苏科版数学八年级上册教案-4.1 平方根

合集下载

苏科版数学八年级上册 4.1 平方根 教案

苏科版数学八年级上册 4.1 平方根 教案

平方根第一课时(数学初二年级)[教材简解]平方根是苏教版数学八年级上册第四章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。

本节共二课时,本课为第一课时,从学生熟悉的正方形面积与边长之间的关系入手提出已知面积探求边长的问题,通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过对这一节课的学习,既可以让学生了解平方根的概念,会用符号表示非负数的平方根,又可以渗透化归思想(将求算术平方根的运算转化为求幂底数的运算)将为学生以后学习立方根奠定基础;同时这一节也是联系数学与生活的桥梁。

[目标预设]1. 学生能理解平方根概念的生成过程,会用符号表示一个非负数的平方根;2. 在教师的指导下,经历观察、交流、猜想等活动得出平方根概念,培养学生的合情推理与逆向思维的能力。

3.会求一个非负数的平方根,通过理解为什么要学习平方根培养学生的理性精神。

[重点]了解开方与乘方互为逆运算,能熟练地求某些非负数的平方根。

[难点]利用平方根定义解决问题。

[设计理念] 本节课采取教师启发引导与学生探究相结合的方式,使学生亲身体验得到平方根概念的生成过程,注重学生数学活动经验的积累。

促使学生采取积极主动、勇于探索的学习方式进行学习,为学生的终身发展奠基。

根据“以学定教”的原则,及时调整教学方案,使学生始终能主动地参与学习,成为学习的主人。

[设计思路]启发学生对问题的兴趣,促进其对问题进行思考。

让学生自己总结、交流,培养学生的概括能力和口头表达能力,培养自我反馈、自主发展的意识。

[教学过程]教学内容学生活动创设情景,感悟新知情境一:设图中的小方格的边长为1,你能分别说出图中2个长方形的对角线AB,A′B′的长吗?设计意图:通过实际情境,让学生发现AB,A′B′的长说不出来,制造认知冲突,激发好奇心,调动学生的学习积极性.积极思考,跃跃欲试.情境二:类似地,我们曾研究a2=2,那么a=?如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根.如果x2=a,那么x就叫做a的平方根,也称为二次方根.例如:2²=4,(-2)²=4,±2叫做4的平方根.10²=100,(-10)²=100,±10叫做100的平方根.13²=169,(-13)²=169,±13叫做169的平方根.一个正数的平方根有2个,它们互为相反数.一个正数a的正的平方根,记作“a”,正数a的负的平方根记作“-a”.这两个平方根合起来记作“±a”,读作“正、负根号a”.设计意图:通过实际情境,让学生发现用符号表示一个正数的平方根的必要性,并自己表示一些正数的平方根,加深对平方根的感性认识。

2024秋八年级数学上册第4章实数4.1平方根1算术平方根教案(新版)苏科版

2024秋八年级数学上册第4章实数4.1平方根1算术平方根教案(新版)苏科版
在教学过程中,我也发现了一些值得肯定的地方。首先,学生在实践活动中的参与度较高,他们能够积极讨论和展示自己的成果。其次,学生在小组讨论中能够主动提出问题和观点,并与他人进行交流和合作。这些积极的互动和合作有助于提高学生的学习效果。
课堂小结,当堂检测
课堂小结:
本节课我们学习了平方根的概念和性质,以及算术平方根的求法。首先,我们通过生活中的实例引入了平方根的概念,让学生初步理解了平方根的意义。接着,我们详细介绍了平方根的定义和性质,并通过例题帮助学生掌握了求一个数的平方根的方法。然后,我们讲解了算术平方根的概念,并通过例题让学生掌握了求一个数的算术平方根的方法。最后,我们进行了分组讨论和实践活动,让学生在实际操作中加深了对平方根的理解和应用。
3. 素质层次:学生在学习过程中,部分学生对数学学科兴趣不高,学习积极性不足。此外,部分学生的学习习惯和方法有待改进,需要教师在教学过程中进行引导和培养。
4. 行为习惯:学生在课堂学习中,部分学生注意力不集中,容易受到外界因素干扰。在学习过程中,学生往往注重结果,而忽视解题过程和思路的阐述。这些行为习惯对学生的学习效果产生了一定的影响。
针对以上学情分析,本节课的教学重点为:平方根的定义和性质、算术平方根的求法。在教学过程中,教师需要关注学生的知识层次,从基础入手,逐步引导学生深入理解平方根的概念。同时,注重培养学生的能力层次,提高他们的抽象思维能力和解决问题的能力。此外,教师还需关注学生的素质层次和行为习惯,激发学生的学习兴趣,引导他们改进学习方法,提高学习效果。
ii. 任何数的算术平方根都是正数。
参考答案:
1. 平方根的定义是:一个非负实数,使得该数的平方等于给定的数。平方根的性质包括:平方根的平方等于原数,平方根的乘积等于原数的乘积,平方根的倒数等于其共轭复数的倒数。

最新苏科版八年级数学上册《平方根第1课时》教学设计(精品教案).docx

最新苏科版八年级数学上册《平方根第1课时》教学设计(精品教案).docx

《4.1平方根》教学设计第1课时一、课题八年级数学上册《4.1 平方根》第1课时二、教材简解本节课是苏科版义务教育教科书八年级上册第四章第一节《平方根》的内容,是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识.由于实际计算中需要引入无理数使数的范围从有理数扩充到了实数,完成了初中阶段中数的拓展.运算方面,在乘方的基础上引入开方运算,使代数运算得以完善.因此本节课有助于了解n次方根的概念,为今后学习根式运算、方程函数等知识作出了铺垫,提供了知识积累.三、目标预设【知识技能】让学生了解数的平方根的概念,并会熟练运用根号表示数的平方根;让学生理解开方与乘方是互逆运算,会用平方运算求某些非负数的平方根.【数学思考】通过探求面积为20的正方形的边长,使学生经历观察、猜想、归纳等数学活动过程,得知平方根的定义、性质,并会对其拓展升华,透析开平方与平方运算为互逆过程,发展学生的分类意识、培养学生数学探究能力和归纳表达能力.【解决问题】通过3²=9,( )2 = 9 ?的引入,使学生对括号里数的认识由一个扩充到两个;在交流中学会与人合作,并能与他人交流自己思维的过程和结果.【情感态度】通过探求面积为20正方形边长,激发学生的求知欲,体验发现的快乐,获取成功的体验;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.四、教学重、难点【教学重点】怎样让学生正确理解平方根的定义、性质;引导学生如何进行开平方与平方的运算.【教学难点】引导学生领悟利用分类的数学思想体会平方根的的正负两种可能;让学生通过辩证的思想知道开平方与平方的互逆性. 五、设计理念本节课教学遵循启发式教学原则,不断设置问题串通过恰当的情境创设,引导学生进行探索活动,在学生经历观察、猜想、归纳、分类的基础上,让学生自觅知识、自悟性质,达到"教"是为了"不教"的理想的教学境界.六、设计思路本节课通过学生的主动智力参与、与合作交流的活动,使学生在教师的主导作用下,实现对平方根概念的自我构建与自我驾驭.设计过程中紧紧围绕着如何让学生自己探究、发现、总结、透析这一主线而展开.内容安排从一个探究活动探求面积为20的正方形的边长,通过3²=9,( )2 = 9 ?的引入,从而引出新的概念平方根.以使学生更好的理解平方根的性质:正数的平方根、0的平方根、负数的平方根,更好的理解开平方与平方的互逆性,帮助学生建立有意义的知识结构,以探究的思路实现对问题的深层次理解与驾驭,增强学生的思维深刻性.七、教学过程(一)创设情境,感悟新知【师】同学们前面我们学习了勾股定理,并且知道已知直角三角形的两条边,可以求出第三条边.你能用勾股定理解决下面的问题吗?问题1.如图,以直角边分别为2、4的直角三角形向形外做正方形,所得的正方形面积分别为多少?(学生直接口述出所得的面积分别为4、16、20.) ?4 2B AC【设计说明:由学生熟知的实例提出问题,利用多媒体教学手段,更形象,更直观,生动的展示教学内容;从而激发学生的学习兴趣和求知欲.】问题2.直角三角形的斜边长为多少?也就是说面积为20的正方形边长是多少?20X如果x 2= 20,那么x = ?【设计说明:充分调动学生的思维,使学生学会观察,猜想,分析,归纳的学习方法,体会知识产生的道理;为下面的新课展开奠定基础.】为了解决这个问题我们先来解决一个简单的问题:3²=9,( )2 = 9 ?【师】我们知道3²=9,那括号里的数是多少?是3吗?(学生进入思考,不难得出这个数是±3,而不仅仅是3,应当是两个)【师】9叫做±3 的平方的幂,那么,±3叫做9的什么呢?(学生进入思考兴奋点,滋生迫切的知晓答案欲望)【设计说明:通过提出问题和解决问题,让学生感受括号里数的双重性,同时又产生一个疑问,从而会主动探究这个新的问题,直至完全没有疑问.】【师】±3叫做9的平方根. 引出课题:平方根。

苏科版-数学-八年级上册-4.1.1 平方根 教案

苏科版-数学-八年级上册-4.1.1 平方根 教案

4.1平方根(1)______年______月______日第_______课时学习目标1.了解平方根的概念,会用根号表示正数的平方根。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根。

重点平方根的概念。

难点根据平方根的概念正确求出非负数的平方根。

教学过程教学环节教学活动设计意图创设情境导入新课学校要举行美术作品1.比赛,小明很高兴,他想在一块面积为25cm2的正方形纸上,画上自己的得意之作参加比赛,那么这块正方形纸片的边长应取多少?问题:(1)你能算出这张图画的边长等于多少吗?(2)说说你是怎样算出来的?(3)如果这块正方形画布的面积为单位1,那么它的边长是多少?如果面积分别为9、16、36、呢?2.课本P94图4--1中计算线段AB和A´B´的长度?上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题。

