大值是h (1)=4-3a-a 3,且0<a<1,所以h (1)≤4. 故f (x )≤g (a )+4.若x ∈[-1,a ],h (x )=x 3-3x+3a-a 3,得h'(x )=3x 2-3,则h (x )在(-1,a )上是减函数,所以,h (x )在[-1,a ]上的最大值是h (-1)=2+3a-a 3.令t (a )=2+3a-a 3,则t'(a )=3-3a 2>0. 知t (a )在(0,1)上是增函数. 所以,t (a )<t (1)=4,即h (-1)<4. 故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a ,故h (x )=x 3-3x+2,得h'(x )=3x 2-3, 此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4.22.(本题满分14分)(2014浙江,文22)已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M为AB 的中点,PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ . (1)若|PF|=3,求点M 的坐标;(2)求△ABP 面积的最大值.分析:(1)设出P 点坐标,由于PF 为焦半径,因此由抛物线定义,可求出P 点坐标,再利用已知向量关系,即可求出点M 的坐标.(2)△ABP 的面积可由底边AB 与其边上的高确定.求相交弦长|AB|只需设出直线AB 的斜截式方程,与抛物线方程联立,利用弦长公式即可.但要注意用Δ>0,确定参数范围.利用PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ 可得S △ABP =4S △ABF .所以AB 边上的高转化为焦点F 到直线AB 的距离.从而得出只含一个参数的目标函数S △ABP ,再利用导数判断函数的单调性,利用函数单调性,即可求出S △ABP 的最大值. 解:(1)由题意知焦点F (0,1),准线方程为y=-1.设P (x 0,y 0).由抛物线定义知|PF|=y 0+1,得到y 0=2,所以P (2√2,2)或P (-2√2,2).由PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ ,分别得M (-2√23,23)或M (2√23,23).(2)设直线AB 的方程为y=kx+m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0). 由{y =kx +m ,x 2=4y ,得x 2-4kx-4m=0.于是Δ=16k 2+16m>0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k ,2k 2+m ). 由PF ⃗⃗⃗⃗⃗ =3FM ⃗⃗⃗⃗⃗⃗ ,得(-x 0,1-y 0)=3(2k ,2k 2+m-1).所以{x 0=-6k ,y 0=4-6k 2-3m ,由x 02=4y 0得k 2=-15m+415. 由Δ>0,k2≥0,得-13<m ≤43.又因为|AB|=4√1+k 2√k 2+m , 点F (0,1)到直线AB 的距离为d=√1+k ,所以S △ABP =4S △ABF =8|m-1|√k 2+m =√15√3m 3-5m 2+m +1.记f (m )=3m 3-5m 2+m+1(-13<m ≤43).令f'(m)=9m2-10m+1=0,解得m1=19,m2=1.可得f(m)在(-13,19)上是增函数,在(19,1)上是减函数,在(1,43)上是增函数.又f(19)=256243>f(43).所以,当m=19时,f(m)取到最大值256243,此时k=±√5515.所以,△ABP面积的最大值为256√5135.。
2014年浙江省高考数学试卷(理科)(含解析版)
2014 年浙江省高考数学试卷(理科)一、选择题(每小题 5 分,共 50 分).(分)设全集U={ x∈N| x≥2},集合 A={ x∈ N| x 2≥5} ,则?U()1 5A=A.?B.{ 2}C.{ 5}D.{ 2,5} 2.(5分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位.(分)在()6(1+y)4的展开式中,记 x m n项的系数为 f( m,n),则 f5 51+x y(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210 6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9 7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可1能是()A.B.C.D.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |}≤min{|| ,||}B.min{|+ |,|﹣ |}≥min{|| ,||}.+ |2,|﹣ |2}≤| |2+| |2C max{|.+ |2, |﹣ |2}≥| |2+| |2D max{|9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()A.p1> p2,E(ξ1)< E(ξ2)B.p1< p2,E(ξ1)> E(ξ2).1>p2,E(ξ1)> E(ξ2)D.p1<p2,E(ξ1)< E(ξ2)C p10.(5 分)设函数 f1(x)=x2,f2( x)=2( x﹣ x2),,,,,,,.记k=| f k(a1)﹣f k(a0)|+| f k(a2)﹣f k(a1)丨+ +| f ki=0 1 299I(a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3.2<I1<I3.1<I3<I2.3<I2<I1B IC ID I2二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是.12.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有种(用数字作答).15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的3离心率是.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠ BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.4.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.20(.15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= .(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.521.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M(a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.62014 年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5 分,共 50 分)1.(5 分)设全集 U={ x∈N| x≥2} ,集合 A={ x∈ N| x2≥ 5} ,则 ?U A=()A.?B.{ 2}C.{ 5}D.{ 2,5}【考点】 1F:补集及其运算.【专题】 5J:集合.【分析】先化简集合 A,结合全集,求得 ?U A.【解答】解:∵全集 U={ x∈N| x≥2} ,集合 A={ x∈N| x2≥5} ={ x∈ N| x≥3} ,则 ?U A={ 2} ,故选: B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5 分)已知 i 是虚数单位, a,b∈R,则“ a=b=1是”“( a+bi)2=2i ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】 29:充分条件、必要条件、充要条件; A1:虚数单位 i、复数.【专题】 5L:简易逻辑.【分析】利用复数的运算性质,分别判断“a=b=1?”“( a+bi )2=2i ”与“”a=b=1?“(a+bi)2=2i ”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1时”,“(a+bi)2=(1+i)2=2i ”成立,故“a=b=1是”“(a+bi)2=2i ”的充分条件;当“(a+bi)2 =a2﹣ b2+2abi=2i 时”,“a=b=1或”“a=b=﹣1”,故“a=b=1是”“(a+bi)2=2i ”的不必要条件;综上所述,“a=b=1是”“(a+bi)2=2i ”的充分不必要条件;7故选: A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5 分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【考点】 L!:由三视图求面积、体积.【专题】 5Q:立体几何.【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为 3,底面是直角边长分别为 3、4 的直角三角形,四棱柱的高为 6,底面为矩形,矩形的两相邻边长为 3 和 4,∴几何体的表面积S=2×4× 6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138( cm2).故选: D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.84.(5 分)为了得到函数y=sin3x+cos3x 的图象,可以将函数y=cos3x 的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【考点】 HJ:函数 y=Asin(ωx+φ)的图象变换.【专题】 57:三角函数的图像与性质.【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数 y=sin3x+cos3x=,故只需将函数y=cos3x 的图象向右平移个单位,得到 y==的图象.故选: C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5 分)在( 1+x)6(1+y)4的展开式中,记 x m y n项的系数为 f( m,n),则 f(3,0)+f( 2, 1) +f(1,2)+f(0,3)=()A.45B.60C.120D.210【考点】 DA:二项式定理.【专题】 5P:二项式定理.【分析】由题意依次求出 x3y0,x2y1, x1y2,x0y3,项的系数,求和即可.【解答】解:( 1+x)6( 1+y)4的展开式中,含 x3y0的系数是:=20.f(3,0)=20;含 x2y1的系数是=60, f(2,1)=60;含 x1y2的系数是=36, f(1,2)=36;含 x0y3的系数是=4,f( 0, 3) =4;9∴f(3,0)+f( 2, 1) +f (1,2)+f(0,3)=120.故选: C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5 分)已知函数 f( x)=x3+ax2+bx+c.且 0<f(﹣ 1)=f(﹣ 2)=f(﹣ 3)≤3,则()A.c≤3B.3<c≤ 6C.6<c≤9D.c>9【考点】 7E:其他不等式的解法.【专题】 11:计算题; 51:函数的性质及应用.【分析】由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)列出方程组求出a,b,代入 0<f(﹣ 1)≤3,即可求出 c 的范围.【解答】解:由 f(﹣ 1)=f(﹣ 2)=f(﹣ 3)得,解得,则 f( x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即 6<c≤ 9,故选: C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5 分)在同一直角坐标系中,函数f(x)=x a( x> 0),g(x)=log a x 的图象可能是()A.B.10C.D.【考点】 3A:函数的图象与图象的变换.【专题】 51:函数的性质及应用.【分析】结合对数函数和幂函数的图象和性质,分当0< a< 1 时和当 a>1 时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x 的图象,比照后可得答案.此时答案 D 满足要求,当 a>1 时,函数 f(x)=x a(x≥0),g(x)=log a x 的图象为:无满足要求的答案,11综上:故选 D,故选: D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5 分)记 max{ x,y} =,min{ x,y} =,设,为平面向量,则()A.min{|+ |,|﹣ |} ≤min{| | ,||}B.min{| + | ,| ﹣ |} ≥min{|| ,||}.max{|+ |2,|﹣ |2}≤| |2+| |2.max{| + |2,| ﹣ |2} ≥C D| |2+|| 2【考点】 98:向量的加法; 99:向量的减法.【专题】 5A:平面向量及应用.【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+ 和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项 A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项 B,取,是非零的相等向量,则不等式左边min{|+ | ,|﹣|} =0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{| + | 2, |﹣| 2} =| + | 2=4,而不等式右边=|| 2+| | 2=2,故C不成立,D选项正确.故选: D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放12在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.( 5 分)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个蓝球( m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.( a)放入 i 个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i(i=1,2).则()> p ,E(ξ)< E(ξ)A.p1 212 C.p1>p2,E(ξ1)> E(ξ2)B.p < p ,E(ξ)> E(ξ)1212 D.p1<p2,E(ξ1)< E(ξ2)【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以 P1>P2;由已知ξ的取值为 1、2,ξ的取值为 1、2、 3,12所以,==,13)﹣ E(ξ)=.E(ξ12故选: A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令 m=n=3,也可以很快求解..(分)设函数1(x)=x2,f2(x)=2(x﹣x2),,,10 5fi=0, 1,2,, 99.记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k (a99)﹣ f k( a98)| ,k=1, 2, 3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【考点】 57:函数与方程的综合运用.【专题】 51:函数的性质及应用.【分析】根据记 I k=| f k(a1)﹣ f k(a0)|+| f k(a2)﹣ f k(a1)丨 + +| f k( a99)﹣ f k (a98)| ,分别求出 I1, I2,I3与 1 的关系,继而得到答案【解答】解:由,故==1,由,故×= ×<1,+=,故 I2<I1<I3,故选: B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1 的关系,属于难题.14二、填空题11.( 4 分)在某程序框图如图所示,当输入50 时,则该程序运算后输出的结果是 6 .【考点】 E7:循环结构; EF:程序框图.【专题】 5K:算法和程序框图.【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的 i 的值.【解答】解:由程序框图知:第一次循环 S=1,i=2;第二次循环 S=2×1+2=4,i=3;第三次循环S=2×4+3=11, i=4;第四次循环 S=2×11+4=26,i=5;第五次循环 S=2×26+5=57,i=6,满足条件 S> 50,跳出循环体,输出i=6.故答案为: 6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.1512.( 4 分)随机变量ξ的取值为 0,1,2,若 P(ξ =0) = , E(ξ)=1,则 D(ξ)=.【考点】 CH:离散型随机变量的期望与方差.【专题】 5I:概率与统计.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设 P(ξ=1)=p,P(ξ=2)=q,则由已知得 p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4 分)当实数 x,y 满足时,1≤ax+y≤ 4恒成立,则实数a的取值范围是[].【考点】 7C:简单线性规划.【专题】 59:不等式的解法及应用.【分析】由约束条件作出可行域,再由1≤ax+y≤ 4 恒成立,结合可行域内特殊点 A, B, C 的坐标满足不等式列不等式组,求解不等式组得实数 a 的取值范围.【解答】解:由约束条件作可行域如图,联立,解得 C(1,).联立,解得 B(2,1).16在 x﹣y﹣ 1=0 中取 y=0 得 A(1,0).要使 1≤ax+y≤4 恒成立,则,解得: 1.∴实数 a 的取值范围是.解法二:令 z=ax+y,当 a>0 时, y=﹣ax+z,在 B 点取得最大值, A 点取得最小值,可得,即 1≤a≤;当 a<0 时, y=﹣ax+z,在 C 点取得最大值,① a<﹣ 1 时,在 B 点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣ 1<a< 0 时,在 A 点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即: 1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化17思想方法,训练了不等式组得解法,是中档题.14.( 4 分)在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人,每人 2 张,不同的获奖情况有60种(用数字作答).【考点】 D9:排列、组合及简单计数问题.【专题】 5O:排列组合.【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有 1 人获得2张,1人获得 1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24 种;一、二、三等奖,有 1 人获得 2 张, 1 人获得 1 张,共有=36 种,共有 24+36=60 种.故答案为: 60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.( 4 分)设函数 f(x)=,若f(f(a))≤ 2,则实数a的取值范围是(﹣∞,].【考点】 5B:分段函数的应用.【专题】 59:不等式的解法及应用.【分析】画出函数 f (x)的图象,由f(f( a))≤ 2,可得 f( a)≥﹣ 2,数形结合求得实数 a 的取值范围.【解答】解:∵函数 f (x)=,它的图象如图所示:由 f(f( a))≤ 2,可得 f( a)≥﹣ 2.当 a<0 时, f (a)=a2+a=(a+)2﹣≥﹣2恒成立;18当 a≥0 时, f (a)=﹣a2≥﹣ 2,即 a2≤2,解得 0≤ a≤,则实数 a 的取值范围是a≤,故答案为:(﹣∞,] .【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.( 4 分)设直线 x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点 P( m,0)满足 | PA| =| PB| ,则该双曲线的离心率是.【考点】 KC:双曲线的性质.【专题】 5D:圆锥曲线的定义、性质与方程.【分析】先求出 A,B 的坐标,可得AB 中点坐标为(,),利用点 P( m,0)满足 | PA| =| PB| ,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则19与直线 x﹣3y+m=0 联立,可得 A(,),B(﹣,),∴ AB中点坐标为(,),∵点 P(m, 0)满足 | PA| =| PB| ,∴=﹣3,∴ a=2b,∴= b,∴e= = .故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4 分)如图,某人在垂直于水平地面ABC的墙面前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB,某目标点 P 沿墙面上的射线 CM 移动,此人为了准确瞄准目标点 P,需计算由点 A 观察点 P 的仰角θ的大小.若 AB=15m,AC=25m,∠BCM=30°,则 tan θ的最大值是.(仰角θ为直线AP与平面 ABC所成角)【考点】 HO:三角函数模型的应用;HU:解三角形.【专题】 58:解三角形.20【分析】过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵ AB=15m,AC=25m,∠ ABC=90°,∴ BC=20m,过 P 作 PP′⊥ BC,交 BC于 P′,连接 AP′,则 tan θ=,设 BP′=x,则 CP′=20﹣ x,由∠ BCM=30°,得 PP′=CP′tan30 °=(20﹣ x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则函数在x∈[ 0,20]单调递减,∴ x=0 时,取得最大值为=.若 P′在 CB的延长线上, PP′=CP′tan30 °=(20+x),在直角△ ABP′中, AP′=,∴ tan θ= ?,令 y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分21析解决问题的能力,属于中档题.三、解答题18.( 14 分)在△ ABC中,内角 A, B, C 所对的边分别为 a,b,c.已知 a≠b,c= ,cos2A﹣cos2 B= sinAcosA﹣sinBcosB(1)求角 C 的大小;(2)若 sinA= ,求△ ABC的面积.【考点】 GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】 58:解三角形.【分析】( 1)利用倍角公式、两角和差的正弦公式可得,由 a≠ b 得, A≠B,又 A+B∈( 0,π),可得,即可得出.(2)利用正弦定理可得 a,利用两角和差的正弦公式可得 sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由 a≠b 得, A≠ B,又 A+B∈( 0,π),得,即,∴;( 2)由,利用正弦定理可得,得,由 a<c,得 A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.22.(分)已知数列{ a n } 和{ b } 满足 a a(n∈N*).若 { a } 为等19 14n1a2a3n=n比数列,且 a1=2, b3=6+b2.(Ⅰ)求 a n和 b n;(Ⅱ)设 c(∈N *).记数列 { c } 的前 n 项和为 S .n=n n n(i)求 S n;(i i)求正整数 k,使得对任意 n∈N*均有 S k≥ S n.【考点】 8E:数列的求和; 8K:数列与不等式的综合.【专题】 54:等差数列与等比数列.【分析】(Ⅰ)先利用前n 项积与前( n﹣1)项积的关系,得到等比数列 { a n } 的第三项的值,结合首项的值,求出通项 a n,然后现利用条件求出通项 b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵ a1 23 a n(∈*)①,a a=n N当 n≥2,n∈N*时,②,由①②知:,令 n=3,则有.∵b3=6+b2,∴ a3=8.∵{ a n} 为等比数列,且 a1=2,∴ { a n} 的公比为 q,则=4,由题意知 a n>0,∴ q> 0,∴ q=2.∴( n∈ N*).又由 a a(∈N * )得:1a2a3n=n,23,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵ c n ===.∴S n=c1+c2+c3+ +c n====;(ii)因为 c1=0,c2>0,c3> 0, c4>0;当 n≥5 时,,而=>0,得,所以,当 n≥5 时, c n< 0,综上,对任意 n∈ N*恒有 S4≥S n,故 k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15 分)如图,在四棱锥 A﹣BCDE中,平面 ABC⊥平面 BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明: DE⊥平面 ACD;(Ⅱ)求二面角B﹣AD﹣ E 的大小.24【考点】 LW:直线与平面垂直; MJ:二面角的平面角及求法.【专题】 5F:空间位置关系与距离;5G:空间角; 5Q:立体几何.【分析】(Ⅰ)依题意,易证AC⊥平面 BCDE,于是可得 AC⊥ DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,利用题中的数据,解三角形,可求得 BF=,AF= AD,从而 GF= ,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形 BCDE中,由 DE=BE=1,CD=2,得 BD=BC=,由 AC=222,AB=2得 AB=AC+BC ,即 AC⊥BC,又平面 ABC⊥平面 BCDE,从而 AC⊥平面 BCDE,所以 AC⊥DE,又 DE⊥DC,从而 DE⊥平面 ACD;(Ⅱ)作 BF⊥AD,与 AD 交于点 F,过点 F 作 FG∥ DE,与 AE交于点 G,连接 BG,由(Ⅰ)知 DE⊥AD,则 FG⊥AD,所以∠ BFG就是二面角 B﹣AD﹣ E 的平面角,222在直角梯形 BCDE中,由 CD =BC+BD ,得 BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于 AC⊥平面 BCDE,得 AC⊥ CD.在 Rt△ACD中,由 DC=2,AC= ,得 AD= ;在Rt△AED中,由 ED=1,AD= 得 AE= ;在 Rt△ABD 中,由 BD=,AB=2,AD=得BF=,AF= AD,从而GF=,在△ ABE,△ ABG中,利用余弦定理分别可得 cos∠BAE=,BG=.在△ BFG中, cos∠BFG==,25所以,∠ BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.21.( 15 分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点 P 在第一象限.(Ⅰ)已知直线l 的斜率为 k,用 a,b,k 表示点 P 的坐标;(Ⅱ)若过原点O 的直线 l1与 l 垂直,证明:点 P 到直线 l1的距离的最大值为 a ﹣b.【考点】 KH:直线与圆锥曲线的综合.【专题】 5D:圆锥曲线的定义、性质与方程;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设直线 l 的方程为 y=kx+m( k< 0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△ =0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,设直线 l1的方程为 x+ky=0,利用点26到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点 P 到直线 l 1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线 l 的方程为 y=kx+m(k<0),由,消去 y得(b2+a2k2) x2+2a2kmx+a2m2﹣a2b2=0.由于直线 l 与椭圆 C 只有一个公共点P,故△ =0,即 b2﹣ m2+a2 k2=0,此时点 P 的横坐标为﹣,代入y=kx+m得点 P 的纵坐标为﹣ k?+m=,∴点 P 的坐标为(﹣,),又点 P 在第一象限,故m>0,故 m=,故点 P 的坐标为 P(,).(Ⅱ)由于直线 l1过原点 O 且与直线 l 垂直,故直线 l1的方程为 x+ky=0,所以点P 到直线 l1的距离d=,整理得: d=,27因为a2k2 +≥ 2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点 P 到直线 l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22.( 14 分)已知函数 f (x)=x3+3| x﹣ a| (a∈R).(Ⅰ)若 f(x)在 [ ﹣ 1,1] 上的最大值和最小值分别记为M(a),m(a),求 M (a)﹣ m(a);(Ⅱ)设 b∈R,若 [ f(x)+b] 2≤4 对 x∈[ ﹣1,1] 恒成立,求 3a+b 的取值范围.【考点】 6E:利用导数研究函数的最值.【专题】 53:导数的综合应用.【分析】(Ⅰ)利用分段函数,结合 [ ﹣ 1,1] ,分类讨论,即可求 M( a)﹣ m( a);(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,则[ f( x)+b] 2≤4 对 x∈ [ ﹣ 1,1] 恒成立,转化为﹣ 2≤h(x)≤2 对 x∈[ ﹣1,1] 恒成立,分类讨论,即可求 3a+b 的取值范围.【解答】解:(Ⅰ)∵ f(x)=x3+3| x﹣a| =,28∴ f (′ x)=,①a≤﹣ 1 时,∵﹣ 1≤x≤1,∴ x≥a,f( x)在(﹣ 1, 1)上是增函数,∴ M(a)=f(1)=4﹣3a, m(a)=f(﹣ 1) =﹣4﹣3a,∴M(a)﹣ m( a) =8;②﹣ 1<a< 1 时, x∈( a, 1),f (x)=x3+3x﹣ 3a,在( a,1)上是增函数;x∈(﹣ 1, a),f(x) =x3﹣ 3x+3a,在(﹣ 1,a)上是减函数,∴M(a)=max{ f(1),f(﹣ 1)} ,m(a)=f(a)=a3,∵ f(1)﹣ f(﹣ 1) =﹣ 6a+2,∴﹣ 1<a≤时, M(a)﹣ m( a)=﹣a3﹣3a+4;<a< 1 时, M ( a)﹣ m(a)=﹣a3+3a+2;③a≥ 1 时,有 x≤ a, f(x)在(﹣ 1,1)上是减函数,∴ M(a)=f(﹣ 1) =2+3a,m( a)=f(1)=﹣2+3a,∴ M(a)﹣ m( a) =4;(Ⅱ)令 h(x)=f( x)+b,则 h( x)=,h′(x)=,∵[ f(x)+b] 2≤ 4 对 x∈[ ﹣1,1] 恒成立,∴﹣ 2≤h(x)≤ 2 对 x∈ [ ﹣ 1, 1] 恒成立,由(Ⅰ)知,① a≤﹣ 1 时, h( x)在(﹣ 1,1)上是增函数,最大值 h(1)=4﹣3a+b,最小值 h(﹣ 1)=﹣4﹣3a+b,则﹣ 4﹣3a+b≥﹣ 2 且 4﹣3a+b≤2 矛盾;②﹣ 1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣ 3a+b,∴ a3+b≥﹣ 2且 4﹣ 3a+b≤ 2,令 t( a) =﹣ 2﹣ a3+3a,则 t ′( a)=3﹣3a2>0,t (a)在( 0,)上是增函数,∴t (a)> t (0)=﹣2,∴﹣ 2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值 h(﹣ 1)=3a+b+2,则 a3+b≥﹣ 229且 3a+b+2≤2,∴﹣< 3a+b≤0;④a≥ 1 时,最大值 h(﹣ 1)=3a+b+2,最小值 h(1)=3a+b﹣2,则 3a+b﹣2≥﹣2 且 3a+b+2≤2,∴ 3a+b=0.综上, 3a+b 的取值范围是﹣ 2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.30。
2014年 浙江省 高考数学 试卷及解析(文科)
2014年浙江省高考数学试卷(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(﹣∞,5]B.[2,+∞)C.(2,5) D.[2,5]2.(5分)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.72cm3B.90cm3C.108cm3D.138cm34.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A .向左平移个单位B .向右平移个单位1C .向左平移个单位D .向右平移个单位5.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)设m、n是两条不同的直线,α,β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α7.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>98.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A .B .C .D .9.(5分)设θ为两个非零向量,的夹角,已知对任意实数t,|+t|的最小值为1.()A.若θ确定,则||唯一确定B.若θ确定,则||唯一确定C.若||确定,则θ唯一确定D.若||确定,则θ唯一确定210.(5分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练,已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小(仰角θ为直线AP 与平面ABC所成的角).若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是()A .B .C .D .二、填空题(本大题共7小题,每小题4分,满分28分)11.(4分)已知i 是虚数单位,计算=.12.(4分)若实数x,y满足,则x+y的取值范围是.13.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.314.(4分)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是.15.(4分)设函数f(x)=,若f(f(a))=2,则a=.16.(4分)已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是.17.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.三、解答题(本大题共5小题,满分72分。
浙江省学考数学试题汇编 第3章三角函数与三角恒等变换
2010-2014学考真题汇编---第三章 三角函数与三角恒等变换班级 姓名一、选择题1、函数()sin(2)()3f x x x R π=+∈的最小正周期为 ( )(A)2π(B)π (C)2π (D)4π 2、在ABC ∆中,若2,1,30BC AC A ==∠=,则ABC ∆是 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)形状不能确定 3、已知[,]123x ππ∈-,则函数44sin cos y x x =-的最小值是 ( )(A)1- (B) (C)12(D)1 4、56π是 ( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5、函数()cos2f x x =,x ∈R 的最小正周期是 ( )(A)4π(B)2π(C) π (D)2π6、sin y x =的图象向右平移3π个单位长度后,得到的图象所对应的函数是 ( )(A))3sin(π-=x y (B))3sin(π+=x y (C)3sin π-=x y (D)3sin π+=x y7、∆ABC 中角,,A B C 所对边分别为,,a b c ,若b =2,c =1,B =45º,则sin C =( ) (A)42 (B)21 (C)22 (D)18、已知α为钝角,1sin()43πα+=,则sin()4πα-的值是 ( ) (A)31- (B)322- (C) 31(D)322 9、sin 4π= ( )(A)21 (B)22 (C)23 (D) 110、函数)6cos(2)(π+=x x f ,x ∈R 的最小正周期为 ( )(A)4π (B)2π (C)π (D)2π11、若1tan 2α=,1tan 3β=,则tan()αβ+= ( ) (A)75 (B)65(C)1 (D)212、将函数)3sin(π-=x y 的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所对应的函数是 ( )(A))32sin(π-=x y (B))322sin(π-=x y (C))321sin(π-=x y (D))621sin(π-=x y13、若0cos ,0sin <>αα,则角α为 ( ) (A) 第一象限角 (B )第二象限角 (C) 第三象限角 (D) 第四象限角 14、函数R x x x f ∈+=),42sin()(π的最小正周期为 ( )(A)4π (B )2π(C)π (D)π2 15、在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知0060,45,3===B A b ,则a = ( ) (A)2 (B )3 (C)223 (D) 616、为得到)42sin(2π+=x y 的图像,须把x y 2sin 2=的图像上所有点( )(A) 向左平行移动8π个单位长度 (B )向右平行移动8π个单位长度 (C) 向左平行移动4π个单位长度 (D) 向右平行移动4π个单位长度17、与角-6π终边相同的角是 ( )A.56πB.3πC.116πD.23π18、设函数()sin cos f x x x =,x ∈R ,则函数()f x 的最小值是( )A.14-B.12-C.D.-119、在△ABC 中,若2AB =,3AC =,60A ∠=,则BC 的长为( )C.3二、填空题20、sin 22cos38cos 22sin38+= . 21、若55cos =α,20πα<<,则)62sin(πα-= 三、解答题22、在锐角∆ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求∆ABC 的面积及a 的值.23、已知3sin ,052παα=<<,求cos α和sin()4πα+的值.答案:BAACC AABBD CABCA ACBD22、解:1sin 2ABC S bc A ∆==由题意知,ABC ∆为锐角三角形,则1cos 3A =有余弦定理知,2222cos 9a b c bc A =+-=,则3a =23、解:∵3sin ,052παα=<<∴4cos 5α===∴34sin()sin cos cos sin 44455πππααα+=+=+=。
[精品]2014年浙江省普通高中学业水平考试及答案
2014年浙江省普通高中业水平考试模拟试卷考生须知:1全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ,试卷共 页,有五大题,满分为100分。
考试时间90分钟。
2试卷Ⅰ、Ⅱ的答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效。
3请用蓝、黑墨水或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上,用铅笔将答卷Ⅰ上的准考证号和名称所对应的括号和方框内涂黑。
4本卷可能用到的相对原子质量: H-1 H-4 -12 N-14 O-16 F-56 N-23 -355 I-127试 卷 I一、选择题(本题有24小题,每小题只有一个选项正确,每题2分,共48分)1. 2012年7月,瑞士一家研究机构称在前巴勒斯坦国总统阿拉法特的遗物中发现了钚元素的痕迹,钚是一种毒性很强的元素,该机构称阿拉法特很有可能死于钚中毒。
Pu 23994是钚的一种具有放射性的核素,下列关于Pu 23994的说法中正确的是A .质量是239B .核外电子239 .质子是145 D .中子是94 2.电子的发现是以下哪位家A .阿伏伽德罗B .卢瑟福 .门捷列夫 D .汤姆孙3.下列用语表达不正确的是A .氟离子的结构示意图:B .二氧碳的结构式:O==O. 氯钠的电子式:D .硫酸钠的电离方程式:N 2SO 4=2N ++SO 42-4.分类法是一种行之有效、简单易行的方法,人们在认识事物时可以采取多种分类方。
下列关于“H 3OON”的分类不正确的是A .合物B .氧物 .有机物 D .钠盐5.当光束通过鸡蛋清水溶液时,从侧面观察到一条光亮的“通路”,说明鸡蛋清水溶液是A.溶液 B.胶体.悬浊液 D.乳浊液6.电解质有强弱之分,以下物质属于强电解质的是A.H2O B.2.NH3·H2O D.N7.在某酸性无色透明溶液中能大量共存的离子组是A. A3+、Ag+、NO3-、- B.Mg2+、NH4+、NO3-、-. B2+、+、O32-、- D.2+、N+、NO3-、SO42-8.下列说法正确的是A.L、N、元素的原子核外电子层随着核电荷的增加而减少B.第二周期元素从L到F,非金属性逐渐减弱.因为比N容易失去电子,所以比N的还原性强D.O与S为同主族元素,且O比S的非金属性弱9.用固体N配制250L 1/L的N溶液,下列仪器中不需要使用的是A.250L容量瓶 B.烧瓶.玻璃棒 D.胶头滴管10.下列物质中,分子的空间结构为正四面体的是A.甲烷 B.乙烯.乙炔D.苯11.下列物质中属于共价合物的是A.H B.NOH .MgO D.I212.下图表示某有机反应过程的示意图,该反应的类型是A.取代反应B.加成反应.聚合反应 D.酯反应13.下列物质和新制(OH)2共热,有红色沉淀产生的是A.油脂B.乙醇.葡萄糖 D.乙酸14.下列方程式中,正确的是A .实验室用浓盐酸与MO 2反应制2:MO 2 +2H ++2-=2↑+M 2+ +H 2OB .氢氧钡溶液与稀硫酸反应:B 2++SO 42-=BSO 4↓.2氢气和1 氧气合生成2 液态水,放出5716J 热量的热方程式2H 2(g) +O 2(g)= 2H 2O() ΔH=- 5716 J·-1D .醋酸溶液与水垢中的O 3反应:O 3+2H +=2++H 2O +O 2↑ 15.用N A 表示阿伏加德罗常的值,下列叙述正确的是A .224 L O 2中含有氧分子的个为2N AB .56g F 与足量氯气反应转移的电子为2N A .4 g 氦气中含有氦原子的个为N A D .1 ·L -1 Mg 2溶液中含有氯离子个为2N A16.、b 、c 、d 均为短周期元素,它们在周期表中的位置如图所示。
2014年普通高等学校招生全国统一考试(浙江卷)数学(文)试卷及解析
22.本题主要考查抛物线几何性质、直线与抛物线的 位置关系、三角形面积公式、平面向量等基础知识,同时考查解析几何的基本思想方法和运算求解能力。满分14分。
(1)由题意知,焦点为 ,准线方程为 ,
设 ,由抛物线的定义知, ,得到 ,
代入 求得 或 ,
所以 或 ,由 得 或 ,
(2)设直线 的方程为 , , , ,
(1)因为 ,
①当 时,
若 ,则 , ,故 在 上是减函数;
若 ,则 , ,故 在 上是增函数;
所以, .