实际上是已知一个正数,求这个正数平方根的问题。

使学生感受到所学知识竟然与我们将要学习的本章知识有着密切的联系,激发起学生的好奇心和学习兴趣,感受到学习平方根的必要性。

通过实际问题抽象为数学问题,为学习算术平方根提供背景和素材,进而引入平方根的概念。

自主探究合作交流出示自学提纲:阅读教材94~95页,并回答下列问题:1.平方根以及有关概念。

2.为什么规定:0的平方根为0?3.总结一个数的平方根的性质?即:正数、零、负数的平方根怎样?4.自学例1,先试做后对照。

5.什么叫开平方?开平方的结果叫什么?6.144的平方根是多少?怎样用符号表示?学生活动:独立思考1、2答案,提出疑难问题。

给学生充足的时间和空间,理解和感知平方根概念,通过讨论、交流,提出共同的问题,使学生的自主性和合作性得到很好的发展。

师生互动归纳新知问题1:你能叙术平方根的概念吗?一般地:如果2x=a,(a≥0)那么x叫做a的平方根。

也称为二次方根。

正数a的正的平方根记为“a,”负的平方根记作-a.正数a的两个平方根记作±a读作“正、负根号a”,a叫做被开方数。

八年级数学上册平方根学案苏科

八年级数学上册平方根学案苏科

课题:4.1 平方根(2)学习目标: 姓名: 1.了解算术平方根的概念,会用根号表示数的算术平方根; 2.了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根; 3.能运用算术平方根解决一些简单的实际问题. 学习过程: 一.【情景创设】1.小明家装修新居,计划用100块板砖来铺设面积为25平方米的客厅地面,请帮他计算,每块正方形地板砖的边长为多少时,才正好合适(不浪费)?2.求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长.二.【问题探究】问题1:(1)什么叫做一个数的算术平方根?算术平方根与平方根有什么区别?(2)什么数有算术平方根?零的算术平方根是什么?归纳:正数a 有两个平方根,其中正数a 的正的平方根 a ,叫做a 的算术平方根.例如,4的平方根是±2,其中2叫做4的算术平方根,记作 4 =2;2的平方根是± 2 ,其中 2 叫做2的算术平方根.问题2:求下列各数的算术平方根:(1)625; (2)0.0081; (3)7; (4)0; (5)(-32)2问题3:求下列各式的值并填空:⑴_____16=- ⑵_____09.0= ⑶______169=±⑷_____412=- ⑸494= ⑹______)3)(27(=---问题4: 计算(1)22817- (2)8116-(3)02141613⎪⎭⎫ ⎝⎛-++- (4)25.2)10(2--问题5: “欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h ,观测者能达到的最远距离为d ,则d ≈2hR ,其中R 是地球半径,约等于6400 km . 小丽站在海边一块岩石上,眼睛离海平面的高度h 为20 m ,她观测到远处一艘船刚露出海平面,求此时d 的值?三.【变式拓展】问题6:填空并归纳:(1)(01.0)2 = ( 25)2= (4)2= 则(a )2= .(2)216= ()216-= 2)1.0(-= 则()2a = .问题7:若的则y x 2,211++-+-=x x y 算术平方根是多少?四.【总结提升】算术平方根与平方根的区别和联系是什么?五. 【课堂反馈】六. 【课后作业】(选做题)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【答案】B【详解】试题解析:A. x2-4=(x+2)(x-2) ,含有因式(x-2),不符合题意;B. x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;C. x2-2x=x(x-2),含有因式(x-2),不符合题意;D. (x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,故选B.2.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.1【答案】B【解析】根据题意得:(x+m)(2−x)=2x−x2+2m−mx,∵x+m与2−x的乘积中不含x的一次项,∴m=2;故选B.3.下列命题中,属于假命题的是()A.相等的两个角是对顶角B.两直线平行,同位角相等C.同位角相等,两直线平行D.三角形三个内角和等于180°【答案】A【分析】利用对顶角的性质、平行线的性质及判定及三角形的内角和等知识分别判断后即可确定答案.【详解】A、相等的两个角不一定是对顶角,故错误,是假命题;B、两直线平行,同位角相等,正确,是真命题;C、同位角相等,两直线平行,正确,是真命题;D、三角形三个内角和等于180°,正确,是真命题;故选:A.【点睛】此题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及判定及三角形的内角和,难度不大.4.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .等腰三角形的中线与高线重合C .三边长为3,4,5的三角形为直角三角形D .到线段两端距离相等的点在这条线段的垂直平分线上 【答案】D【分析】利用直角三角形三条高线相交于直角顶点可对A 进行判断;根据等腰三角形三线合一可对B 进行判断;根据勾股定理的逆定理可对C 进行判断;根据线段垂直平分线定理的逆定理可对D 进行判断.【详解】解:A 、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A 选项错误;B 、等腰三角形的底边上的中线与与底边上的高重合,所以B 选项错误;C 、因为222(3)(4)(5)+≠,所以三边长为3,4,5不为为直角三角形,所以B 选项错误;D 、到线段两端距离相等的点在这条线段的垂直平分线上,所以D 选项正确.故选:D .【点睛】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是( )A .第1块B .第2块C .第3块D .第4块【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选B.【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有1.11 111 1176克,用科学记数法表示是( )A .7.6×118克B .7.6×11-7克C .7.6×11-8克D .7.6×11-9克【答案】C【解析】试题解析:对于绝对值小于1的数,用科学记数法表示为a×11n 形式,其中1≤a <11,n 是一个负整数,除符号外,数字和原数左边第一个不为1的数前面1的个数相等,根据以上内容得:1.11 111 1176克=7.6×11-8克,故选C .7.在一条笔直的公路上有A B ,两地,甲,乙两辆货车都要从A 地送货到B 地,甲车先从A 地出发匀速行驶,3小时后乙车从A 地出发,并沿同一路线匀速行驶,当乙车到达B 地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为t (小时),两车之间的距离记为y (千米),y 与t 的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离A 地( )千米.A .495B .505C .515D .525【答案】A 【分析】根据题意列出方程组,得出甲乙的速度,再由路程关系确定第二次相遇的时间,进而求出乙车第二次与甲车相遇是甲车距离A 地的距离.【详解】解:设甲的速度为v 甲,甲的速度为v 乙,由题意可知,当t=4.5时,乙车追上甲车,第一次相遇,当t=7时,乙车到达B 地,故(73)7300(4.53) 4.5v v v v --=⎧⎨-=⎩乙甲乙甲,解得:60/180/v km h v km h =⎧⎨=⎩甲乙, ∴总A 、B 之间总路程为:(73)4180720v km -=⨯=乙,当t=7时,甲离B 地还有:720760300km -⨯=,∴(60+180)t=300 解得54t =,即再经过54t=小时后,甲乙第二次相遇,此时甲车距离A地的距离为:560(7)4954⨯+=(千米)故答案为:A【点睛】本题考查了函数图象与行程的问题,解题的关键是准确把握图象与实际行程的关系,确定甲乙的速度.8.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点,若AB=6,BC=4,△PBC的周长等于()A.10 B.12 C.14 D.16【答案】A【分析】先根据等腰三角形的性质得出AC=AB=6,再根据线段垂直平分线的性质得出AP=BP,故AP+PC=AC,由此即可得出结论.【详解】解:∵△ABC中,AB=AC,AB=6,∴AC=6,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=1.故选:A.【点睛】本题考查的是线段垂直平分线的性质,三角形的周长计算方法,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN =()A.58°B.32°C.36°D.34°【答案】B【分析】先由∠BAC =106°及三角形内角和定理求出∠B +∠C 的度数,再根据线段垂直平分线的性质求出∠B =∠BAE ,∠C =∠CAN ,即∠B +∠C =∠BAE +∠CAN ,由∠EAN =∠BAC -(∠BAE +∠CAN)解答即可.【详解】∵△ABC 中,∠BAC =106°,∴∠B +∠C =180°-∠BAC =180°-106°=74°,∵EF 、MN 分别是AB 、AC 的中垂线,∴∠B =∠BAE,∠C =∠CAN,即∠B +∠C =∠BAE +∠CAN =74°,∴∠EAN =∠BAC -(∠BAE +∠CAN)=106°-74°=32°.故选B.【点睛】本题考查的是线段垂直平分线的性质及三角形内角和定理,能根据三角形内角和定理求出∠B +∠C =∠BAE +∠CAN =74°是解答此题的关键.10.计算()()2334xx +﹣的结果,与下列哪一个式子相同?( ) A .74x -+B .712x --C .2612x -D .2612x x --【答案】D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得 ()()22233468912612x x x x x x x -+=+---=-.故选D .【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.二、填空题11.写一个函数图象交y 轴于点()0,3-,且y 随x 的增大而增大的一次函数关系式_______.【答案】y=x -3(答案不唯一)【分析】设这个一次函数的解析式为:y=kx +b ,然后将()0,3-代入可得b=-3,再根据y 随x 的增大而增大可得,k >0,最后写出一个符合以上结论的一次函数即可.【详解】解:设这个一次函数的解析式为:y=kx +b将()0,3-代入,解得b=-3,∵y 随x 的增大而增大∴k >0∴这个一次函数可以为y=x -3故答案为:y=x -3(答案不唯一)【点睛】此题考查的是根据一次函数的图象所经过的点和一次函数的增减性,写出符合条件的一次函数,掌握一次函数的图象及性质与各系数的关系是解决此题的关键.12.如图,在△ABC 中,∠A=70°,点O 到AB,BC,AC 的距离相等,连接BO ,CO ,则∠BOC=________.【答案】1°【分析】根据角平分线性质推出O 为△ABC 三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,即可求出答案.【详解】:∵点O 到AB 、BC 、AC 的距离相等,∴OB 平分∠ABC ,OC 平分∠ACB , ∴12OBC ABC ∠=∠,12OCB ACB ∠=∠, ∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB ∠+∠=⨯︒=︒, ∴∠BOC=180°-(∠OBC+∠OCB )=1°;故答案为:1.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB 的度数是解此题的关键. 13.如图1,在ABC ∆中,AB AC =.动点P 从ABC ∆的顶点A 出发,以2/cm s 的速度沿A B C A →→→匀速运动回到点A .图2是点P 运动过程中,线段AP 的长度()y cm 随时间()t s 变化的图象.其中点Q 为曲线部分的最低点.请从下面A 、B 两题中任选一作答,我选择________题.A .ABC ∆的面积是______,B .图2中m 的值是______.【答案】A . 85 B .256+【解析】由图形与函数图像的关系可知Q 点为AQ ⊥BC 时的点,则AQ=4cm,再求出AB=2/cm s ×3s=6cm ,利用勾股定理及可求出BQ ,从而求出BC ,即可求出ABC ∆的面积;再求出ABC ∆的周长,根据速度即可求出m .【详解】如图,当AQ ⊥BC 时,AP 的长度最短为4,即AQ=4,AB=2/cm s ×3s=6cm ,∴BQ= 226425-=∵AB AC =∴BC=2BQ=45∴ABC ∆的面积为14542⨯⨯=85;ABC ∆的周长为6+6+45=12+45∴m=(12+45)÷2=256+故答案为: A ;85或B ;256+.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质及函数图像的性质.14.已知实数a 在数轴上的位置如图所示,则化简2|1|a a --=___________.【答案】1【解析】根据数轴得到0a <,10a ->,根据绝对值和二次根式的性质化简即可.【详解】由数轴可知,0a <,则10a ->,∴2111a a a a -=-+=,故答案为:1.【点睛】a<.本题考查了绝对值和二次根式的化简及绝对值的性质,关键是根据数轴得出015.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC的位置,点B恰好在边DE上,则∠θ=_____度.【答案】1.【解析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【详解】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=1°,∴∠θ=1°,故答案为1.【点睛】本题考查的是旋转变换的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.16.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.【答案】1【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:22AE BE+,∴正方形的面积是10×10=100,∵△AEB的面积是12AE×BE=12×6×8=24,∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.17.已知m+2n﹣2=0,则2m•4n的值为_____.【答案】1【分析】把2m•1n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=2代入求值即可.【详解】由m+2n﹣2=0得m+2n=2,∴2m•1n=2m•22n=2m+2n=22=1.故答案为:1.【点睛】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.三、解答题18.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)1.【解析】试题分析:(1)根据学校从三个年级随机抽取1名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;(3)根据表格中的数据可以估计该校学生体育成绩不合格的人数.试题解析:(1)由题意和扇形统计图可得,a=1×40%﹣20﹣24﹣8=80﹣20﹣24﹣8=28,b=1×30%﹣24﹣14﹣7=60﹣24﹣14﹣7=15,故答案为28,15;(2)由扇形统计图可得,八年级所对应的扇形圆心角为:360°×(1﹣40%﹣30%)=360°×30%=108°,故答案为108;(3)由题意可得,10×857200++=1人,即该校三个年级共有10名学生参加考试,该校学生体育成绩不合格的有1人.考点:扇形统计图;用样本估计总体;统计与概率.19.如图,已知D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,点E 、F 为垂足,且BE =CF .求证:△ABC 是等腰三角形.【答案】见解析.【分析】由于DE ⊥AB ,DF ⊥AC ,那么∠DEB=∠DFC=90°,根据D 是BC 中点可得BD=CD ,而BE=CF ,根据HL 可证Rt △BED ≌Rt △CFD ,于是∠B=∠C ,进而可证△ABC 等腰三角形;【详解】解:∵点D 是BC 边上的中点,∴BD=CD ,∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠DEB=∠DFC=90°,在Rt △BED 和Rt △CFD 中,BD CD BE CF=⎧⎨=⎩ ∴Rt △BED ≌Rt △CFD (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 等腰三角形;【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定,解题的关键是证明Rt △BED ≌Rt △CFD . 20.如图,把△ABC 放置在每个小正方形边长为1的网格中,点A ,B ,C 均在格点上,建立适当的平面直角坐标系xOy ,使点A (1,4),△ABC 与△A'B'C'关于y 轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y 轴上找点P ,使PC+PB'的值最小,求点P 的坐标与PC+PB'的最小值.【答案】(1)详见解析;(2)图详见解析,点P 的坐标为(0,1),PC+PB'的最小值为25.【分析】(1)根据点A 的坐标找到坐标原点并建立坐标系,然后分别找到A 、B 、C 关于y 轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C'即可;(2)直接利用轴对称求最短路线的方法、利用待定系数法求一次函数的解析式以及勾股定理得出答案.【详解】解:(1)根据点A 的坐标找到坐标原点并建立坐标系,然后分别找到A 、B 、C 关于y 轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C',如图所示:△A'B'C'即为所求;(2)如图所示:BC 与y 轴交于点P ,根据对称的性质可得PB= PB'∴PC+PB'=PC +PB=BC ,根据两点之间线段最短,此时PC+PB'最小,且最小值即为BC 的长设直线BC 的解析式为y=kx +b将B 、C 坐标代入,得0222k b k b =-+⎧⎨=+⎩解得:121k b ⎧=⎪⎨⎪=⎩∴直线BC 的解析式为112y x =+ 当x=0时,y=1∴点P的坐标为:(0,1),PC+PB'的最小值为:2224+=25.【点睛】此题主要考查了轴对称变换、利用待定系数法求一次函数的解析式以及勾股定理,正确得出对应点位置是解题关键.21.如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)推理与计算:求点D到AC的距离.【答案】作图见解析,点D到AC的距离为:6 5【分析】根据三角形的面积公式,只需过点A和BC的中点D画直线即可;作DH⊥AC,证得△CHD∽△CBA,利用对应边成比例求得答案.【详解】作线段BC的垂直平分线EF交BC于D,过A、D画直线,则直线AD为所求作DH⊥AC于H.∵∠C=∠C,∠CHD=∠B=90°,∴△CHD∽△CBA,∴DH CD AB AC=,∵BD=DC=2,AB=3,AC=5,∴2 35 DH=,∴65DH = ∴点D 到AC 的距离为:65 【点睛】本题考查了作图—复杂作图以及相似三角形的判定和性质.熟练掌握相似三角形的判定是解题的关键. 22.如图,ABC ∆中,AB AC =,50A ∠=︒,点D 、E 、F 分别在AB 、BC 、AC 上,且BD CE =,BE CF =.求DEF ∠的度数.【答案】65°【分析】根据等腰三角形的性质得到65B C ∠=∠=︒,再证明DBE ECF ∆∆≌,得到DEB EFC ∠=∠,再根据三角形额内角和与平角的性质即可求解.【详解】由题意:AB AC =,50A ∠=︒,有65B C ∠=∠=︒又BD CE =,BE CF =,∴DBE ECF ∆∆≌,∴DEB EFC ∠=∠又180DEB CEF DEF ∠+∠+∠=︒,180EFC CEF C ∠+∠+∠=︒ ∴65DEF C ∠=∠=︒【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质及全等三角形的判定与性质. 23.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为 ;(2)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,A 1的坐标为 .【答案】(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A、O、B,向左方向平移三个单位,然后连线.(3)左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3.试题解析:(3)因为B的坐标是(3,3),所以B关于y轴对称的点的坐标是(-3,3)(3)将A向左移三个格得到A3,O向左平移三个单位得到O3,B向左平移三个单位得到B3,再连线得到△A3O3B3.(3)因为A的坐标是(3,3),左平移三个单位的坐标变化规律是纵坐标不变,横坐标减3,所以A3是(-3,3).考点:3.关于y轴对称点坐标规律3.图形平移后点的坐标规律24.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电费用是0.3元,甲乙两地的距离是120千米;(2)至少需要用电行驶92千米.【分析】(1)设每千米用电费用是x元,则用油的费用是(x+0.5)元,根据费用除以单价等于里程建立方程求出x,再用36除以x即可得到甲乙两地距离;(2)设用电行驶y千米,根据总费用不超过50元得到不等式求解.【详解】解:(1)设每千米用电费用是x元,则每千米用油的费用是(x+0.5)元,由题意得36960.5=+x x,解得0.3x=经检验,0.3x=是方程的解,且符合题意36=1200.3千米 答:汽车行驶中每千米用电费用是0.3元,甲乙两地的距离是120千米.(2)设用电行驶y 千米,则用油行驶()120-y 千米,每千米用油行驶的费用是()0.50.8+=x 元,由题意得:()0.30.812050+-≤y y解得:92≥y答:至少需要用电行驶92千米.【点睛】本题考查了分式方程与一元一次不等式的应用,掌握行驶单价乘以行驶路程等于行驶费用是解题的关键. 25.某学校为了调查学生对课改实验的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”.工作人员根据问卷调查数据绘制了两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将条形统计图中的B 等级补完整;(3)求出扇形统计图中,D 等级所对应扇形的圆心角度数.【答案】 (1)共调查了200名学生.(2)作图见解析; (3) D 等级所对应扇形的圆心角度数为18°.【分析】(1)A 类学生除以A 所占百分比;(2)求出B 组人数绘图即可;(3)求出D 所占百分率,乘以360度即可.【详解】(1)40÷20%=200(人); 答:共调查了200名学生。