②当 ,则 , , ,故 在 上是减函数,
所以 ,
综上所述, .
(2)令 ,
①当 时, ,
若 , 得 ,所以 在 上是增函数,所以 在 上的最大值是 ,且 ,所以 ,
故 .
若 , ,则 ,所以 在 上是减函数,
14.在三张奖劵中有一、二等各一张,另有一张无奖,甲乙两人各抽取一张,两人都中奖的概率为
.
15.设函数 ,若 ,则 .
16.已知实数 、 、 满足 , ,则 的最大值为为_______.
17. 设直线 与双曲线 的两条渐近线分别交于 、 ,若 满足 ,则双曲线的离心率是.
三.解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(1)连结 ,在直角梯形 中,由 , 得 ,
由 得 ,即 ,
又平面 平面 ,从而 平面 .
(2)在直角梯形 中,由 , 得 ,
又平面 平面 ,所以 平面 .
作 于 的延长线交于 ,连结 ,则 平面 ,
所以 是直线 与平面 所成的角.
在 中,由 , ,得 , ,
在 中, , ,得 ,
在 中,由 , 得 ,
2014年全国初中数学联合竞赛初一试题(浙江卷)参考答案
2014 年全国初中数学联合竞赛初一试题(浙江卷)参考答案第一试一、选择题:(本题满分 42 分,每小题 7 分)1. 1.设,则 abcd < 0a| a | + b | b | + c | c | + d | d | + abcd | abcd | 的大于 0 的值等于( ) A. 1 B. 2 C. 3 D.4【答案】A【解析】因为 ,所以其中有一个,三个小于 0.由于大于 0, 所以,一个小于abcd < 00.2.已知 a =20142013 ,b = 20132014 , c = 20132014 d = 20142013 ,则 a ,b , c ,2013 2014 2013 2014d 大小关系是( )A .a >b >c >dB .c >a >d >bC .a >d >c >bD .a >c >d >b【答案】D【解析】因为 20142013 > 20132014 ,所以a = 20142013 > c =20132014 ,20132013同理: b < d 又因为c =2013⨯10000 + 2014 = 10000 + 2014 , d = 2014⨯10000 + 2013 = 10000 +20132013 2013 2014 2014所以c > d .故选D3、 12 + 1 -11 + 2 1 31 + 4 1 - 5 1 + 6 1 - 7 1 + 8 1 - 9 1 +10 1 -111的值为( )23 2 3 2 32 3 2 3 2 3A. 5B. 6C. 7D. 8【答案】C【解析】12 + 1 -11 + 2 1 - 31 + 4 1 - 5 1 + 6 1 - 7 1 + 8 1 - 9 1 +10 1 -1112 3 2 3 2 3 2 3 2 3 2 3= 12 + 1 - (1 + 1) + (2 + 1) - (3 + 1) + (4 + 1) - (5 + 1) + (6 + 1)2 3 2 3 2 3 2- (7 + 1) + (8 + 1) - (9 + 1) + (10 + 1) - (11+ 1) = (1+ 1 - 1) ⋅ 6 = 73 2 3 2 3 2 34. 有 2014 个数排成一行,其中任意相邻三个数中,中间的数等于它前后两数的和, 若第一个数和第二个数都是 1,则这 2014 个数的和等于( )A.2014 B.1 C.0 D.-1 【答案】B.【解析】由已知可知,前n 个数的排列顺序为1,1,0,-1,-1,0,1,1,0,…由此可见,从第7个数开始循环,即每隔6个数循环,这6个数的和等于0.又因为2014=6×335+4,所以这2014 个数的和等于1,故选B.5.假设时间用十进制表示,即每天有10 个小时,每小时有100 分钟.按照十进制生产出来的新电子闹钟读数为:午夜前为9:99;午夜对应0:00;1:25 对应凌晨3:00;7:50 对应下午6:00.在十进制下,如果一个人想在早上6:36 醒来,那么他应该将新电子闹钟定时在()A.2:00 B.2:25 C.2:50 D.2:75【答案】D.【解析】正常情况下,每天有60⨯ 24 =1440 分钟.早上6:36 表示午夜后396 分钟.在十进制下,每天有1000 分钟,因此早上6:36 对应午夜后396 ⨯1000 = 275 分钟.从而,1440新电子闹钟应该设定的时间为2:75,故选D.6、甲、乙、丙、丁的衬衫上各印有一个号码,甲说“我是2号,乙是3号”;乙说“我是2号,丙是4号”;丙说“我是3号,丁是2号”;丁说“我是1号,乙是3号”;他们四人都只说对一半,则甲是()A. 4 号B. 3 号C. 2 号D. 1 号【答案】D【解析】如果甲说“我是2 号,乙是3 号”中乙是3 号为真,由乙说丙是4 号为真,则由丙说丁是2 号为真,则乙是3 号,丙是4 号,丁为2 号,所以甲为1 号。
2014年普通高等学校招生全国统一考试(浙江卷)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( ) A .∅ B .{2} C .{5} D .{2,5}2.已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.3.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 24.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位5.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .2106.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )8.记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2 D .max{|a +b |2,|a -b |2}≥|a |2+|b |29.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)10.设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin 2πx |,a i =i99,i =0,1,2,…,99.记I k=|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3.则( )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 1二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.12.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.13.当实数x ,y 满足{ x +2y -4≤0, x -y -1≤0, x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).15.设函数f (x )={ x 2+x ,x <0, -x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________.17.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.19.(本题满分14分)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .20.(本题满分15分)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.21.(本题满分15分)如图,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a -b .22.(本题满分14分)已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:选B 由题意知U ={x ∈N |x ≥2},A ={x ∈N |x ≥5},所以∁U A ={x ∈N |2≤x <5}={2}.故选B.2.解析:选A 当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.3.解析:选D 由三视图画出几何体的直观图,如图所示,则此几何体的表面积S =S 1-S正方形+S 2+2S 3+S斜面,其中S 1是长方体的表面积,S 2是三棱柱的水平放置的一个侧面的面积,S 3是三棱柱的一个底面的面积,则S =(4×6+3×6+3×4)×2-3×3+3×4+2×12×4×3+5×3=138(cm 2),选D.4.解析:选C 因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos 3⎝⎛⎭⎫x -π12,所以将函数y =2cos 3x 的图象向右平移π12个单位后,可得到y =2cos ⎝⎛⎭⎫3x -π4的图象,故选C. 5.解析:选C 由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.6.解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].7.解析:选D 当a >1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D.8.解析:选D 对于min{|a +b |,|a -b |}与min{|a |,|b |},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不定,因此A ,B 均错;而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max{|a +b |2,|a -b |2}≥|a |2+|b |2,因此选D.9.解析:选A 解法一(特值法) 取m =n =3进行计算、比较即可.解法二(标准解法) 从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P (ξ=0)=n m +n =P (ξ1=1),P (ξ=1)=m m +n =P (ξ1=2),所以E (ξ1)=1·P (ξ1=1)+2·P (ξ1=2)=m m +n +1,所以p 1=E (ξ1)2=2m +n2(m +n );从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P (η=0)=C 2n C 2m +n =P (ξ2=1),P (η=1)=C 1n C 1mC 2m +n=P (ξ2=2),P (η=2)=C 2mC 2m +n =P (ξ2=3),所以E (ξ2)=1·P (ξ2=1)+2P (ξ2=2)+3P (ξ2=3)=2m m +n +1,所以p 2=E (ξ2)3=3m +n3(m +n ),所以p 1>p 2,E (ξ1)<E (ξ2),故选A.10.解析:选B 显然f 1(x )=x 2在[0,1]上单调递增,可得f 1(a 1)-f 1(a 0)>0,f 1(a 2)-f 1(a 1)>0,…,f 1(a 99)-f 1(a 98)>0,所以I 1=|f 1(a 1)-f 1(a 0)|+|f 1(a 2)-f 1(a 1)|+…+|f 1(a 99)-f 1(a 98)|=f 1(a 1)-f 1(a 0)+f 1(a 2)-f 1(a 1)+…+f 1(a 99)-f 1(a 98)=f 1(a 99)-f 1(a 0)=⎝⎛⎭⎫99992-0=1.f 2(x )=2(x -x 2)在⎣⎡⎦⎤0,4999上单调递增,在⎣⎡⎦⎤5099,1上单调递减,可得f 2(a 1)-f 2(a 0)>0,…,f 2(a 49)-f 2(a 48)>0,f 2(a 50)-f 2(a 49)=0,f 2(a 51)-f 2(a 50)<0,…,f 2(a 99)-f 2(a 98)<0,所以I 2=|f 2(a 1)-f 2(a 0)|+|f 2(a 2)-f 2(a 1)|+…+|f 2(a 99)-f 2(a 98)|=f 2(a 1)-f 2(a 0)+…+f 2(a 49)-f 2(a 48)-[f 2(a 51)-f 2(a 50)+…+f 2(a 99)-f 2(a 98)]=f 2(a 49)-f 2(a 0)-[f 2(a 99)-f 2(a 50)]=2f 2(a 50)-f 2(a 0)-f 2(a 99)=4×5099×⎝⎛⎭⎫1-5099=9 8009 801<1.f 3(x )=13|sin 2πx |在⎣⎡⎦⎤0,2499,⎣⎡⎦⎤5099,7499上单调递增,在⎣⎡⎦⎤2599,4999,⎣⎡⎦⎤7599,1上单调递减,可得f 3(a 1)-f 3(a 0)>0,…,f 3(a 24)-f 3(a 23)>0,f 3(a 25)-f 3(a 24)>0,f 3(a 26)-f 3(a 25)<0,…,f 3(a 49)-f 3(a 48)<0,f 3(a 50)-f 3(a 49)=0,f 3(a 51)-f 3(a 50)>0,…,f 3(a 74)-f 3(a 73)>0,f 3(a 75)-f 3(a 74)<0,f 3(a 76)-f 3(a 75)<0,…,f 3(a 99)-f 3(a 98)<0,所以I 3=|f 3(a 1)-f 3(a 0)|+|f 3(a 2)-f 3(a 1)|+…+|f 3(a 99)-f 3(a 98)|=f 3(a 25)-f 3(a 0)-[f 3(a 49)-f 3(a 25)]+f 3(a 74)-f 3(a 50)-[f 3(a 99)-f 3(a 74)]=2f 3(a 25)-2f 3(a 49)+2f 3(a 74)=232sin 49π99-sin π99>232sin 5π12-sin π12=2326+224-6-24=6+326>1.因此I 2<I 1<I 3.二、填空题:本大题共7小题,每小题4分,共28分.11.解析:S =0,i =1;S =1,i =2;S =4,i =3;S =11,i =4;S =26,i =5;S =57,i =6,此时S >n ,所以i =6.答案:612.解析:由题意设P (ξ=由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25.答案:2513.解析:由线性规划的可行域,求出三个交点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax +y ≤4,可得1≤a ≤32.答案:⎣⎡⎦⎤1,32 14.解析:分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C 23C 11A 24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 34=24,则获奖情况总共有36+24=60(种).答案:6015.解析:结合图形(图略),由f (f (a ))≤2可得f (a )≥-2,可得a ≤ 2. 答案:(-∞,2)16.解析:联立直线方程与双曲线渐近线方程y =±b a x 可解得交点为⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB=13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.答案:5217.解析:作PH ⊥BC ,垂足为H ,设PH =x ,则CH =3x ,由余弦定理AH =625+3x 2-403,tan θ=tan ∠P AH =PHAH =1625x 2-403x+3⎝⎛⎭⎫1x >0,故当1x=43125时,tan θ取得最大值,最大值为539.答案:539三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.解析:(1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B ,即32sin 2A -12cos 2A =32sin 2B -12cos 2B , sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6. 由a ≠b ,得A ≠B ,又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310,所以,△ABC 的面积为S =12ac sin B =83+1825.19.解析:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2,舍去), 所以数列{a n }的通项为a n =2n (n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时, c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n-1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n≤5·(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.20.解析:(1)在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC = 2. 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE . 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD .(2)法一:作BF ⊥AD ,与AD 交于点F .过点F 作FG ∥DE ,与AE 交于点G ,连接BG ,由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B -AD -E 的平面角. 在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC , 又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB . 由于AC ⊥平面BCDE ,得AC ⊥CD .在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =233,AF =23AD .从而GF =23.在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32.所以,∠BFG =π6,即二面角B -AD -E 的大小是π6.法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0). 设平面ADE 的法向量为m =(x 1,y 1,z 1),于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32. 由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.21.解析:(1)设直线l 的方程为y =kx +m (k <0),由消去y 得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝⎛⎭⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2.又点P 在第一象限,故点P 的坐标为P -a 2kb 2+a 2k 2,b 2b 2+a 2k 2.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b2k2,因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b ,当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b . 22.由于-1≤x ≤1,①当a ≤-1时,有x ≥a ,故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.②当-1<a <1时,若x ∈(a,1),f (x )=x 3+3x -3a ,在(a,1)上是增函数;若x ∈(-1,a ),f (x )=x 3-3x +3a ,在(-1,a )上是减函数,所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2. ③当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立,即-2≤h (x )≤2对x ∈[-1,1]恒成立, 所以由(1)知,①当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾;②当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13. 令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )≥t (0)=-2,因此-2≤3a +b ≤0;③当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2是3a +b +2≤2,解得-2827<3a +b ≤0; ④当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.。
2014年高考浙江理科数学试题及答案(word解析版)
2014年普通高等學校招生全國統一考試(浙江卷)數學(理科)第Ⅰ卷(選擇題 共50分)一、選擇題:本大題共10小題,每小題5分,共50分,在每小題給出の四個選項中,只有一項符合題目要求. (1)【2014年浙江,理1,5分】設全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,則U A =ð( )(A )∅ (B ){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|A x N x x N x =∈≥=∈,{|2{2}U C A x N x =∈≤=,故選B . 【點評】本題主要考查全集、補集の定義,求集合の補集,屬於基礎題. (2)【2014年浙江,理2,5分】已知i 是虛數單位,,a b R ∈,則“1a b ==”是“2(i)2i a b +=”の( )(A )充分不必要條件 (B )必要不充分條件 (C )充分必要條件 (D )既不充分也不必要條件 【答案】A【解析】當1a b ==時,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,則22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故選A .【點評】本題考查の知識點是充要條件の定義,複數の運算,難度不大,屬於基礎題.(3)【2014年浙江,理3,5分】某幾何體の三視圖(單位:cm )如圖所示,則此幾何體の表面積是( ) (A )902cm (B )1292cm (C )1322cm (D )1382cm【答案】D【解析】由三視圖可知直觀圖左邊一個橫放の三棱柱右側一個長方體,故幾何體の表面積為:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故選D .【點評】本題考查了由三視圖求幾何體の表面積,根據三視圖判斷幾何體の形狀及數據所對應の幾何量是解題の關鍵.(4)【2014年浙江,理4,5分】為了得到函數sin 3cos3y x x =+の圖像,可以將函數y x の圖像( )(A )向右平移4π個單位 (B )向左平移4π個單位 (C )向右平移12π個單位 (D )向左平移12π個單位【答案】C【解析】sin3cos3))]412y x x x x ππ=+=+=+,而2s i n (32y x x π=+)]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需將y x の圖象向右平移12π個單位,故選C .【點評】本題考查兩角和與差の三角函數以及三角函數の平移變換の應用,基本知識の考查. (5)【2014年浙江,理5,5分】在64(1)(1)x y ++の展開式中,記m n x y 項の系數(,)f m n ,則(3,0)(2,1)(1,2)f f f f +++=( ) (A )45 (B )60 (C )120 (D )210 【答案】C 【解析】令x y =,由題意知(3,0)(2,1)(1,2)(0,3)f f f f +++即為10(1)x +展開式中3x の系數,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故選C .【點評】本題考查二項式定理系數の性質,二項式定理の應用,考查計算能力. (6)【2014年浙江,理6,5分】已知函數32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) (A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c >【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故選C .【點評】本題考查方程組の解法及不等式の解法,屬於基礎題. (7)【2014年浙江,理7,5分】在同一直角坐標系中,函數()(0)a f x x x =≥,()log a g x x =の圖像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函數()(0)a f x x x =≥,()log a g x x =分別の冪函數與對數函數答案A 中沒有冪函數の圖像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故選D .【點評】本題考查の知識點是函數の圖象,熟練掌握對數函數和冪函數の圖象和性質,是解答の關鍵.(8)【2014年浙江,理8,5分】記,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,設,a b 為平面向量,則( )(A )min{||,||}min{||,||}a b a b a b +-≤ (B )min{||,||}min{||,||}a b a b a b +-≥ (C )2222max{||,||}||||a b a b a b +-≤+ (D )2222max{||,||}||||a b a b a b +-≥+【答案】D【解析】由向量運算の平行四邊形法可知min{||,||}a b a b +-與min{||,||}a b の大小不確定,平行四邊形法可知max{||,||}a b a b +-所對の角大於或等於90︒ ,由餘弦定理知2222max{||,||}||||a b a b a b +-≥+,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+),故選D .【點評】本題在處理時要結合著向量加減法の幾何意義,將a ,b ,a b +,a b -放在同一個平行四邊形中進行比較判斷,在具體解題時,本題采用了排除法,對錯誤選項進行舉反例說明,這是高考中做選擇題の常用方法,也不失為一種快速有效の方法,在高考選擇題の處理上,未必每一題都要寫出具體解答步驟,針對選擇題の特點,有時“排除法”,“確定法”,“特殊值”代入法等也許是一種更快速,更有效の方法.(9)【2014年浙江,理9,5分】已知甲盒中僅有1個球且為紅球,乙盒中有m 個紅球和n 個籃球(3,3)m n ≥≥,從乙盒中隨機抽取(1,2)i i =個球放入甲盒中.(a )放入i 個球後,甲盒中含有紅球の個數記為(1,2)i i ξ=; (b )放入i 個球後,從甲盒中取1個球是紅球の概率記為(1,2)i p i =.則( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D )1212,()()p p E E ξξ<< 【答案】A【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m nC C C C p C C C +++=++=223323()(1)m m mn n n m n m n -++-++-,∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >. 又∵1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++,又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++-,11222(2)()(1)n m m n C C mnP C m n m n ξ+===++-,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mn m n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m nm n ++=(1)0()(1)m m mn m n m n -+>++-,所以21()()E E ξξ>,故選A . 解法二:在解法一中取3m n ==,計算後再比較,故選A .【點評】正確理解()1,2i i ξ=の含義是解決本題の關鍵.此題也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)【2014年浙江,理10,5分】設函數21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99,記10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k =,則( ) (A )123I I I << (B )213I I I << (C )132I I I << (D )321I I I << 【答案】B【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,故2111352991199()199999999999999I ⨯-=++++==,由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯, 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-=12574[2sin(2)2sin(2)]139999ππ->,故213I I I <<,故選B . 解法二:估算法:k I の幾何意義為將區間[0,1]等分為99個小區間,每個小區間の端點の函數值之差の絕對值之和.如圖為將函數21()f x x =の區間[0,1]等分為4個小區間の情形,因1()f x 在[0,1]上遞增,此時110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+- =11223344A H A H A H A H +++(1)(0)f f =-1=,同理對題中給出の1I ,同樣有11I =;而2I 略小於1212⨯=,3I 略小於14433⨯=,所以估算得213I I I <<,故選B .【點評】本題主要考查了函數の性質,關鍵是求出這三個數與1の關系,屬於難題.第Ⅱ卷(非選擇題 共100分)二、填空題:本大題共7小題,每小題4分,共28分.(11)【2014年浙江,理11,5分】若某程序框圖如圖所示,當輸入50時,則該程序運算後輸出の結果是 . 【答案】6【解析】第一次運行結果1,2S i ==;第二次運行結果4,3S i ==;第三次運行結果11,4S i ==;第四次運行結果26,5S i ==;第五次運行結果57,6S i ==;此時5750S =>,∴輸出6i =.【點評】本題考查了直到型循環結構の程序框圖,根據框圖の流程模擬運行程序是解答此類問題の常用方法.(12)【2014年浙江,理12,5分】隨機變量ξの取值為0,1,2,若1(0)5P ξ==,()1E ξ=,則()D ξ= . 【答案】25 【解析】設1ξ=時の概率為p ,ξの分布列為: 由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξの分布列為即為故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【點評】本題綜合考查了分布列の性質以及期望、方差の計算公式.(13)【2014年浙江,理13,5分】當實數,x y 滿足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩時,14ax y ≤+≤恒成立,則實數a の取值範圍是 __.【答案】3[1,]2【解析】解法一:作出不等式組240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示の區域如圖,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三點坐標代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩解得312a ≤≤ ,∴實數a の取值範圍是3[1,]2.解法二:作出不等式組240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示の區域如圖,由14ax y ≤+≤得,由圖分析可知,0a ≥且在(1,0)A 點取得最小值,在(2,1)B 取得最大值,故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故實數a の取值範圍是3[1,]2.【點評】本題考查線性規劃,考查了數形結合の解題思想方法,考查了數學轉化思想方法,訓練了不等式組得解法,是中檔題.(14)【2014年浙江,理14,5分】在8張獎券中有一、二、三等獎各1張,其餘5張無獎.將這8張獎券分配給4個人,每人2張,不同の獲獎情況有 種(用數字作答). 【答案】60【解析】解法一:不同の獲獎分兩種,一是有一人獲兩張獎券,一人獲一張獎券,共有223436C A =, 二是有三人各獲得一張獎券,共有3424A =,因此不同の獲獎情況共有362460+=種. 解法二:將一、二、三等獎各1張分給4個人有3464=種分法,其中三張獎券都分給一個人の有4種分法, 因此不同の獲獎情況共有64460-=種.【點評】本題考查排列、組合及簡單計數問題,考查學生の計算能力,屬於基礎題.(15)【2014年浙江,理15,5分】設函數22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,則實數a の取值範圍是 .【答案】(-∞.【解析】由題意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴當202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得a【點評】本題主要考查分段函數の應用,其它不等式の解法,體現了數形結合の數學思想,屬於中檔題.(16)【2014年浙江,理16,5分】設直線30x y m -+=(0m ≠) 與雙曲線22221x y a b-=(0,0a b >>)兩條漸近線分別交於點A ,B .若點(,0)P m 滿足||||PA PB =,則該雙曲線の離心率是 .【解析】解法一:由雙曲線の方程可知,它の漸近線方程為b y x a =和by x a =-,分別與直線l : 30x y m -+= 聯立方程組,解得,(,)33am bm A a b a b ----,(,)33am bmB a b a b -++,設AB 中點為Q ,由||||PA PB = 得,則3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b m Q a b a b ----,PQ 與已知直線垂直,∴1PQ l k k =-,即222222319139b m a b a m m a b --=----, 即得2228a b =,即22228()a c a =-,即2254c a =,所以c e a ==.解法二:不妨設1a =,漸近線方程為222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,設AB 中點為00(,)Q x y ,由韋達定理得:202391b m y b =-……① ,又003x y m =-,由1P Q l k k =-得00113y x m =--,即得0011323y y m =--得035y m =代入①得2233915b m m b =-, 得214b =,所以22215144c a b =+=+=,所以c =,得c e c a ===.【點評】本題考查雙曲線の離心率,考查直線の位置關系,考查學生の計算能力,屬於中檔題. (17)【2014年浙江,理17,5分】如圖,某人在垂直於水平地面ABC の牆面前の點A 處進行射擊訓練.已知點A 到牆面の距離為AB ,某目標點P 沿牆面上の射擊線CM 移動,此人為了准確瞄准目標點P ,需計算由點A 觀察點P の仰角θの大小.若15AB m =,25AC m =,30∠︒,則tan θの最大值是 (仰角θ為直線AP 與平面ABC 所成角).2320225x x -+2320032250-+'',設B P 2320225x x ++22545204<=355339=,2320225x x -+2320225x x -+20),23225'(x)(225)f x ++454=- 時20時'0y <203445225(++ 15201225AB BC AC ==,20tan 30DB BC ︒=203533DB ===【點評】屬於中檔題. 三、解答題:本大題共5題,共72分.解答應寫出文字說明,演算步驟或證明過程.(18解:(即A B +=,所以C =.(2c 得A C <,從而3cos A =,,所以,ABC ∆(19)【2014年浙江,理19,14分】已知數列{}n a 和{}n b 滿足123(2)(*)n b n a a a a n N =∈.若{}n a 為等比數列,且1322,6a b b ==+.(1)求n a 與n b ;(2)設11(*)n n n c n N a b =-∈.記數列{}n c の前n 項和為n S .(ⅰ)求n S ;(ⅱ)求正整數k ,使得對任意*n N ∈均有S S ≥.解:(1(2)(3(2)n a a =N ). (2n c ++=111(22n n ++-1(12n ++--=1112n n -+20>,3c 55(51)12+<,4n S ≥,故【點評】本題考查了等比數列通項公式、求和公式,還考查了分組求和法、裂項求和法和猜想證明の思想,證明可以用二項式定理,還可以用數學歸納法.本題計算量較大,思維層次高,要求學生有較高の分析問題解決問題の能力.本題屬於難題.(20)【2014年浙江,理20,15分】如圖,在四棱錐A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)證明:DE ⊥平面ACD ;(解:(1(2BF GF=の原點,分別以射線DE所示.由題意知各點坐標如下:(0,2,0),(0,2,Aの法向量為111(,m x y=222(,,)n x y z=,可算得:(0,2)AD=-,(1,2,AE=-,(1,1,0)DB=,由ADm AE=⎨=⎪⎩,即1111122020y zx y⎧--=⎪⎨-=⎪⎩,可取(0,1,m=-,由n ADn BD⎧⋅=⎪⎨⋅=⎪⎩即2222220y zx y⎧--=⎪⎨+=⎪⎩可取(0,n=-,於是|||cos,|||||3m nm nm n⋅<>===⋅⋅運算求解能力.(21)【2014年浙江,理21,15分】如圖,設橢圓C:22221(0)x ya ba b+=>>動直線l與橢圓C 只有一個公共點P,且點P在第一象限.(1)已知直線lの斜率為k,用,,a b k表示點Pの坐標;(2)若過原點Oの直線1l與l垂直,證明:點P到直線1lの距離の最大值為a b-.解:(1''1P l k =-,得,b (2幾何の基本思想方法、基本不等式應用等綜合解題能力.(22)【2014年浙江,理22,14分】已知函數()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上の最大值和最小值分別記為(),()M a m a ,求()()M a m a -; (2)設,b R ∈若()24f x b +≤⎡⎤對[]1,1x ∈-恒成立,求3a b +の取值範圍.解:(1(2。
2014年7月浙江省普通高中学业水平考试数学试卷(完整版,含参答案)