初中数学八年级上册苏科版4.1平方根教学设计

初中数学八年级上册苏科版4.1平方根教学设计
学习氛围,使学生在探究、合作、实践中掌握知识,提高能力。同时,注重培养学生的数学思维和解决问题的策略,为学生的终身学习打下坚实基础。
四、教学内容与过程
(一)导入新课
1.教学活动:教师出示一张正方形图片,并提出问题:“如果这个正方形的边长是a,那么它的面积是多少?”引导学生回答:“面积是a²。”
b. 0的平方根是1。
c.负数没有平方根。
(4)解决以下实际问题:
a.一个正方形的面积是25平方厘米,求它的边长。
b.一个长方体的体积是64立方厘米,长和宽相等,求长方体的长、宽和高。
2.选做题:
(1)探究:为什么负数没有平方根?
(2)拓展:已知一个数的平方根是3,求这个数的立方根。
3.思考题:
(1)一个数的平方根与它的立方根之间有什么关系?
3.解题指导:教师针对学生的解题情况进行个别指导,帮助学生掌握解题方法和技巧。
(五)总结归纳
1.教学活动:教师引导学生回顾本节课所学内容,总结平方根的定义、性质和运算方法。
2.学生分享:让学生分享自己在本节课中的收获和感悟,以及在学习过程中遇到的问题和解决方法。
3.教师总结:教师对本节课的教学内容进行总结,强调平方根在实际问题中的应用,激发学生对数学知识的兴趣和热情。
4.能够运用平方根的性质简化计算过程,提高解题效率。
(二)过程与方法
1.通过实际问题的引入,激发学生对平方根的学习兴趣,培养学生从实际问题中抽象出数学概念的能力。
2.通过自主探究、合作交流的方式,让学生在探索平方根的性质和运算方法过程中,发展逻辑思维能力和解决问题的策略。
3.利用数形结合的方法,让学生直观地理解平方根的含义,培养学生直观想象的能力。
2.追问:“如果已知正方形的面积是a²,你能求出它的边长a吗?”让学生思考并尝试解答。

苏科版数学八年级上册4.1.1《平方根》教学设计

苏科版数学八年级上册4.1.1《平方根》教学设计

苏科版数学八年级上册4.1.1《平方根》教学设计一. 教材分析《平方根》是苏科版数学八年级上册4.1.1的内容,本节课主要让学生掌握平方根的定义、性质及求法,并能运用平方根解决一些实际问题。

教材通过引入平方根的概念,让学生理解平方根与乘方的关系,进一步掌握平方根的求法。

本节课的内容是学生进一步学习二次根式、勾股定理等知识的基础,对于学生来说具有重要的意义。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方,对乘方有一定的理解。

但是,平方根的概念及其求法对学生来说是一个新的内容,需要通过实例来引导学生理解。

此外,学生对于实际问题中的平方根可能比较陌生,需要通过具体的例子来让学生感受平方根在实际问题中的应用。

三. 教学目标1.知识与技能:理解平方根的定义,掌握求一个数的平方根的方法,会求一些实际问题中的平方根。

2.过程与方法:通过实例,引导学生理解平方根的概念,培养学生的逻辑思维能力。

3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:平方根的定义及其求法。

2.难点:理解平方根的概念,求实际问题中的平方根。

五. 教学方法1.情境教学法:通过具体的例子,引导学生理解平方根的概念。

2.小组合作学习:让学生在小组内讨论,培养学生的团队合作意识。

3.实践操作法:让学生通过计算器求平方根,培养学生的动手操作能力。

六. 教学准备1.教学课件:制作课件,展示平方根的定义、性质及求法。

2.实例:准备一些实际问题,让学生求解其中的平方根。

3.计算器:确保每个学生都有计算器,用于求解平方根。

七. 教学过程1.导入(5分钟)利用一个实际问题,如“一个正方形的边长是16厘米,求这个正方形的面积。

”让学生思考,引出平方根的概念。

2.呈现(10分钟)通过PPT展示平方根的定义、性质及求法,让学生理解平方根的概念,并掌握求一个数的平方根的方法。

3.操练(10分钟)让学生用计算器求解一些实际的平方根问题,如“求25的平方根”、“求9的平方根”等,巩固所学知识。

2024秋八年级数学上册第4章实数4.1平方根3平方根教案(新版)苏科版

2024秋八年级数学上册第4章实数4.1平方根3平方根教案(新版)苏科版
知识讲解:
清晰、准确地讲解平方根的定义和性质,结合实例帮助学生理解。
突出平方根的重点,强调无理数平方根的理解,通过对比、归纳等方法帮助学生加深记忆。
互动探究:
设计小组讨论环节,让学生围绕“如何求一个数的平方根”问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与平方根相关的拓展知识,如无理数的平方根、平方根在生活中的应用等,拓宽学生的知识视野。
情感升华:
结合平方根内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
3. 情感态度与价值观:
学生在学习平方根的过程中,感受到了数学的趣味性和实用性。他们对数学学科产生了更浓厚的兴趣,增强了学习数学的自信心。同时,学生认识到数学知识在现实生活中的广泛应用,培养了运用数学知识解决实际问题的意识。
4. 具体表现:
- 学生能够准确地描述平方根的定义,理解平方根与平方的互逆关系。
- 学生掌握了求平方根的方法,包括有理数和无理数平方根的求解。
- 学生能够运用平方根知识解决几何、物理等学科中的实际问题。
- 学生在课堂讨论和互动中,积极发表自己的观点,倾听他人的意见,形成了良好的合作氛围。
- 学生在课后作业和巩固练习中,能够独立完成,正确率较高,对平方根知识有了较为深入的理解。
5. 知识拓展与应用:
1. 及时对学生的作业进行批改和反馈,指出存在的问题并给出改进建议,以促进学生的学习进步。
2. 针对学生在作业中出现的问题,进行及时的订正和讲解,帮助学生理解和掌握平方根知识。

苏科版数学八年级上册平方根 ppt课件

苏科版数学八年级上册平方根 ppt课件

3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。
4.开篇写 湘君眺 望洞庭 ,盼望 湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
效能检测
4、已知 (x 1)2 9,则 x = .
5、已知 2a 1 的平方根是 3 , 3a b 1的平方根是 4 ,则 a 2b 的
平方根= .
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
2. 中国人对蔬菜的热爱,本质上是对土地 和家乡 的热爱 。本诗 主人公 就是这 样一位 采摘野 菜的同 时,又 保卫祖 国、眷 恋家乡 的士兵 。
5.以景物 衬托情 思,以 幻境刻 画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。
6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。

4.1平方根(八大题型)(解析版)

4.1平方根(八大题型)(解析版)