2014年7月浙江省普通高中学业水平测试数学试题一、选择题1.已知集合A={2,3,4},B={3,4,5},则A∩B=( )A. {3}B. {3,4}C. {2,3,4}D. {2,3,4,5}2.函数xx f 1)(=的定义域为( )A. ),(+∞-∞B. ),0()0,(+∞⋃-∞C. ),0[+∞D. ),0(+∞3.已知等比数列}{n a 的通项公式为)(3*2N n a n n ∈=+,则该数列的公比是( )A.91B. 9C.31D. 34.下列直线中倾斜角为45°的是( )A. y=xB. y=-xC. x=1D. y=1 5.下列算式正确的是( )A.lg8+lg2=lg10B. lg8+lg2=lg6C. lg8+lg2=lg16D. lg8+lg2=lg46.某圆台如图所示放置,则该圆台的俯视图是( )7.cos(π+α) =( )A. cos αB. -cos αC. sin αD. -sin α 8.若函数f(x)=(a -1)x -1为R 上的增函数,则实数a 的取值范围为( )A. a<1B. a>1C. a<0D. a>0 9.18cos22-π=( )A.21B. 21-C.22D. 22-10.直线y=a(a ∈R )与抛物线y 2=x 交点的个数是( )A. 0B.1C.2D. 0或111.将函数)4sin()(π-=x x f 图象上的所有点向左平移4π个单位长度,则所得图象的函数解析式是( )A. y=sinxB. y=cosxC. y=-sinxD. y=-cosx 12.命题p: ∃x 0∈R ,x 02+2x 0-2=0,则命题p 的否定是( )A. ∀ x ∈R ,x 2+2x -2≠0B. ∀ x ∈R ,x 2+2x -2>0C. ∃x 0∈R ,x 02+2x 0-2≠0D. ∃x 0∈R ,x 02+2x 0-2>013.如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B 到某一点C 的距离分别为5和8, ∠ACB=60°,则A,B 之间的距离为( )A. 7B. 12910C. 6D. 814.若),2(,53sin ππαα∈=,则)3sin(πα-=( ) A.10433- B.10433+ C.10343- D.10343+ 15.设函数),23,23(,tan )(ππ-∈=x x x x f 且2π±≠x ,则该函数的图像大致是( )16.设R b a ∈,,则“0>>b a ”是“ba 11<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D. 既不充分又不必要条件17.设椭圆)0(12222>>=+b a by a x 的左、右焦点分别为F 1、F 2,上顶点为B.若|BF 2|=|F 1F 2|=2,则该椭圆的方程为( )A. 13422=+y xB. 1322=+y xC. 1222=+y xD. 1422=+y x 18.设P(a,b)是函数f(x)=x 3图象上的任意一点,则下列各点中一定..在该图象上的是( ) A. P 1(a,-b) B. P 2(-a,-b) C. P 3(-|a|,b) D. P 4(|a|,-b)19.在空间中,设m,n 是不同的直线,α,β是不同的平面,且m ⊂α,n ⊂β,则下列命题正确的是( ) A. 若m ∥n ,则α∥β B. 若m,n 异面,则α, β异面 C. 若m ⊥n ,则α⊥β D. 若m,n 相交,则α, β相交20.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥--≤-+033012032y x y x y x ,则x y -的最大值为( )A. 1B.0C.-1D. -321.如图,在三棱锥S -ABC 中,E 为棱SC 的中点, 若2,32======BC AB SC SB SA AC , 则异面直线AC 与BE 所成的角为( ) A. 30° B. 45° C. 60° D. 90°22.在平面直角坐标系xOy 中,设双曲线)0,0(12222>>=-b a by a x 的左焦点为F ,圆M 的圆心M 在y 轴正半轴上,半径为双曲线的实轴长2a ,若圆M 与双曲线的两渐近线均相切,且直线MF 与双曲线的一条渐近线垂直,则该双曲线的离心率为( ) A.25 B. 332 C. 2 D. 523.两直立矮墙成135°二面角,现利用这两面矮墙和篱笆围成一个面积为54m 2的直角梯形菜园(墙足够长),则所用篱笆总长度的最小值为( ) A. m 16 B. m 18 C. m 5.22 D. m 31524.已知ABC Rt ∆的斜边AB 的长为4,设P 是以C 为圆心1为半径的圆上的任意一点,则⋅的取值范围是( ) A. ]25,23[-B. ]25,25[- C. ]5,3[- D. ]321,321[+- 25.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是棱A 1D 1,C 1D 1的中点,N 为线段B 1C 的中点,若点P,M 分别为线段D 1B,EF 上的动点,则PM+PN 的最小值为( )A. 1B. 423C. 4262+ D.213+1D二、填空题 26.设函数⎩⎨⎧≥<-=1,21,22)(x x x x f x,则)1(-f 的值为 .27.已知直线l 1: x -y+1=0,l 2: x -y -3=0,则两平行直线l 1, l 2间的距离为 . 28.已知函数)0)(3sin(2)(>+=ωπωx x f 的最小正周期为π,则=ω .29.如图,在矩形ABCD 中,E 为边AD 的中点,AB=1,BC=2,分别以A,D 为圆心,1为半径作圆弧EB,EC ,若由两圆弧EB,EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的表面积为 . 30.设P(a,b)是直线y=-x 上的点,若对曲线)0(1>=x xy 上的任意一点Q 恒有|PQ|≥3,则实数a 的取值范围是 . E三、解答题31.(本题7分)已知等差数列{})(*N n a n ∈满足6,231==a a (1)求该数列的公差d 和通项公式n a ;(2)设n S 为数列{}n a 的前n 项和,若122+≥n S n ,求n 的取值范围.32.(本题7分)如图,三棱柱ABC -A 1B 1C 1中, ∠CAA 1=∠A 1AB=∠BAC=90°,AB=AA 1=1,AC=2 (1)求证:A 1B ⊥平面AB 1C ;(2)求直线B 1C 与平面ACC 1A 1所成角的正弦值.133.(本题8分)在平面直角坐标系xOy 中,点A,B 的坐标分别为(-1,0),(1,0).设曲线C 上任意一点P(x,y)满足|PA|=λ|PB|(λ>0, 且λ≠1).(1)求曲线C 的方程,并指出此曲线的形状;(2)对λ的两个不同取值λ1, λ2,记对应的曲线为C 1,C 2. 1°)若曲线C 1,C 2.关于某直线对称,求λ1, λ2的积; 2°)若λ2>λ1>1,判断两曲线的位置关系,并说明理由.34.(本题8分)设函数0,1)(,2)(2>--=-=a x ax x g a x x x f (1)当a=8时,求f(x)在区间[3,5]上的值域;(2)若21),2,1](5,3[],5,3[x x i x t i ≠=∈∃∈∀且,使f(x i )=g(t),求实数a 的取值范围.参考答案:。
2014年高考理科数学浙江卷(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至3页,非选择题部分4至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 柱体的体积公式24πS R =V Sh =球的体积公式其中S 表示柱体的底面积,h 表示柱体的高 33π4V R =台体的体积公式其中R 表示球的半径121(S )3V h S =锥体的体积公式其中1S ,2S 分别表示台体的上、下底面积,13V Sh =h 表示台体的高其中S 表示锥体的底面积,如果事件A ,B 互斥,那么 h 表示锥体的高()()()P A B P A P B +=+选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|2}U x x =∈Ν≥,集合2{|5}A x x =∈N ≥,则=U A ð( )A .∅B .{2}C .{5}D .{2,5}2.已知i 是虚数单位a ,b ∈R ,则“1a b ==”是“2(i)2i a b +=”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A .290cmB .2129cmC .2132cmD .2138cm4.为了得到函数sin3cos3y x x =+的图象,可以将函数y x 的图象( )A .向右平移π4个单位 B .向左平移π4个单位 C .向右平移π12个单位D .向左平移π12个单位5.在64(1)(1)x y ++的展开式中,记mnx y 项的系数为(,)f m n ,则(3,0)(2,1)(1,2)f f f ++(0,3)f +=( )A .45B .60C .120D .2106.已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f -=-=-<≤,则( )A .3c ≤B .36c <≤C .69c <≤D .9c >7.在同一直角坐标系中,函数()(0)a f x x x =>,()log a g x x =的图象可能是( )A.B.C. D.8.记,,max{,},,x x y x y y x y ⎧=⎨⎩≥<,,min{,},,y x y x y x x y ⎧=⎨⎩≥<设a ,b 为平面向量,则 ( )A .min{|a +b |,|a -b |}min{≤|a |,|b |}B .min{|a +b |,|a -b |}min{≥|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |29.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则( )A .12p p >,12()()E E ξξ<B .12p p <,12()()E E ξξ>C .12p p >,12()()E E ξξ>D .12p p <,12()()E E ξξ<10.设函数21()f x x =,22()2()f x x x =-,31()|sin 2π|3f x x =,99i ia =,0,1,2,,99i =⋅⋅⋅.记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-+⋅⋅⋅+-,1,2,3k =,则 ( )A .123I I I <<B .213I I I <<C .132I I I <<D .321I I I <<-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是 .12.随机变量ξ的取值为0,1,2.若1(0)5P ξ==,()1E ξ=,则()D ξ= .13.若实数x ,y 满足240,10,1,x y x y x +-⎧⎪--⎨⎪⎩≤≤≥时,14ax y +≤≤恒成立,则实数a 的取值范围是 .14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 15.设函数22, 0,(), 0,x x x f x x x ⎧+⎪=⎨-⎪⎩<≥若(())2f f a ≤,则实数a 的取值范围是 . 16.设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 .17.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15m AB =,25m AC =,30BCM ∠=,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角).三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b ≠,c,22cos cos cos cos A B A A B B -=.(Ⅰ)求角C 的大小; (Ⅱ)若4sin 5A =,求ABC △的面积.19.(本小题满分14分)已知数列{}n a 和{}n b满足*123()n b n a a a a n ⋅⋅⋅=∈Ν.若{}n a 为等比数列,且12a =,326b b =+.(Ⅰ)求n a 与n b ;(Ⅱ)设*11()n n nc n a b =-∈Ν.记数列{}n c 的前n 项和n S .(ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*()n ∈Ν均有k n S S ≥.20.(本小题满分15分)如图,在四棱锥A BCDE -中,平面ABC ⊥平面B C D E ,90CDE BED ∠=∠=,2AB CD ==,1DE BE ==,AC =(Ⅰ)证明:DE ⊥平面ACD ; (Ⅱ)求二面角B AD E --的大小.21.(本小题满分15分)如图,设椭圆C :22221(0)x y a b a b+=>>,动直线l 与椭圆C 只有一个公共点P ,且点P在第一象限.(Ⅰ)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -.22.(本小题满分14分)已知函数3()3||()f x x x a a =+-∈R .(Ⅰ)若()f x 在[1,1]-上的最大值和最小值分别记为()M a ,()m a ,求()()M a m a -; (Ⅱ)设b ∈R .若2[()]4f x b +≤对[1,1]x ∈-恒成立,求3a b +的取值范围.[5,))+∞,结合全集,求得3 / 13数学试卷 第11页(共39页) 数学试卷 第12页(共39页),当0a =,0b ≠时,不等式不成立;,当0a b =≠时,不等式不成立;,设a b =,构造平行四边形根据平行四边形法则,与至少有一个大于或等于22max{||,||}||||a b a b a b +-≥+成立.选【提示】给出新定义,根据条件判断正误.5 / 13数学试卷 第16页(共39页) 数学试卷 第17页(共39页) 数学试卷 第18页(共39页)跳出循环,所以i 6=2⎩7 / 139数学试卷第22页(共39页)数学试卷第23页(共39页)数学试卷第24页(共39页)9 / 132(2)k a =(2q =-舍去)(232n n n a =)由(1)知,数学试卷 第28页(共39页) 数学试卷 第29页(共39页) 数学试卷 第30页(共39页)BF GF =6.11 / 13的法向量为(,m x y=的法向量为(,,n x y =可算得(0,AD =-,(1,1,0)DB =,(1,2,AE =-00m AD m AE ⎧=⎪⎨=⎪⎩得,120z -=,可取(0,1,m =-00n AD n BD ⎧=⎪⎨=⎪⎩得,,可取(1,1,n =-于是||3cos ,2||m n m n m n 〈〉==,由题意可知,所求二面角是锐角,故二面角数学试卷第34页(共39页)数学试卷第35页(共39页)数学试卷第36页(共39页)13 / 13。
浙江省2014年学业水平测试模拟测试数学试题Word版有答案
浙江省2014年学业⽔平测试模拟测试数学试题Word版有答案2014年浙江省宁波第⼆中学数学学业⽔平测试模拟试题选择题部分⼀、选择题(共25⼩题,1-15每⼩题2分,16-25每⼩题3分,共60分。
每⼩题中只有⼀个选项是符合题意的。
不选、多选、错选均不得分)1.已知集合{1,2,3,4}A =,{2,4,6}B =,则A B 的元素个数是(A)0个 (B)1个 (C)2个 (D)3个 2.22log 12log 3-=(A)2- (B)0 (C)12(D)2 3.若右图是⼀个⼏何体的三视图,则这个⼏何体是 (A)圆锥 (B)棱柱 (C)圆柱 (D)棱锥 4.函数R))(3π2sin()(∈+=x x x f 的最⼩正周期为 (A)2π(B) π (C) π2 (D) 4π 5.直线230x y ++=的斜率是 (A)12-(B)12(C)2- (D)2 6.若1x =满⾜不等式2210ax x ++<,则实数a 的取值范围是 (A)(3,)-+∞ (B)(,3)-∞- (C)(1,)+∞ (D)(,1)-∞ 7.函数3()log (2)f x x =-的定义域是(A)[2,)+∞ (B)(2,)+∞ (C)(,2]-∞ (D)(,2)-∞ 8.圆22(1)3x y -+=的圆⼼坐标和半径分别是(A)(1,0),3- (B)(1,0),3(C)(-(第3题图)9.各项均为实数的等⽐数列{}n a 中,11a =,54a =,则3a = (A)2 (B)2-10.下列函数中,图象如右图的函数可能是(A)3y x = (B)2xy =(C)y =2log y x =11.已知a ∈R ,则“2a >”是“22a a >”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件12.如果222=+ky x 表⽰焦点在y 轴上的椭圆,那么实数k 的取值范围是(A) ()+∞,0 (B)()2,0 (C)()+∞,1 (D) ()1,0 13.设x 为实数,命题p :x ?∈R ,20x ≥,则命题p 的否定是(A )p ?:∈?0x R,0200≤x (C )p ?:x ?∈R,20x < (D )p ?:x ?∈R,20x ≤ 14.若函数()(1)()f x x x a =+-是偶函数,则实数a 的值为(A)1 (B)0 (C)1- (D)1± 15.在空间中,已知,a b 是直线,,αβ是平⾯,且,,//a b αβαβ??,则,a b 的位置关系是(A)平⾏ (B)相交 (C)异⾯ (D)平⾏或异⾯ 16.在△ABC 中,三边长分别为c b a ,,,且?=30A ,?=45B ,1=a ,则b 的值是(A)21(B) 22 (C) 2 (D) 2617.若平⾯向量,a b 的夹⾓为60,且|2|=|a b |,则 (A)()⊥+a b a (B)()⊥-a b a (C)()⊥+b b a (D)()⊥-b b a(第10题图)18.如图,在正⽅体1111D C B A ABCD -中,E 为1BC 的中点,则DE 与⾯11B BCC 所成⾓的正切值为(A)2(B) 3(D)219.函数44sin cos y x x =-在]3π,12π[-的最⼩值是(A)1-(B)2- (C)12(D)1 20.函数1()2xf x x=-的零点所在的区间可能是 (A)(1,)+∞ (B)1(,1)2 (C)11(,)32 (D)11(,)4321.已知数列{}n a 满⾜121a a ==,2111n n n na a a a +++-=,则65a a -的值为 (A)0 (B)18 (C)96 (D)60022.若双曲线22221x y a b-=的⼀条渐近线与直线310x y -+=平⾏,则此双曲线的离⼼率是323.若将⼀个真命题...中的“平⾯”换成“直线”、“直线”换成“平⾯”后仍是真命题...,则该命题称为“可换命题”.下列四个命题:①垂直于同⼀平⾯的两直线平⾏;②垂直于同⼀平⾯的两平⾯平⾏;③平⾏于同⼀直线的两直线平⾏;④平⾏于同⼀平⾯的两直线平⾏.其中是“可换命题”的是(A)①② (B)①④ (C)①③ (D)③④A 1(第18题图)24.⽤餐时客⼈要求:将温度为10C、质量为25.0 kg 的同规格的某种袋装饮料加热⾄C C ~??4030.服务员将x 袋该种饮料同时放⼊温度为80C 、5.2 kg 质量为的热⽔中,5分钟后⽴即取出.设经过5分钟加热后的饮料与⽔的温度恰好相同,此时,1m kg 该饮料提⾼的温度1t C ?与2m kg ⽔降低的温度2t C ?满⾜关系式11220.8m t m t ??=,则符合客⼈要求的x 可以是(A)4 (B)10 (C)16 (D)2225.若满⾜条件20,20,210x y x y kx y k -+≥??+-≥??--+≤?的点(,)P x y 构成三⾓形区域,则实数k 的取值范围是(A)(1,)+∞ (B)(0,1) (C)(1,1)- (D)(,1)(1,)-∞-+∞⾮选择题部分⼆、填空题(共5⼩题,每⼩题2分,共10分)26.已知⼀个球的表⾯积为4πcm 3,则它的半径等于▲ cm .27.已知平⾯向量(2,3)=a ,(1,)m =b ,且//a b ,则实数m 的值为▲.28.已知椭圆中⼼在原点,⼀个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准⽅程是▲.29.数列{}n a 满⾜?≤≤≤≤=--,1911,2,101,2191n n a n n n 则该数列从第5项到第15项的和为▲.30.若不存在...整数x 满⾜不等式2(4)(4)0kx k x ---<,则实数k 的取值范围是▲.三、解答题(共4⼩题,共30分) 31.(本题7分) 已知,54sin ),π,2π(=∈θθ求θcos 及)3πsin(+θ的值.32.(本题7分,有A 、B 两题,任选其中⼀题完成,)(A )如图,在直三棱柱111ABC A B C -中, 3AC =, 4BC =, 5AB =, 点D 是AB 的中点.(1)求证:1AC BC ⊥; (2)求证:1AC ∥平⾯1CDB .(B )如图,在底⾯为直⾓梯形的四棱锥,//,BC AD ABCD P 中-,90?=∠ABC平⾯⊥PA ABCD ,32,2,3===AB AD PA ,BC =6.(1)求证:;PAC BD 平⾯⊥ (2)求⼆⾯⾓A BD P --的⼤⼩.33.(本题8分) 如图,由半圆221(0)x y y +=≤和部分抛物线2(1)y a x =-(0y ≥,0a >)合成的曲线C称为“⽻⽑球形线”,且曲线C 经过点(2,3).A B 1BC (第33题A 图)(1)求a 的值;(2)设(1,0)A ,(1,0)B -,过A 且斜率为k 的直线 l 与“⽻⽑球形线”相交于P ,A ,Q 三点,问是否存在实数k ,使得QBA PBA ∠=∠?若存在,求出k 的值;若不存在,请说明理由.34.(本题8分) 已知函数9()||f x x a a x=--+,[1,6]x ∈,a R ∈. (1)若1a =,试判断并证明函数()f x 的单调性;(2)当(1,6)a ∈时,求函数()f x 的最⼤值的表达式()M a .参考答案⼀、选择题(共25⼩题,1-15每⼩题2分,16-25每⼩题3分,共60分。
7月浙江省普通高中学业程度考试数学试卷
C.
1
3
C. {2,3,4}
C. x=1
C. lg8+lg2=lg16
C. sinα
C. a<0
2
C.
C.2
2
4
C. y=-sinx
D. {2,3,4,5}
D. (0,)
D. 3 D. y=1 D. lg8+lg2=lg4
D. -sinα ) D. a>0
D. 2
D. 0 或 1
个单位长度,则所得图象的函数解
x 2y 3 0 20.若实数 x, y 满足不等式组 2x y 1 0 ,则 y x 的最大值为( )
x 3y 3 0
A. 1
B.0
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求写5卷技、重保术电要护交气设装底设备置。备高4动管调、中作线试电资,敷高气料并设中课试3且技资件、卷拒术料中管试绝中试调路验动包卷试敷方作含技设案,线术技以来槽术及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
浙江省2014年普通高中学业水平考试(会考)数学试题-含答案
精品文档2014 年 1 月浙江省普通高中学业水平考试数学试题学生须知:1、本试卷分选择题和非选择题两部分,共 6 页,满分100 分,考试时间110 分钟 .2、考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.3、选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.4、非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上的相应区域内,作图时可先使用 2B 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试卷上无效.5、参考公式球的表面积公式:S=4 R2球的体积公式:V= 43R3(其中 R 表示球的半径)选择题部分一、选择题(共25 小题, 1-15 每小题 2 分, 16- 25 每小题 3 分,共 60 分 .每小题给出的选项中只有一个是符合题目要求的,不选、多选、错选均不得分.)1、设集合M={0,1,2} ,则()A.1∈ MB.2 MC.3∈MD.{0}∈ M2、函数y x 1 的定义域是()A. [0,+∞)B.[1, +∞)C. (-∞, 0]D.(-∞, 1]3、若关于x 的不等式 mx- 2>0 的解集是 {x|x>2} ,则实数m 等于()A.- 1B.- 2C.1D.24、若对任意的实数k,直线 y- 2=k(x+1)恒经过定点M,则 M 的坐标是()A.( 1, 2)B.( 1,- 2)C.(- 1, 2)D.(- 1,- 2)5、与角-终边相同的角是()6A. 56 B. 3 C.116 D. 236、若一个正方体截去一个三棱锥后所得的几何体如图所示,则该几何体的正视图是()A. B. C. D.(第6题图)7、以点( 0,1)为圆心, 2 为半径的圆的方程是()A.x2+(y- 1)2=2B. (x- 1)2+y2=2C. x2+(y- 1)2=4D. (x- 1)2+y2=48、在数列 { a n }中, a1=1, a n+1=3a n(n∈N*) ,则 a4等于()A.9B.10C.27D.819、函数y x 的图象可能是()yyyyO xxOOxOxA.B.C.D.10、设 a ,b 是两个平面向量,则“a = b ”是 “|a = | b | ”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2y 211、设双曲线 C : x21(a 0) 的一个顶点坐标为 ( 2,0),则双曲线 C 的方程是()3aA. x 2y 21 B.x 2y 21C. x 2y 2 1 D. x 2 y 2116312383 4312、设函数 f(x)= sinxcosx , x ∈ R ,则函数 f(x)的最小值是()A.1B. 1C.3 D.- 142213、若函数 f(x)=x 2 a(a ∈ R )是奇函数,则 a 的值为 ()x 1A.1B.0C.- 1D.±114、在空间中,设α, 表示平面, m , n 表示直线 .则下列命题正确的是()A.若 m ∥n ,n ⊥ α,则 m ⊥ αB. 若 α⊥ ,mα,则 m ⊥C.若 m 上有无数个点不在 α内,则 m ∥ αD.若 m ∥α,那么 m 与 α内的任何直线平行15、在 △ ABC 中,若 AB=2,AC=3,∠ A=60°,则 BC 的长为( )A. 19B. 13C.3D. 716、下列不等式成立的是- 3- 2( )A.1.22>1.23C. log 1.2 2>log 1.2 3D.log 0.2 2<log 0.2 3B.1.2 <1.217、设 x 0 为方程 2x+x=8 的解 .若 x 0 ∈ (n,n+1)(n ∈N *) ,则 n 的值为()A.1B.2C.3D.418、下列命题中,正确的是()A. x 0∈ Z , x 02<0B. x ∈ Z , x 2≤0C. x 0∈ Z ,x 02=1D. x ∈ Z , x 2≥119、若实数 x,y 满足不等式组x y0 ,则 2y - x 的最大值是()D 1C 1x yE2 0A 1A.- 2B.- 1C.1D.2B 120、如图,在正方体ABCD - A 1B 1C 1D 1 中, E 为线段 A 1C 1 的中点,DC 则异面直线 DE 与 B 1C 所成角的大小为()ABA.15 °B.30 °C.45 °D.60 °(第 20 题图)21、研究发现,某公司年初三个月的月产值y (万元)与月份 n近似地满足函数关系式y=an 2+bn+c (如 n=1 表示 1 月份) .已知 1 月份的产值为 4 万元, 2 月份的产值为11 万A.35 万元B.37 万元C.56 万元D.79 万元22、设数列 { a n },{ a n 2} (n ∈ N *) 都是等差数列,若 a 1= 2,则 a 2 2+ a 3 3+ a 4 4+ a 5 5 等于()A.60B.62C.63D.6623、设椭圆: x 2y 2 1(a b0) 的焦点为 F 1, F 2,若椭圆 上存在点 P ,使 △ P F 1F 2 是a 2b 2以 F 1P 为底边的等腰三角形,则椭圆的离心率的取值范围是()A. (0, 1)B. (0, 1)C. (1,1)D.( 1,1)232324、设函数f ( x)x,给出下列两个命题:x 1① 存在 x 0 ∈(1,+ ∞),使得 f(x 0)<2; ② 若 f(a)=f(b)(a ,≠则b)a+b>4.其中判断正确的是()A.①真,② 真B. ①真,② 假C. ①假,② 真D. ①假,②假25、如图,在 Rt △ABC 中, AC=1, BC=x , D 是斜边 AB 的中点,将 △ BCD 沿直线 CD 翻折,若在翻折过程中存在某个位置,使得 CB ⊥ AD ,则 x 的取值范围是()A. (0, 3]B.( 2,2]C.( 3, 2 3]D.(2, 4]2BBDDCACA(第 25 题图)非选择题部分二、填空题(共 5 小题,每小题 2 分,共 10 分)26、设函数 f(x)= x 2 , x 2,则 f(3) 的值为3x 2, x227、若球 O 的体积为 36 cm 3,则它的半径等于cm.22.28、设圆 C : x +y =1,直线 l: x+y=2,则圆心 C 到直线 l 的距离等于 29、设 P 是半径为 1 的圆上一动点,若该圆的弦AB= 3 ,则 AP AB 的取值范围是30、设 ave{a,b,c}表示实数 a,b,c 的平均数, max{a,b,c}表示实数 a,b,c 的最大值 .设 A=ave{ 1x2, x, 1x 1},M= max{1 x 2, x, 1x 1} ,若 M=3|A -1| ,则 x 的取值范2222围是三、解答题(共4 小题,共 30 分)32 ,求 cos 和 sin(4)的值.5 ,0精品文档32、(本题 7 分,有( A),( B)两题,任选其中一题完成,两题都做,以(( A)如图,已知四棱锥 P- ABCD的底面为菱形,对角线 ACP与 BD 相交于点 E,平面 PAC垂直于底面 ABCD,线段 PD 的中点为F.(1)求证: EF∥平面 PBC;(2)求证: BD⊥ PC.A FDA)题记分 .)CEB(第 32 题( A)图)(B)如图,在三棱锥 P- ABC中, PB⊥ AC,PC⊥平面 ABC,点 D, E分别为线段 PB, AB 的中点 .(1)求证: AC⊥平面 PBC;( 2 )设二面角D- CE- B 的平面角为θ,若PC=2,BC=2AC=2 3,求 cos θ的值 .APDC BE(第 32 题( B)图)33、(本题 8 分)如图,设直线 l: y=kx+ 2 (k∈R)与抛物线C:y=x2y相交于 P, Q 两点,其中Q 点在第一象限.( 1)若点 M 是线段 PQ 的中点,求点M 到 x 轴距离的最小值;( 2)当 k>0 时,过点Q 作 y 轴的垂线交抛物线 C 于点 R,RQPxO若 PQ PR =0,求直线l的方程.(第 33 题图)34、(本题 8 分)设函数 f(x)=x2-ax+b,a,b∈R..( 1)已知 f(x)在区间 (-∞,1)上单调递减,求 a 的取值范围;( 2)存在实数 a,使得当 x∈ [0,b] 时, 2≤f(x) ≤6恒成立,求 b 的最大值及此时 a 的值 .解答一、选择题(共25 小题, 1-15 每小题 2 分, 16- 25 每小题 3 分,共 60 分 .每小题给出的选项中只有一个是符合题目要求的,不选、多选、错选均不得分.)题号123456789101112131415答案A B C C CA C C A A D B B AD 题号16171819202122232425答案B B C C B B AD C A25题解答2(1)由题意得,AD=CD=BD= x 1 ,BC=x,取BC中点E,2翻折前,在图 1 中,连接DE,CD,则 DE=1AC=1,22翻折后,在图 2 中,此时CB⊥ AD。
浙江升2014-2015学考数学试卷(学业水平考试)
2015年10月浙江省普通高中学业水平考试数学试题一、选择题 (本大题共18小题,每小题3分,共54分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1. 函数()f x =A.(-∞,0)B.[0,+∞)C. [2,+∞)D. (-∞,2)2. 下列数列中,构成等比数列的是 A.2,3,4,5,B.1,-2,-4,8C.0,1,2,4D.16,-8,4,-23. 任给△ABC ,设角A ,B ,C 所对的边分别为a ,b ,c ,则下列等式成立的是A.c 2=a 2+b 2+2abcosCB. c 2=a 2+b 2-2abcosCC. c 2=a 2+b 2+2absinCD.c 2=a 2+b 2-2absinC4. 如图,某简单组合体由一个圆锥和一个圆柱组成,则该组合体三视图的俯视图为5. 要得到余弦曲线y=cosx ,只需将正弦曲线y=sinx 向左平移A.2π个单位B.3π个单位C.4π个单位D.6π个单位6. 在平面直角坐标系中,过点(0,1)且倾斜角为45°的直线不.经过A.第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知平面向量a =(1,x),b =(y ,1)。
若a ∥b ,则实数x ,y 一定满足A.xy -1=0B. xy+1=0C.x -y=0D.x+y=08. 已知{a n }(n ∈N *)是以1为首项,2为公差的等差数列。
设S n 是{a n }的前n 项和,且S n =25,则n=A.3B.4C.5D.69. 设抛物线y 2=2px(p>0)的焦点为F 。
若F 到直线p=A.2B.410. 在空间直角坐标系Oxyz中,若y轴上点M到两点P(1,0,2),Q(1,-3,1)的距离相等,则点M的坐标为A.(0,1,0)B. (0,-1,0)C. (0,0,3)D. (0,0,-3)11. 若实数x,y满足220,20,(1)1,yx yx y-≥-≤⎨⎪-+≤⎩则y的最大值为A. B.1D.4 512. 设a>0,且a≠1,则“a>1”是“log a 12<1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件13. 如图,在正方体ABCD-A1B1C1D1中,M为棱D1C1的中点。
2014年高考浙江理科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年浙江,理1,5分】设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =( )(A)∅ (B){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|5}A x N x x N x =∈≥=∈≥,{|25}{2}U C A x N x =∈≤<=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)【2014年浙江,理2,5分】已知i 是虚数单位,,a b R ∈,则“1a b =="是“2(i)2i a b +=”的( )(A )充分不必要条件 (B )必要不充分条件 (C)充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,则22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故选A .【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)【2014年浙江,理3,5分】某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( ) (A)902cm (B )1292cm (C )1322cm (D )1382cm【答案】D【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键. (4)【2014年浙江,理4,5分】为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos3y x =的图像( )(A)向右平移4π个单位 (B )向左平移4π个单位 (C)向右平移12π个单位 (D)向左平移12π个单位 【答案】C【解析】sin3cos32sin(3)2sin[3()]412y x x x x ππ=+=+=+,而2cos32sin(3)2y x x π==+=2sin[3()]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需将2cos3y x =的图象向右平移12π个单位,故选C .【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查. (5)【2014年浙江,理5,5分】在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++=( ) (A )45 (B )60 (C)120 (D )210 【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x +展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C .【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)【2014年浙江,理6,5分】已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) (A )3c ≤ (B)36c <≤ (C )69c <≤ (D)9c >【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故选C . 【点评】本题考查方程组的解法及不等式的解法,属于基础题. (7)【2014年浙江,理7,5分】在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函数()(0)a f x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故选D .【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.(8)【2014年浙江,理8,5分】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )(A )min{||,||}min{||,||}a b a b a b +-≤ (B )min{||,||}min{||,||}a b a b a b +-≥ (C)2222max{||,||}||||a b a b a b +-≤+ (D )2222max{||,||}||||a b a b a b +-≥+【答案】D【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-与min{||,||}a b 的大小不确定,平行四边形法可知max{||,||}a b a b +-所对的角大于或等于90︒ ,由余弦定理知2222max{||,||}||||a b a b a b +-≥+,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+),故选D . 【点评】本题在处理时要结合着向量加减法的几何意义,将a ,b ,a b +,a b -放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法",“特殊值"代入法等也许是一种更快速,更有效的方法.(9)【2014年浙江,理9,5分】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D)1212,()()p p E E ξξ<< 【答案】A【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m nC C C C p C C C +++=++=223323()(1)m m mn n n m n m n -++-++-,∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >. 又∵1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++,又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++-,11222(2)()(1)n m m n C C mnP C m n m n ξ+===++-,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mn m n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m nm n ++=(1)0()(1)m m mn m n m n -+>++-,所以21()()E E ξξ>,故选A . 