(苏科版)八年级上册数学《第4章 实数》4.1 平 方 根◆1、平方根的定义: 一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根. 这就是说,如果x 2=a ,那么x 叫做a 的平方根.◆2、开平方:求一个数a 的平方根的运算,叫做开平方.开平方与平方互为逆运算,运用这种关系可以求一个数的平方根.◆3、平方根的表示方法:正数a 正的平方根可以表示为a ,正数a 的负的平方根,可以表示为-a .正数a 的平方根可以用±a 表示,读作“正、负根号a ”.◆4、平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.◆1、算术平方根的定义:我们把正数a 的正的平方根叫做a 的算术平方根.a 的算术平方根记作:a ,读作:“根号a ”.规定:0的算术平方根是0. 记作: 0=0.◆2、算术平方根的性质:算术平方根具有双重非负性.①被开方数一定是非负数,即a ≥0.②一个非负数的算术平方根也是非负数,即a ≥0.◆3、求一个正数的算术平方根与求一个正数的平方恰好是互逆的两种运算,因而,求一个数的算术平方根实际上可以转化为求一个正数的平方运算,但是,只有正数和0有算术平方根,负数没有算术平方根.◆4、被开方数越大,对应的算术平方根也越大.【注意】a根指数2,不要误认为根指数是1或没有,因此a也读作:“二次根号a”.◆5、算术平方根与平方根的联系和区别:联系:(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)只有非负数才有平方根和算术平方根.(3) 0的平方根是0,算术平方根也是0.区别:(1)个数不同:一个正数有两个平方根,但正数算术平方根只有一个.;(2)表示方法不同:正数a的算术平方根表示为a,正数a的平方根表示为a【例题1】下列说法正确的是( )A .25的平方根是5B .(﹣3)2的平方根是﹣3C .925的算术平方根是35D .0.16的算术平方根是±0.4【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A 、25的平方根是±5,故A 错误;B 、(﹣3)2的平方根是±3,故B 错误;C 、925的算术平方根是35,故C 正确;D 、0.16的算术平方根是+0.4,故D 错误.故选:C .【点评】本题主要考查的是算术平方根和平方根的定义和性质,熟练掌握相关知识是解题的关键.【变式1-1】(2022秋•莱州市期末)144的平方根是±12的数学表达式是( )A=12B =±12C .12D .12【分析】根据平方根的定义进行计算即可.【解答】解:144的平方根是±12的数学表达式是±±12,故选:C .【点评】本题考查平方根,理解平方根的定义以及表示方法是正确解答的前提.【变式1-2】下列说法中,正确的是( )A .任何数的平方根都有两个B .一个数的平方根是它本身C .只有正数才有平方根D .负数没有平方根【分析】根据平方根的定义进行解答即可.【解答】解:A 、0的平方根是0,只有一个,故错误,不符合题意;B 、一个数的平方根不一定是它本身,故错误,不符合题意;C 、0也有平方根,故错误,不符合题意;D 、负数没有平方根,正确,符合题意.故选:D .【点评】本题考查的是平方根,熟知正数和0有平方根,负数没有平方根,且正数的平方根有两个,0的平方根还是0是解题的关键.【变式1-3】(2022秋•陈仓区期中)下列语句中,错误的是( )A .14的平方根是±12B 3C .−12是14的一个平方根D .9的平方根是±3【分析】如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,根据平方根的意义解题即可.【解答】解:A .14的平方根是±12,该选项正确,故本选项不符合题意;B ±C .−12是14的一个平方根,该选项正确,故本选项不符合题意;D .9的平方根是±3,该选项正确,故本选项不符合题意.故选:B.【点评】本题考查了平方根,正确理解平方根的意义是解题的关键.【变式1-4】(2022秋•鄞州区校级月考)平方根是±13的数是( )A.13B.16C.19D.±19【分析】根据平方根的定义即可求解.【解答】解:∵(±13)2=19,∴平方根是±13的数是19,故选:C.【点评】本题主要考查了平方根,掌握平方根的定义是解题的关键.【变式1-5】(2022春•澄迈县期末)(﹣6)2的平方根是( )A.6B.±6C.D.36【分析】根据平方根的定义解答即可.【解答】解:(﹣6)2=36,36的平方根是±6,故选:B.【点评】本题考查平方根的定义,熟练掌握平方根的定义是解题关键.【变式1-6】(2022秋•城阳区期中)若x+4是4的一个平方根,则x的值为( )A.﹣2B.﹣2或﹣6C.﹣3D.±2【分析】依据平方根的定义得到x+4=2或x+4=﹣2,从而可求得x的值.【解答】解:∵x+4是4的一个平方根,∴x+4=2或x+4=﹣2,∴解得:x=﹣2或x=﹣6.故选:B.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式1-7】(2022秋•薛城区校级月考)一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是( )A.B.a﹣1C.a2﹣1D.【分析】由一个自然数的一个平方根是a,可得出这个自然数是a2,进而得到与这个自然数相邻的上一个自然数是a2﹣1,再根据平方根的定义得出答案即可.【解答】解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,故选:D.【点评】本题考查平方根,理解平方根的定义是正确解答的前提.【例题2】求下列各数的平方根:(1)2549(2)0.36 (3)(﹣9)2 (4【分析】(1)(2)根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(3)先求出(﹣9)2=81,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果;(4=7,再根据一个正数有两个平方根,这两个平方根互为相反数计算结果.【解答】解:(1)2549的平方根是±57;(2)0.36的平方根是±0.6;(3)∵(﹣9)2=81,∴(﹣9)2的平方根是±9;(4)=7,【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根的定义,根据定义计算是解题关键.【变式2-1】1649的平方根是( )A.47B.±47C.−47D.27【分析】直接根据平方根的概念解答即可.【解答】解:∵(±47)2=1649,∴1649的平方根是±47,故选:B.【点评】此题考查的是平方根,掌握其概念是解决此题关键.【变式2-2】(2023•A.4B.±4C.±2D.2【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.=4,4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【变式2-3】(2023•西乡塘区校级开学)已知实数a的一个平方根是2,则它的另一个平方根是( )A.﹣2B.C.4D.﹣4【分析】一个正数的平方根有2个,它们互为相反数,据此即可得出答案.【解答】解:∵实数a的一个平方根是2,∴它的另一个平方根是﹣2,故选:A.【点评】本题考查平方根的性质,熟练掌握其性质是解题的关键.【变式2-4】(2022秋•二道区校级期中)在﹣2,0,117,23,1.44中,有平方根的数有( )A.4个B.3个C.2个D.1个【分析】根据平方根的性质即可求得答案.【解答】解:0,117,23,1.44都有平方根,﹣2没有平方根,则有平方根的数有4个,故选:A.【点评】本题考查平方根的性质,此为基础且重要知识点,必须熟练掌握.【变式2-5】(﹣8)2的平方根是( )A.﹣8B.8C.±8D.±64【分析】根据平方根的概念即可求出答案.【解答】解:由于(﹣8)2=64,∴64的平方根是±8,故选:C.【点评】本题考查平方根,解题的关键是熟练运用平方根的概念,本题属于基础题型.【变式2-6】(2022秋•雁塔区校级月考)求下列各数的平方根:(1)49;(2)1625;(3)279;(4)0.36;(5)(−38)2.【分析】(1)根据平方根的定义求一个数的平方根;(2)根据平方根的定义求一个数的平方根;(3)根据平方根的定义求一个数的平方根;(4)根据平方根的定义求一个数的平方根;(5)根据平方根的定义求一个数的平方根.【解答】解:(1)∵(±7)2=49,∴49的平方根是±7;(2)∵(±45)2=1625,∴1625的平方根是±45;(3)∵279=259,(±53)2=259∴279的平方根是±53;(4)∵(±0.6)2=0.36∴0.36的平方根是±0.6;(5)∵(−38)2=964=(38)2,∴(−38)2的平方根是±38.【点评】本题考查的是平方根,掌握平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,一个整数的平方根有2个,它们互为相反数.【变式2-7】求下列各式的值:(1)(2)(3 (4)【分析】(1)根据算术平方根定义计算;(2)根据平方根定义计算;(3)根据算术平方根定义计算;(4)根据平方根定义计算.【解答】解:(1)原式=﹣14;(2)原式=±52;(3)原式=0.5;(4)原式=±8.【点评】本题考查了算术平方根和平方根,掌握算术平方根和平方根定义,根据定义计算是解题关键.【例题3】求下列各数的算术平方根:(1)144; (2)0.49; (3)614; (4)(−32)2.【分析】根据开方运算,可得算术平方根.【解答】解:(112;(2==0.7;(3=5 2;(4|−32|=32.【点评】本题考查了算术平方根,开方运算是解题关键.【变式3-1】(2022秋•A.3B.﹣3C.±3D.5【分析】根据算术平方根定义解答.【解答】解:∵32=9,3,故选:A.【点评】此题考查了算术平方根的定义:若一个正数x的平方等于a,则x是a的算术平方根,熟记定义是解题的关键.【变式3-2】(2023春• .=9,再根据平方根的定义求出9的平方根即可.9,9±3,故答案为:±3.【点评】本题考查平方根、算术平方根,理解平方根、算术平方根的定义是正确解答的前提.【变式3-3】(2023春• .【分析】根据算术平方根的运算法则,直接计算即可.=4,4的算术平方根是2,2.故答案为:2.【点评】此题考查了求一个数的算术平方根,这里需注意16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.【变式3-4】(2022•=5,则a的值为( )A.10B C.25D.±25【分析】根据算术平方根的定义即可求出答案.【解答】解:∵52=25,5,则a的值为25.故选:C.【点评】本题考查算术平方根的定义.解题的关键是掌握算术平方根的定义.【变式3-5】(2022春•老河口市月考)设x=﹣22,y xy等于( )A.12B.﹣12C.6D.﹣6【分析】根据算术平方根以及有理数乘方的定义求出x、y的值,再代入计算即可.【解答】解:∵x=﹣22,y∴x=﹣4,y=3,∴xy=﹣4×3=﹣12,故选:B.【点评】本题考查算术平方根,有理数的乘方,理解算术平方根的定义以及有理数乘方的计算方法是正确解答的前提.【变式3-6】求下列各式的值:(1(2(3(4|a|.【解答】解:(1)原式12;(2)原式==57;(3)原式==100;(4)原式==0.07.【点评】本题主要考查了算术平方根,熟记定义是解答本题的关键.【例题4】(2022秋•崇川区校级月考)已知a,b满足(a﹣1)2+0,则a+b的值是( )A.﹣2B.2C.﹣1D.0【分析】先根据平方和算术平方根的非负性求出a,b的值,再将a,b的值代入a+b中即可求解.【解答】解:∵(a﹣1)2=0,(a﹣1)2≥00,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,则a+b=1+(﹣2)=﹣1.故选:C.【点评】本题主要考查了平方和算术平方根的非负性以及有理数的加法,掌握平方和算术平方根的非负性以及有理数的加法法则是解题的关键.【变式4-1】(2022秋•(n−3)2=0,则m n的值是 .【分析】根据算术平方根、偶次方的非负性求出m、n的值,再代入计算即可.+(n﹣3)2=00,(n﹣3)2≥0,∴m+2=0,n﹣3=0,解得m=﹣2,n=3,∴m n=(﹣2)3=﹣8,故答案为:﹣8.【点评】本题考查算术平方根、偶次方的非负性,掌握算术平方根、偶次方的非负性是正确解答的前提.【变式4-2】(2023•濠江区模拟)若a,b为实数,且|a−1|=0,则(a+b)2023= .【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵|a﹣1|+=0,∴a﹣1=0,b+2=0,∴a=1,b=﹣2,∴(a+b)2023=(1﹣2)2023=﹣1,故答案为:﹣1.【点评】此题主要考查了非负数的性质,能够根据非负数的性质正确得出a,b的值是解题关键.非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式4-3】已知a,b0,则a2022﹣b2023= .【分析】依据非负数的性质可求得a、b的值,然后再利用有理数的运算法则进行计算即可.0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2022﹣b2023=(﹣1)2018﹣12019=1﹣1=0.故答案为:0.【点评】本题主要考查的是算术平方根的性质,依据非负数的性质求得a、b的值是解题的关键.【变式4-4】(2023春•江源区期末)已知(a﹣1)2+|b+1|=0,则a+b+c= .【分析】先依据非负数的性质求得a、b、c的值,然后再代入计算即可.【解答】解:(a﹣1)2+|b+1|=0,∴a=1,b=﹣1,c=2.∴a+b+c=1+(﹣1)+2=2.故答案为:2.【点评】本题主要考查的是非负数的性质,依据非负数的性质求得a、b、c的值是解题的关键.【变式4-5】(2022春•|b a+b的绝对值为( )A.1B1C1D+|b+0,从而可得a﹣1=0,b+=0,然后求出a,b的值,再根据绝对值的意义进行计算即可解答.【解答】解:由题意得:|b0,∴a﹣1=0,b+=0,∴a=1,b=∴|a+b|=|11,故选:B.【点评】本题考查了绝对值,算术平方根和绝对值的非负性,熟练掌握算术平方根和绝对值的非负性是解题的关键.【变式4-6】(2022秋•迎泽区校级月考)若x,y满足(x−5)2=0,则x y的算术平方根为 .【分析】直接利用非负数的性质得出x ,y 的值,再利用负整数指数幂的性质、算术平方根的定义分析得出答案.【解答】解:∵(x−5)2=0,∴x ﹣5=0,y +2=0,解得:x =5,y =﹣2,故x y =5﹣2=125,则x y 的算术平方根为:15.故答案为:15.【点评】此题主要考查了非负数的性质以及负整数指数幂的性质,正确得出x ,y 的值是解题关键.【变式4-7】(2022秋•靖江市校级期中)已知a ,b ,c 都是实数,且满足(2﹣a )2|c +8|=0,且ax 2+bx +c =0,求代数式3x 2+6x +200的值.【分析】根据偶次方的非负性、算术平方根的非负性、绝对值的非负性解决此题.【解答】解:∵(2﹣a )2≥00,|c +8|≥0,∴当(2﹣a )2++|c +8|=0,则2﹣a =0,a 2+b +c =0,c +8=0.∴a =2,c =﹣8,b =4.∵ax 2+bx +c =0,∴2x 2+4x ﹣8=0.∴x 2+2x =4.∴3x 2+6x +200=3(x 2+2x )+200=12+200=212.【点评】本题主要考查偶次方的非负性、算术平方根、绝对值,熟练掌握偶次方的非负性、算术平方根的非负性、绝对值的非负性是解决本题的关键.【变式4-8】已知a ,b+b 2﹣6b +9=0.(1)求a ,b 的值;(2)若a ,b 为△ABC 的两边,第三边c =ABC 的面积.【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;(2)利用勾股定理逆定理判断出△ABC是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【解答】解:(1(b﹣3)2=0,所以,a﹣2=0,b﹣3=0,解得a=2,b=3;(2)∵a2+b2=22+32=13,c22=13,∴a2+b2=c2,∴△ABC是直角三角形,∠C=90°,∴△ABC的面积=12ab=12×2×3=3.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.【例题5】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为( )A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【点评】本题主要考查的是平方根的定义,依据平方根的定义求得a、b的值是解题的关键.【变式5-1】(2023春•长顺县期末)若2m﹣5与4m﹣9是某一个正数的平方根,则m的值是( )A.73B.﹣1C.73或2D.2【分析】依据平方根的性质列出关于m的方程,可求得m的值.【解答】解:∵2m﹣5与4m﹣9是某一个正数的平方根,∴2m﹣5=4m﹣9或2m﹣5+4m﹣9=0.解得:m=2或m=7 3.故选:C.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.【变式5-2】(2022•游仙区校级二模)若﹣3x m y和5x3y n的和是单项式,则(m+n)3的平方根是( )A.8B.﹣8C.±4D.±8【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.【解答】解:∵﹣3x m y和5x3y n的和是单项式,∴﹣3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.【点评】本题考查了平方根,同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.【变式5-3】(2022秋•高新区校级月考)已知2a﹣1的平方根是±3,b,c满足|b﹣1|+=0,求a+3b+c的算术平方根.【分析】根据算术平方根的概念列方程确定a的值,利用绝对值和算术平方根的非负性确定b和c的值,然后代入代数式,最后利用算术平方根的概念求解.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,解得:a=5,∵|b﹣1|+=0,且|b﹣1|≥00,∴b﹣1=0,c+4=0,解得:b=1,c=﹣4,∴a+3b+c=5+3×1+(﹣4)=5+3﹣4=4,=2,∴a+3b+c的算术平方根是2.【点评】本题考查平方根,算术平方根,理解平方根,算术平方根的概念以及绝对值和算术平方根的非负性是解题关键.【变式5-4】(2021春•饶平县校级期中)若x,y+2y﹣1=0的平方根.【分析】根据被开方数是非负数且它们互为相反数,可得被开方数为0,据此可求x,进一步求出y,再代入计算即可求出答案.【解答】解:2y﹣1=0,∴x﹣1≥0,1﹣x≥0,解得x=1,∴2y﹣1=0,∴y=1 2,==4,±2.【点评】本题考查了算术平方根以及平方根,解题时注意:一个正数的两个平方根互为相反数.【变式5-5】(2022春•横县期中)已知3b+3的平方根为±3,3a+b的算术平方根为5.(1)求a,b的值;(2)求4a﹣6b的平方根.【分析】(1)根据平方根的定义列出方程求出b,再根据算术平方根的定义求出a,然后相加求出a+b,再根据平方根的定义解答.(2)根据平方根的定义计算即可.【解答】解:(1)∵3b+3的平方根为±3,∴3b+3=9,解得b=2,∵3a+b的算术平方根为5,∴3a+b=25,∵b=2,∴a=23 3,(2)∵a=233,b=2,∴4a﹣6b=56 3,∴4a﹣6b的平方根为±【点评】本题考查了平方根和算术平方根的定义,熟记概念是解题的关键.【变式5-6】(2022春•芜湖期末)已知a+b﹣2的平方根是±3a+b﹣1的算术平方根是6,求a+4b的平方根.【分析】先根据平方根和算术平方根的定义得出a+b﹣2=17,3a+b﹣1=36,解出a和b的值,代入a+4b 值求值,再求平方根即可.【解答】解:根据题意,得a+b﹣2=17,3a+b﹣1=36,解得a=9,b=10,∴a+4b=9+4×10=9+40=49,∴a+4b的平方根是±7.【点评】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a、b的值是解题的关键.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.【变式5-7】(2023春•恩施州期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b 的平方根;(2)若2a﹣4与3a+1是同一个正数的平方根,求a的值.【分析】(1)直接利用平方根的定义得出a,b的值,进而得出答案;(2)直接利用平方根的定义得出a的值.【解答】解:(1)依题意,得2a﹣1=9且3a+b﹣1=16,∴a=5,b=2.∴a+2b=5+4=9.∴a+2b的平方根为±3,±3;(2)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=35或a=﹣5.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.【例题6】(2022春•岳麓区校级月考)求下列各式中x的值.(1)169x2=100;(2)(x+1)2=81.【分析】(1)两边都除以169,再根据平方根的定义求解可得;(2)先根据平方根的定义得出x+1的值,再解方程可得.【解答】解:(1)169x2=100,x2=100 169,x∴x=±10 13;(2)(x+1)2=81,x+1=±x+1=±9,x=8或﹣10.【点评】本题主要考查的是平方根的定义,熟练掌握相关概念是解题的关键.【变式6-1】(2022秋•新城区校级期中)求下列式子中的x:(1)25(x−35)2=49;(2)12(x+1)2=32.【分析】(1)根据平方根的概念解方程;(2)根据平方根的概念解方程.