解法二:在解法一中取3m n ==,计算后再比较,故选A .【点评】正确理解()1,2i i ξ=的含义是解决本题的关键.此题也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)【2014年浙江,理10,5分】设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k =,则( ) (A )123I I I << (B )213I I I << (C)132I I I << (D )321I I I << 【答案】B【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,故2111352991199()199999999999999I ⨯-=++++==,由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯, 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-=12574[2sin(2)2sin(2)]139999ππ->,故213I I I <<,故选B . 解法二:估算法:k I 的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x =的区间[0,1]等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+-=11223344A H A H A H A H +++(1)(0)f f =-1=,同理对题中给出的1I ,同样有11I =;而2I 略小于1212⨯=,3I 略小于14433⨯=,所以估算得213I I I <<,故选B .【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)【2014年浙江,理11,5分】若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 . 【答案】6【解析】第一次运行结果1,2S i ==;第二次运行结果4,3S i ==;第三次运行结果11,4S i ==;第四次运行结果26,5S i ==;第五次运行结果57,6S i ==;此时5750S =>,∴输出6i =.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(12)【2014年浙江,理12,5分】随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= .【答案】25 【解析】设1ξ=时的概率为p ,ξ的分布列为: 由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξ的分布列为即为故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.(13)【2014年浙江,理13,5分】当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是 __.【答案】3[1,]2【解析】解法一:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三点坐标代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩ 解得312a ≤≤ ,∴实数a 的取值范围是3[1,]2.解法二:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤得,由图分析可知,0a ≥且在(1,0)A 点取得最小值,在(2,1)B 取得最大值,故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故实数a 的取值范围是3[1,]2.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.(14)【2014年浙江,理14,5分】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 【答案】60【解析】解法一:不同的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有223436C A =,ξ 0 1 2 P 15p 115p -- ξ 0 1 2P 15 35 15二是有三人各获得一张奖券,共有3424A =,因此不同的获奖情况共有362460+=种. 解法二:将一、二、三等奖各1张分给4个人有3464=种分法,其中三张奖券都分给一个人的有4种分法, 因此不同的获奖情况共有64460-=种.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.(15)【2014年浙江,理15,5分】设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .【答案】(,2]-∞.【解析】由题意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得2a ≤.【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.(16)【2014年浙江,理16,5分】设直线30x y m -+=(0m ≠) 与双曲线22221x y a b-=(0,0a b >>)两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 . 【答案】52【解析】解法一:由双曲线的方程可知,它的渐近线方程为b y x a =和by x a =-,分别与直线l : 30x y m -+= 联立方程组,解得,(,)33am bm A a b a b ----,(,)33am bmB a b a b -++,设AB 中点为Q ,由||||PA PB = 得,则3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b m Q a b a b ----,PQ 与已知直线垂直,∴1PQ lk k =-,即222222319139b m a b a m m a b --=----, 即得2228a b =,即22228()a c a =-,即2254c a =,所以52c e a ==.解法二:不妨设1a =,渐近线方程为222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,设AB 中点为00(,)Q x y ,由韦达定理得:202391b m y b =-……① ,又003x y m =-,由1PQ l k k =-得00113y x m =--,即得0011323y y m =--得035y m =代入①得2233915b m m b =-,得214b =,所以22215144c a b =+=+=,所以52c =,得52c e c a ===.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题. (17)【2014年浙江,理17,5分】如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角).【答案】539【解析】解法一:∵15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,过P 作PP BC '⊥,交BC 于P ',1︒当P 在线段BC 上时,连接AP ',则'tan 'PP AP θ=,设BP x '=,则20CP x '=-, (020x ≤<)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=-. 在直角ABP ∆'中,2'225AP x =+ ∴2'320tan '3225PP xAP x θ-==+,令220225x y x-=+,则函数在 []0,20x ∈单调递减,∴0x =时,tan θ取得最大值为232002034334592250-==+ 2︒当P 在线段CB 的延长线上时,连接AP ',则'tan 'PP AP θ=,设BP x '=, 则20CP x '=+,(0x >)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=+, 在直角ABP ∆'中,2'225AP x =+,∴2'320tan '3225PP xAP x θ+==+, 令220225x y x +=+,则2222520'(225x )225xy x -=++,∴当225450204x <<=时'0y >;当454x >时'0y <, 所以当454x =时max 2452054345225()4y +==+,此时454x =时,tan θ取得最大值为3553339=, 综合1︒,2︒可知tan θ取得最大值为539. 解法二:如图以B 为原点,BA 、BC 所在的直线分别为x ,y 轴,建立如图所示的空间直角坐标系,∵15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,由30BCM ∠=︒,可设3(0,,(20))3P x x -(其中20x ≤),'(0,,0)P x ,(15,0,0)A , 所以2223(20)'3203tan '315225x PP x AP x x θ--===++, 设2320(x)tan 3225x f x θ-==+(20x ≤),22322520'(x)3(225)225xf x x +=-++,所以,当22545204x <-=- 时'0y >;当45204x -<≤时'0y <,所以当454x =-时max 24520453534()()43945225()4f x f +=-==+,所以tan θ取得最大值为539. 解法三:分析知,当tan θ取得最大时,即θ最大,最大值即为平面ACM 与地面ABC 所成的锐二面角的度量值,如图,过B 在面BCM 内作BD BC ⊥交CM 于D ,过B 作BH AC ⊥于H ,连DH ,则BHD ∠即为平面ACM 与地面ABC 所成 的二面角的平面角,tan θ的最大值即为tan BHD ∠,在Rt ABC ∆中,由等面积法可得15201225AB BC BH AC ===,203tan 303DB BC =︒=,所以max 203533(tan )tan 129DB BHD BH θ=∠===.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题. 三、解答题:本大题共5题,共72分.解答应写出文字说明,演算步骤或证明过程.(18)【2014年浙江,理18,14分】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知,3a b c ≠=,22cos cos 3sin cos 3sin cos A B A A B B -=-.(1)求角C 的大小;(2)若4sin 5A = ,求ABC ∆的面积.解:(1)由题得1cos 21cos 233sin 2sin 22222A B A B ++-=-,即3131sin 2cos 2sin 2cos 22222A A B B -=-, sin(2)sin(2B )66A ππ-=-,由a b ≠得A B ≠,又(0,)A B π+∈ ,得22B 66A πππ-+-=,即23A B π+=,所以3C π=.(2)3c =,4sin 5A =,sin sinC a c A =,得85a =,由a c < 得A C <,从而3cos 5A =, 故sin sin()B AC =+=433sinAcosC cosAsinC 10++=,所以,ABC ∆的面积为18318sin 225S ac B +==.【点评】本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题. (19)【2014年浙江,理19,14分】已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈.若{}n a 为等比数列,且1322,6a b b ==+.(1)求n a 与n b ;(2)设11(*)n n n c n N a b =-∈.记数列{}n c 的前n 项和为n S .(ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*n N ∈均有k n S S ≥.解:(1)∵123(2)(*)n b n a a a a n N =∈ ①,当2n ≥,*n N ∈时,11231(2)n b n a a a a --=②,由①÷②知:当2n ≥时,1(2)n n b b n a --=,令3n =,则有323(2)b b a -=,∵326b b =+,∴38a =.∵{}n a 为等比数列,且12a =,∴{}n a 的公比为q ,则2324aq a ==,由题意知0n a >,∴0q >,∴2q =.∴*2nn a n N ∈=().又由123(2)(*)n b n a a a a n N =∈,得:1232222(2)n b n ⨯⨯⨯⨯=,即(1)22(2)n n n b +=,∴*1n b n n n N =+∈()(). (2)(ⅰ)∵1111111()2(1)21n n n n n c a b n n n n =-=-=--++, ∴123n n S c c c c =++++=2111111111()()()21222321n n n --+--++--+ =21111(1)2221n n +++--+ =111121n n --++=1112n n -+. (ⅱ)因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)[1](1)2n nn n c n n +=-+, 而11(1)(1)(2)(n 1)(n 2)0222n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<, 所以,当5n ≥时,0n c <,综上,对任意*n N ∈恒有4n S S ≥,故4k =.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.(20)【2014年浙江,理20,15分】如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =.(1)证明:DE ⊥平面ACD ; (2)求二面角B AD E --的大小.解:(1)在直角梯形BCDE 中,由1DE BE ==,2CD =,得2BD BC ==,由2AC =,2AB =得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD . (2)解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AB 交于点G ,连接BG , 由(1)知DE AD ⊥,则FG AD ⊥,所以BFG ∠就是二面角B AD E --的平面角, 在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥,又平面ABC ⊥平面BCDE , 得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD ∆中,由2DC =,2AC =,得6AD =;在Rt AED ∆中,由1ED =,6AD =得7AE =;在Rt ABD ∆中,由2BD =,2AB =,6AD =,得233BF =,23AF AD =,从而23GF =,在ABE ∆,ABG ∆中,利用余弦定理分别可得57cos 14BAE ∠=,23BC =.在BFG ∆中,2223cos 22GF BF BG BFG BF GF +-∠==,所以,6BFG π∠=,即二面角B AD E --的大小为6π.解法二:以D 的原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz -,如图 所示.由题意知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,(0,2,2)A ,(1,1,0)B . 设平面ADE 的法向量为111(,,)m x y z =,平面ABD 的法向量为222(,,)n x y z =, 可算得:(0,2,2)AD =--,(1,2,2)AE =--,(1,1,0)DB =,由00m AD m AE ⎧=⎪⎨=⎪⎩,即11111220220y z x y z ⎧--=⎪⎨--=⎪⎩,可取(0,1,2)m =-,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩即22222200y z x y ⎧--=⎪⎨+=⎪⎩可取(0,1,2)n =-,于是||33|cos ,|2||||32m n m n m n ⋅<>===⋅⋅.由题意可知,所求二面角是锐角,故二面角B AD E --的大小为6π. 【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.(21)【2014年浙江,理21,15分】如图,设椭圆C:22221(0)x y a b a b+=>>动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -. 解:(1)解法一:设l 方程为(0)y kx m k =+<,22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,消去y 得:222222222()20b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为''1P l k =-,得222,b b a k (2几何的基本思想方法、基本不等式应用等综合解题能力.(22)【2014年浙江,理22,14分】已知函数()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (2)设,b R ∈若()24f x b +≤⎡⎤对[]1,1x ∈-恒成立,求3a b +的取值范围.解:(1(2。
2014年普通高等学校招生全国统一考试数学理(浙江卷)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出学科网的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,zxxk 则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的学科网表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数zxxk x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( ) A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球学科网()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为zxxk ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的学科网结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,zxxk 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x ()两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 学科网已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值三.解答题:本大题共5小题,共72分。
2014年高考浙江理科数学试题及答案(word解析版)
a
b
6
11
,ቤተ መጻሕፍቲ ባይዱ
所以
32
f(x)x6x11xc,由0f(1)3,得01611c3,即6c9,故选C.