【解答】解:(1)25(x−35)2=49,(x−35)2=4925,x−35=±75,x−35=75或x−35=−75,解得:x1=2,x2=−4 5;(2)12(x+1)2=32,(x+1)2=32÷1 2,(x+1)2=32×2,(x+1)2=64,x+1=±8,x+1=8或x+1=﹣8,解得:x1=7,x2=﹣9.【点评】本题考查平方根,注意一个正数有两个平方根,且它们互为相反数是解题关键.【变式6-2】(2022秋•滕州市校级月考)求满足下列各式x的值(1)169x2﹣100=0 (2)(2x﹣1)2=(﹣5)2.【分析】(1)先求出x2的值,然后根据平方根的定义解答;(2)先求出(2x﹣1)2的值,然后根据平方根的定义解答.【解答】解:(1)由169x2﹣100=0,可得:x=±10 13;(2)由(2x﹣1)2=(﹣5)2.可得:2x﹣1=±5,解得:x=3或x=﹣2.【点评】本题考查了利用平方根的定义求未知数的值,是基础题,熟记概念是解题的关键.【变式6-3】(2022春•武侯区月考)求下列各式中的x的值:(1)9x2﹣25=0;(2)(x﹣1)2+8=72;(3)3(x+2)2﹣27=0;(4)12(x﹣5)2=8.【分析】根据等式的性质和平方根的定义进行计算即可.【解答】解:(1)移项得,9x2=25,两边都除以9得,x2=25 9,由平方根的定义得,x =±53;(2)(x ﹣1)2+8=72,移项得,(x ﹣1)2=72﹣8,合并同类项得,(x ﹣1)2=64,由平方根的定义得,x ﹣1=±8,即x =9或x =﹣7;(3)移项得,3(x +2)2=27,两边都除以3得,(x +2)2=9,由平方根的定义得,x +2=±3,即x =1或x =﹣5;(4)两边都乘以2得,(x ﹣5)2=16,由平方根的定义得,x ﹣5=±4,即x =9或x =1.【点评】本题考查平方根,理解平方根的定义,掌握等式的性质是正确解答的前提.【变式6-4】已知a ,b 满足|a ﹣4|+0,解关于x 的方程(a ﹣3)x 2﹣1=5b .【分析】直接利用绝对值和二次根式的性质得出a ,b 的值,进而代入解方程即可.【解答】解:由题意得:a ﹣4=0,b ﹣7=0,∴a =4,b =7,将a =4,b =7代入(a ﹣3)x 2﹣1=5b ,得(4﹣3)x 2﹣1=5×7∴x 2=36,解得:x =±6.【点评】此题主要考查了算术平方根以及绝对值,正确得出a ,b 的值是解题关键.【变式6-5】(2023春•澄海区期末)已知|2a +b ﹣4|(1)求5a ﹣4b 的平方根;(2)解关于x 的方程ax 2+5b ﹣5=0.【分析】(1)依据非负数的性质可求得a 、b 的值,然后再求得5a ﹣4b 的值,最后依据平方根的定义求解即可;(2)将a、b的值代入得到关于x的方程,然后解方程即可.【解答】解:(1)由题意,得|2a+b−4|+=0,∴2a+b﹣4=0,3b+12=0,解得:a=4,b=﹣4,∴5a﹣4b=5×4﹣4×(﹣4)=36,∴5a﹣4b的平方根为±6;(2)将a=4,b=﹣4代入ax2+5b﹣5=0,得4x2﹣25=0,解得:x=±5 2.【点评】本题主要考查的是平方根的定义、非负数的性质,熟练掌握平方根的定义、非负数的性质是解题的关键.【例题7】(2022春•渝中区校级月考)≈7.149≈22.608,( )A.71.49B.226.08C.714.9D.2260.8×100即可.==×100≈7.149×100=714.9,故选:C.【点评】本题考查算术平方根,理解“一个数扩大(或缩小)100倍,10000倍,其算术平方根就随着扩大(或缩小)10倍,100倍”是解决问题的关键.【变式7-1】(2023•宁津县校级开学)若≈5.036,15.906,则≈ .【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可.5.036,≈503.6.故答案为503.6:【点评】此题考查了算术平方根的定义,掌握算术平方根的定义是本题的关键.【变式7-2】(2022春•13 130 .×13,=×=13×10=130,故答案为:130.【点评】本题考查算术平方根,掌握“被开方数扩大100倍,其算术平方根就随着扩大10倍”是解决问题的关键.【变式7-3】(2021春•44.9614.22≈( )A.4.496B.1.422C.449.6D.142.2【分析】直接利用算术平方根的性质化简得出答案.44.96,≈4.496.故选:A.【点评】此题主要考查了算术平方根,正确理解算术平方根的定义是解题的关键.算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.【变式7-4】(2022秋•≈2.0736≈6.5574,下列运算正确的是( )A≈0.65574B65.574C≈20.736D≈2073.6【分析】根据题目意思,找出题中规律即可求解.【解答】解: 2.0736 6.5574,A≈≈× 6.5574×110≈0.65574,选项A符合题意;B× 2.0736×10≈20.736,选项B不符合题意;C≈× 6.5574×10≈65.574,选项C不符合题意;D=×≈2.0736×100≈207.36,选项D不符合题意;故选:A.【点评】本题主要考查了算术平方根,掌握算术平方根的性质是解题的关键.【变式7-5】(2022春•潍坊期中)(10.1732≈1.732≈17.32…发现规律:被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2≈2.236≈ ,≈ ;(3≈2.4497.746【分析】(1)观察规律即可得出答案;(2)根据(1)中的规律进行计算即可得出答案;(3==1)中的规律代入计算即可得答案.【解答】解:(1≈0.1732 1.732≈17.32…发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2≈2.236≈0.2236≈22.36;故答案为:0.2236,22.36;(32×7.746≈15.492,=3×0.2449≈0.7347.【点评】本题主要考查了算术平方根,熟练掌握算术平方根的定义进行求解是解决本题的关键.【变式7-6】根据下表回答下列问题:x1616.116.216.316.416.516.616.716.816.917 x2256259.21262.44265.69268.96272.25275.56278.89282.24285.61289(1)289的算术平方根是 ,= ;(2) ,275.56的平方根是 ;(3 , ;(4a(x>0 (用含a的式子表示).【分析】(1)根据图表和算术平方根的定义即可得出答案;(2)根据图表和平方根的定义即可得出答案;(3)根据被开方数与算术平方根的关系可得答案;(4)根据被开方数扩大100倍,算术平方根随之扩大10倍可得答案.【解答】解:(1)由表中的数据可得,289的算术平方根是1716.4,故答案为:17,16.4;(2)由表中的数据可得,±=±16,275.56的平方根是±16.6,故答案为:±16,±16.6;(3)由表中的数据可得,159.21的算术平方根是16.1,282.24的算术平方根是16.8,=1.61=168,故答案为:1.61,168;(4)由(3)可得被开方数扩大100倍,算术平方根随之扩大10倍,a(x>0=10a(用含a的式子表示).故答案为:10a.【点评】本题考查算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题关键.【例题8】(2022春•连江县期末)某学校有一块长、宽分别为38m和16m的长方形空地,计划沿边建造一个长宽之比为5:3且面积为540m2的长方形标准篮球场,请判断该学校能否用这块长方形空地建造符合要求的篮球场?并说明理由.【分析】通过用同一未知数表示出篮球场的长和宽,列方程进行求解.【解答】解:不能,理由如下:设长方形标准篮球场的长为5xm.宽为3xm,由题意得:5x×3x=540,解得:x=﹣6(舍去)或6,即长方形标准篮球场的长为30m,宽为18m,∵18m>16m,∴该学校不能用这块长方形空地建造符合要求的篮球场.【点评】此题主要考查了算术平方根,正确得出x的值是解题的关键.【变式8-1】(2023春•桥西区期末)射击时,子弹射出枪口时的速度可用公式v= Array a为子弹的加速度,s为枪筒的长.如果a=5×105米/秒2,s=0.81米,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.9×103米/秒B.0.8×103米/秒C.8×102米/秒D.9×102米/秒【分析】首先根据题意求出速度,然后根据科学记数法的表示方法求解即可.【解答】解:∵a=5×105米/秒2,s=0.81米,∴v=900=9×102米/秒.故选:D.【点评】本题主要考查算术平方根和科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.【变式8-2】(2023春•巩义市期末)电流通过导线时会产生热量,满足Q=I2Rt,其中Q为产生的热量(单位:J),I为电流(单位:A),R为导线电阻(单位:Ω),t为通电时间(单位:s).若导线电阻为5Ω,1s时间导线产生30J的热量,则通过的电流I为( )A.2.4A B C.4.8A D.【分析】通过分析题目列出正确的方程式,结合实际情况求出正确的解.【解答】解:由题意可得R=5Ω,t=1s,Q=30J,∴30=I2×5×1,∴I2=6,∵I>0,∴I=∴通过的电流I.故选:B.【点评】本题考查了算术平方根,解题关键在于能够分析题目列出方程式.【变式8-3】(2022秋•鄄城县期末)交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,他们总结了一个经验公式:v=v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦因数,在某次交通事故调查中,测得d=25米,f=1.44,而该路段的限速为80千米/时,肇事汽车当时的车速大约是多少?此车是否超速行驶?【分析】此题只需把d=25米=0.025千米,f=1.44,代入v=v的值后,再进一步和80千米比较,作出判断即可.【解答】解:v=16×=×1.2=80,答:肇事汽车当时的速度是/时,此车没有超速行驶.【点评】此题主要考查了算术平方根在实际中的应用,正确理解题意是解题的关键.【变式8-4】(2022春•景县月考)球从空中落到地面所用的时间t(秒)和球的起始高度h(米)之间有关系式,t=120米,则球落地所用时间与下列最接近的是( )A.3秒B.4秒C.5秒D.6秒【分析】将h=120代入计算得到t的值,再利用无理数的估算即可得出结论.【解答】解:∵h=120米,∴t=5最接近,∴球落地所用时间t与5秒最接近,故选:C.【点评】本题主要考查了实数的运算,算术平方根的意义,正确利用无理数的估算解答是解题的关键.【变式8-5】(2022秋•阜城县期末)将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD的长为( )A.+2B C.D+2【分析】设木块的长为x,结合图形知阴影部分的边长为x﹣2,根据其面积为19得出(x﹣2)2=19,利用平方根的定义求出符合题意的x的值,由BC=2x可得答案.【解答】解:设木块的长为x,根据题意,知:(x﹣2)2=19,则x﹣2=∴x=2+x=22(舍去),则BC=2x=4,故选:C.。