【点评】本题考查方程组的解法及不等式的解法,属于基础题.
a
(7)【2014年浙江,理7,5分】在同一直角坐标系中,函数()(0)
fxxx,g(x)logax的图像可能是()
(A)(B)(C)(D)
【答案】D
I1|f(a1)f(a0)||f(a2)f(a1)||f(a3)f(a2)||f(a4)f(a3)|=A1H1A2H2A3H3A4H4
f(1)f(0)1,同理对题中给出的I1,同样有I11;而I2略小于
1
21
2
,I3略小于4
14
33
,所
以估算得
III,故选B.
213
【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.
2
f1(x)x,
1i
2
f2(x)2(xx),f3(x)|sin2x|,a,i0,1,2,
i
399
,99,记Ik|fk(a1)fk(a0)||fk(a2)fk(a1)||fk(a99)fk(a98)|,k1,2,3,则()
(A)I1I2I3(B)I2I1I3(C)I1I3I2(D)I3I2I1
【答案】B
a
【解析】函数()(0)
fxxx,g(x)logax分别的幂函数与对数函数答案A中没有幂函数的图像,不符合;答
aa
案B中,f(x)x(x0)中a1,g(x)logax中0a1,不符合;答案C中,()(0)
fxxx中0a1,
a
g(x)logax中a1,不符合;答案D中,f(x)x(x0)中0a1,g(x)logax中0a1,符合,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第 21题图)
2 ..2
22.在平面直角坐标系^O 3; 中 ,设双曲线 2
l ( a > 0 ,6 > 0 ) 的左焦点为F ,© M 的圆心M
在 y 轴正半轴上,半 径 为 双 曲 线 的 实 轴 长 2 a .若 © M 与 双 曲 线 的 两 渐 近 线 均 相 切 ,且直线 M F 与双曲线的一条渐近线垂直,则该双曲线的离心率为
I- 已知集合八= { 2 ,3,4},5 = { 3 ,4 ,5} ,则 A f lB =
尤⑶
B. {3,4}
C. {2,3,4}
D. {2,3 ,4 ,5}
2 .函数/(X )
的定义域为 \fx
A. (- 0 0 ,+ 0 0 )
C [0,+oo)
( —° ° ,o) U (0,+ °°)
D, ( 0 ,+ oo)
任意一点P O r j ) 满足IP A 卜 AlPBI (A > 0 且 A关I).
( I ) 求 曲 线 C 的 方 程 ,并指出此曲线的形状; ( n ) 对 a 的两个不同取值入: ,a2,记 对 应 的 曲 线 分 别 为 C ^ C 2.
( 丨)若 两 曲 线 C ^ C 2 关于某直线对称,求 A1 与 A2 的积; ( ii ) 若 判 断 两 曲 线 的 位 置 关 系 ,并说明理由.
3 . 已 知 等 比 数 列 {〜 } 的 通 项 公 式 为 a rt= 3 # 2
) ,则该数列的公比是
B. 9
D .3
4 . 下 列 直 线 中 倾 斜 角 为 45°的是
y
5.下列算式正确的是
A. Ig8 + lg2 = lg l0
C. Ig8+ lg2 = lgl6
D. I
B/lg8 + lg2 = lg6 D. Ig8 + lg2 = lg4
2 8 .已 知 函 数 / ( x ) = 2Sin(o;x + 寻)(o>>0)的 最 小 正 周 期 为 Ti,则
29.如 图 ,在 矩 形 A B C D 中 ,£:为 边 A D 的 中 点 ,AB = 1,B C = 2 ,分 别 以 A ,D
为 圆 心 ,I 为 半 径 作 圆 弧 若 由 两 圆 弧 E B ,£:C及 边 B C 所围成的平 面图形绕直线A D 旋转一周,则 所 形 成 的 几 何 体 的 表 面 积 为 ▲ .
麝
3^/2
a
(第 25题图)
数 学 试 题 第 4 页 (共 6 页 )
非选择题部分
、填 空 题(本 大 题 共 5 小题,每 小 题 2 分 ,共 1 0 分)
26.设 函 数 / ( X )
2x — 2 ,:r〈 l ,
则 / ( —I )的值为
2X
,
2 7 .已 知 直 线 h :x ~ y + l = 09l2:x —y —3= 0 ,则 两 平 行 直 线 I1,Z2 间的距离为
( I )求该数列的公差d 和通项公式a„; ( E ) 设 Sn 为 数 列 {a„}的 前 n 项和. 若 S „> 2n+ 12,求 n 的取值范围
32.(本题 7 分 ) 如图,三棱柱 ABC—A 1B1C1 中,Z C A A 1= Z A 1A B = Z B A C = S O ^AB=AAi = 1 ,
则该椭圆的方程为
2
A.
2+
2
Il
2
D. -+^y2- I
18.设 P (a ,W是函数/ O c ) = y 图象上的任意一点,则下列各点中一定在该函数图象上的是
A. P i ( a ,_ b)
P 2( _ a ,一 b)
C. P 3C- Ul
D. P 4(|a|,一W
I 9• 在空间中,设 m ,n 是不同的直线,《,/?是不同的平面,且 m d a jC Z A 则下列命题正确的是
A•若m ///i,则 a///?
B• 若 m ,n 异面,则 a ,/?相交
• 若 m丄n ,则 a丄
D .若 m ,n 相交,则 a ,/?相交
.r+2^- 3^0?
20.若 实 数 x ,:y 满足不等式组彳2a:—:y—1 > 0 ,贝Ij
的最大值为
r —3:y—3 < 0 ,
A.
B. 0
C -I
D. —3
数 学 试 题 第 3 页 (共 6 页 )
21•如图,在 三 棱 锥 S — A B C 中,£:为 棱 5(:的中点.若焱〔= 2 > ^ ,3八= (^ = 3 < := ^ 8 = 汉 > = 2 ,则
异面直线A C 与 B E 所成的角为
A.30 o
B.45 O
C
C. 60O
a 90O
AC= 2.
( I ) 求 证 :A 1B 丄 平 面 AJB1C;
C
( H ) 求 直 线 氏 C 与平 面 ACC1A i 所成角的正弦值.
数 学 试 题 第 5 页 (共 6 页 )
B (第 32题图)
3 3 .(本 题 8 分) 在 平 面 直 角 坐 标 系 x O y 中 ,点 A ,B 的坐标分别为(一1 ,0 ) ,(I ,0 ) .设 曲 线 C 上
数 学 试 题 第 I 页 (共 6 页 )
6. 某 圆 台 如 图 所 示 放 置 ,则 该 圆 台 的 俯 视 图 是
✓
// /
/
A
、
/ ✓//I
B.
7* cos(7t+a)
A. cos a
B. —cos
D. _ sin
若函数/ U ) = ( a _ l ) 工一I 为 R 上的增函数,则实数a 的取值范围是
A. a < l
B.a>l
C. a<C0
D. a > 0
9. 2 cos2 —— I
A.
42
D. 42
10.直 线 :y= a ( a G R ) 与 抛 物 线 :y2= zX 交点的个数是
A.
a2
D,0 或 I
11.将 函 数 /O c )= s in (x —f ) 图象上的所有点向左平移f 个 单 位 长 度 ,则所得图象的函数解
机密★考试结束前
2014 7 月浙江省普通高中学业水平考试
数学试题
考生须知 . 本试 题卷分选择题和非选择题两部分,共 6 页 ,满 分 1 0 0 分 ,考 试 时 间 1 1 0 分钟 O
2 . 考 生 答 题 前 ,务 必 将 自 己 的 姓 名 、准 考 证 号 用 黑 色 字 迹 的 签 字 笔 或 钢 笔 填 写 在 答 题 纸 上O
的取值范围是
A .[—
C. [—3,5]
[I —2a/3^,1+ 2v^"]
25.在 棱 长 为 I 的正方体A B C D - A 1B1C1D 1 中 ,E ,F 分别为棱A 1D 1, C1D 1 的中点,iV 为线段
B1C 的中点. 若 点 P ,M 分别 为 线 段 D 1B , E F 上 的 动 点 ,则 P M + P iV 的最小值为 AI
围•
数 学 试 题 第 6 页 (共 6 页 )
3 .选 择 题 的 答 案 须 用 2 B 铅 笔 将 答 题 纸 上 对 应 题 目 的 答 案 标 号 涂 黑 ,如 要 改 动 ,须将原填 涂处用橡皮擦净。
4 . 非 选 择 题 的 答 案 须 用 黑 色 字 迹 的 签 字 笔 或 钢 笔 写 在 答 题 纸 上 相 应 区 域 内 ,作图时可先 使 用 2 B 铅 笔 ,确定后须用黑色字迹的签字笔或钢笔描黑,答 案写 在本试题卷上无效。
5 .参考公式
球的)
选择题部分
― 、选 择 题 (本 大 题 共 2 5 小题,I —15每 小 题 2 分 ,16 —2 5 每 小 题 3 分 ,共 6 0 分 。每小题给出
*
9
的选项中只有一个是符合题目要求的,不 选 、多选、错选均不得分。)
A.
2^3
D.V5
23.两 直 立 矮 墙 成 135°二面角.现利用这两面矮墙和篱笆围成一个面积为54m2 的直角梯形菜
园 ( 墙 足 够 长 ),则 所 用 篱 笆 总 长 度 的 最 小 值 为
A. 16m
• 18m
. 22. 5m D. 15^3
(第 23题图)
2 4 .已 知 R tA A B C 的斜边A B 的 长 为 4 .设 P 是 以 C 为 圆 心 I 为 半 径 的 圆 上 的 任 意 一 点 ,则
X — 丄 3 4 . ( 本 题 8 分 ) 设 函 数 / ( X ) = x 12 x — a I r g ( x ) = - ~ ^ ,a > 0 .
( I ) 当 a = s 时 ,求 / U ) 在 区 间 [ 3 ,5 ] 上 的 值 域 ; ( I I ) 若 V K [ 3 ,5 ] , 3 々 e [ 3 ,5 ] ( f = l ,2 ) ,且 :C1 ^ x 2 ,使 / U ) = g ⑴ ,求 实 数 a 的 取 值 范
析式是 A. 3/==sin X
sm
D, y^= —cos
12.命题多:3 x0G R^Xo +2x0—2= 0,则命题f 的否定是
A. V
X2^ 2 x — 27^0
B. V R?-r2~^r2x—2>0
C . 彐:C0G R ,x?+2:c0—2#0
D. 彐X06 化,工5+2工0_ 2〉>0