苏科版数学八年级上册 . 平方根 课件 优质PPT

苏科版数学八年级上册 . 平方根 课件 优质PPT

当X2=169时 ∵ 13 2=169
(-13 )2=169
∴ X= 13
可以看出,使x2=a(a>0)成立的数x有几个? 它们之间有什么关系?
苏科版数学八年级上册 . 平方根 课件 优质PPT
活动二:定义: 苏科版数学八年级上册 .平方根课件优质PPT
如果x2=a(a 0),那么x叫做a的平方根,
我们上一章学习的勾股定理又称毕达哥拉斯定理, 是古希腊的毕达哥拉斯最先发现。
毕达哥拉斯提出“万物皆为数”的观点:宇宙间的一 切现象都归结为整数或整数之比。而在公元前500年他的 学生希伯索斯却发现边长为1的正方形的对角线并不能用 整数比来表达,出现了新的数。这一发现引起了数学史 上的第一次危机,科学史就这样拉开了序幕,却是一场 悲剧,由于希伯索斯坚持真理,他被投尸大海,葬身鱼 腹,为此献出了生命。后来毕达哥拉斯学派建立了无理 数,扩大了数域,为数学的发展做出了贡献。
通过本节课的学习,你学到了哪些数学知识? 1.平方根的定义 2.平方根的符号表示 3.平方根的性质 4.开平方与平方是互逆运算,数的运算扩展到 加、减、乘、除、乘方、开方六种运算。 5.数形结合思想
苏科版数学八年级上册 . 平方根 课件 优质PPT
苏科版数学八年级上册 . 平方根 课件 优质PPT
作业:书上习题4.1 1 课后思考:
1. 81 的平方根是_____________
2.(-5)2的平方根____________
3. 4x+1的平方根是±5,则x=_____________
4. (x-3)2=25,求x
2(x+1)2-1=241,求x
5.若 x2 =16,则5-x的平方根是____________

2024秋八年级数学上册第4章实数4.1平方根3平方根教案(新版)苏科版

2024秋八年级数学上册第4章实数4.1平方根3平方根教案(新版)苏科版
⑤ 课堂展示与点评:学生展示讨论成果,教师进行点评和总结,加深学生对平方根的认识和理解。
⑥ 课堂小结:回顾本节课的主要内容,强调平方根的重要性和意义,布置课后作业巩固学习效果。
教学评价与反馈
1. 课堂表现:
- 学生参与度:大部分学生能够积极参与课堂讨论,提出问题和建议。
- 学生理解度:学生对于平方根的定义和性质有较好的理解,能够运用到实际问题中。
2. 课程平台:学校提供的教学管理系统,如学习通、智慧课堂等。
3. 信息化资源:教学PPT、教学视频、在线练习平台、数学软件工具。
4. 教学手段:小组讨论、合作学习、问题引导、实例分析、练习巩固。
教学过程设计
1. 导入新课(5分钟)
目标:引起学生对平方根的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是平方根吗?它与我们的生活有什么关系?”
根据学生的学习者分析,教师可以针对学生的兴趣和能力进行教学设计,提供清晰的实例和练习,帮助学生克服困难和挑战,提高学生对平方根概念和性质的理解和应用能力。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 软硬件资源:多媒体投影仪、白板、黑板、粉笔、教学卡片、计算器。
过程:
简要回顾本节课的学习内容,包括平方根的基本概念、求法、性质及案例分析等。
强调平方根在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用平方根。
布置课后作业:让学生撰写一篇关于平方根的应用案例报告,以巩固学习效果。
知识点梳理
1. 平方根的定义:一个正数的平方根是另一个数,它的平方等于这个正数。同样,一个负数的平方根也是一个数,它的平方等于这个负数。0的平方根是0。

【教学设计】《4.1平方根》(苏科版)

【教学设计】《4.1平方根》(苏科版)

《4.1平方根》本节课是义务教育苏科版数学八年级上册第四章第一节《平方根》的内容,在此之前,学生已经学习了有理数、有理数的乘方、用字母表示数等知识,这为过渡到本节起着铺垫作用。

本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。

本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。

因此,本节处于非常重要的地位,起着承前启后的作用。

【知识与能力目标】1、了解平方根的概念,会用根号表示平方根。

2、了解开方与乘方互逆运算,会用求某些非负数的平方根。

【过程与方法目标】通过尺平方根的运算,让学生体会无理数是因实际生活的需要而产生的,理解数的扩充。

【情感态度价值观目标】让学生在自主参与、合作交流的活动中体验成功的喜悦,树立自信,激发学习,发展学生的符号语言。

【教学重点】一个数的平方根的概念理解及表示方法.【教学难点】一个数的平方根的概念理解及表示方法.教师准备:多媒体、课件学生准备:练习本一、情境创设学校为了开运动会,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为多少米?如果要圈面积为50平方米的正方形场地,这块正方形场地的边长为多少米?如果一个数的平方等于100,这个数是几?一个数的平方等于50呢?想知道这个问题的答案吗?我们来学习——平方根二、新授:1、什么叫平方根?例如:2²=4,(-2)²=4,±2叫做4的平方根。

10²=100,(-10)²=100,±10叫做100的平方根13²=169,(--13)²=169,±13叫做169的平方根。

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。

苏科版数学八年级上册 4.1 平方根 教案 (1)

苏科版数学八年级上册 4.1 平方根 教案  (1)

《平方根》教学设计[课题名称]苏科版数学八年级上册第四章第一节《平方根》第一课时。

[教材简解]本节教材是学生在七年级上册学习“棋盘上的故事”认识了运算“乘方”,并能熟练计算任何一个数的平方。

在这节内容的学习中要认识学习平方根,学习平方根的概念及其运用。

并对“乘方”和“开方”、“平方”和“开平方”的概念做辨析,使学生在“引导——探索——类比——发现”中发展学习数学的能力。

对平方根的性质,教材是考虑学生的年龄特征,先通过“探究”中的具体问题,让学生根据平方根的意义,举例讨论分析类比得出结果,再分析结果的共同特征,由特殊到一般地归纳出结论。

因此学生必须了解平方根的性质产生的背景,经历性质的探索过程、理解、掌握基本技能;同时也力图在学习中逐步达成学生的有关情感态度目标。

[目标预设]1、培养学生的逻辑分析能力。

使学生理解经历数的平方根的概念形成过程,,能运用根号表示一个数的平方根;让学生不仅掌握概念,而且提高和巩固所学知识的应用能力,使学生能把本节课知识与先前已学经验、知识建立联系,更好地分析问题,使知识系统化。

2、培养学生的综合转化能力。

掌握用平方运算求某些数的平方根的方法。

通过学生利用利用观察、归纳、类比、概括、推理等多种综合分析手段,从而由特殊到一般地探究出平方根性质,提高处理实际问题的能力。

3、培育学生合作交流的能力。

通过了解乘方与开方是互逆的运算,会利用这个互逆运算关系求非负数的平方根,让学生利用已经具有的合作学习的经验,感受到创造性活动带来的愉快,体会真正的数学美,增强相互间的合作与交流,培养的数学情感。

[重点难点]1、重点:平方根的概念,会用根号表示一个非负数的平方根。

2、难点:学会理解归纳平方根的性质,并能运用开平方运算求一个非负数的平方根。

[设计思路]本小节安排两课时,第一课时:在具体的例子中抽象出数的平方根的概念,会用根号表示一个数的平方根,发展学生的抽象概括能力。

先通过对乘方的意义到总结出平方根的基本概念,然后解决单纯数或者式子的平方根的计算;第二课时,归纳类比得到算术平方根的概念和基本性质并解决一些简单的现实问题。

苏科版数学八年级上册4.1.2《平方根》教学设计

苏科版数学八年级上册4.1.2《平方根》教学设计

苏科版数学八年级上册4.1.2《平方根》教学设计一. 教材分析《平方根》是苏科版数学八年级上册4.1.2节的内容,本节主要让学生理解平方根的概念,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。

教材通过引入平方根的概念,让学生通过观察、思考、探究,体会平方根的性质,培养学生的逻辑思维能力和创新能力。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘方,对乘方的概念和性质有一定的了解。

但平方根的概念对学生来说是一个新的内容,需要通过实例和练习来理解和掌握。

同时,学生需要具备一定的观察和思考能力,以应对本节内容中的探究和发现环节。

三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。

2.能够应用平方根的性质解决实际问题。

3.培养学生的观察能力、思考能力和创新能力。

四. 教学重难点1.平方根的概念。

2.求一个数的平方根的方法。

3.平方根的性质和应用。

五. 教学方法1.引导法:通过问题引导,让学生思考和发现平方根的性质。

2.实例法:通过具体的例子,让学生理解和掌握求平方根的方法。

3.练习法:通过适量的练习,巩固学生对平方根的理解和应用。

六. 教学准备1.PPT课件:制作相关的PPT课件,用于展示和讲解平方根的概念和性质。

2.练习题:准备适量的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入平方根的概念。

例如,一个正方形的面积是25平方米,求这个正方形的边长。

让学生思考和讨论,引出平方根的概念。

2.呈现(15分钟)讲解平方根的定义和性质,通过PPT课件展示平方根的图像和例子,让学生理解和掌握平方根的概念。

3.操练(15分钟)让学生练习求一个数的平方根,提供一些具体的例子,让学生动手操作,巩固对平方根的理解。

4.巩固(10分钟)通过一些填空题和选择题,让学生巩固对平方根的概念和性质的理解。

5.拓展(10分钟)让学生思考和讨论,找出平方根在实际生活中的应用。

苏科版数学八年级上册 4.1 平方根 教案 (1)

苏科版数学八年级上册 4.1 平方根 教案 (1)

《苏科版八年级数学》4.1 平方根[教材简解]“平方根”是苏科版数学八年级上册第4章“实数”的第一节内容。

由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。

运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善.因此,本节课是今后学习根式运算、方程、函数等知识的重要基础.[目标预设]知识技能1.了解平方根的概念,会用符号表示一个正数的平方根;2.了解平方与开平方的关系,会用平方根运算求某些非负数的平方根.数学思考1.通过学习平方根,进一步建立数感和符号感,发展抽象思维.2.经历观察、归纳等数学活动过程,发展学生的合作精神和有条理的思考和探究能力.3.加强概念形成过程的教学,提高学生的思维水平解决问题初步学会从实际问题入手,尝试从数学的角度理解问题,并运用所学的知识和技能解决问题,进一步发展学生的应用意识.情感态度通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,渗透数学知识来源于生活,又要为生活服务的观点.[重点、难点]重点:平方根的概念,能熟练地用平方根求某些非负数的平方根.难点:用平方根运算求某些非负数的平方根.[设计理念]1.根据教材内容结合八年级学生的认知特点,力图改变学生的学习方式,教师引导学生主动地从事观察、交流、反思等数学活动,采用边启发、边分析、层层设疑、讲练结合的教学方式,鼓励学生自主探索与合作交流,使学生始终能主动地参与学习,成为学习的主人.2.关注学生的情感与态度,实施开放性教学,让学生获得成功的体验.[设计思路]导入:创设情景,引入新课,即实现“数学生活化、生活数学化”.举例子:平方等于9,100的数,为下面的学习做准备.新课学习:引导学生结合例子,学习平方根的概念,及符号表示方法 ,归纳性质,通过练习巩固知识点.小结: 归纳小结解题思路与方法.[教学过程]一、情境引入问题:若等腰直角三角形的腰长为1,则它的斜边长 是多少呢?学生复习回顾勾股定理进行计算,设AB=x ,由勾股定理可知,x ²=1²+1²=2,发现问题x =?设计意图:以熟悉问题为情境,从实际问题出发,让学生x ²=2发现x 用现有的知识是不能准确表示出来的,介绍第一次数学危机,激发学生对问题的兴趣,这样顺利成章的引出本课的概念平方根.二、探索活动活动1:在括号里填上合适的数:()()()() 251 4 16 3 100 2 9 12222====)(,)(,)(,)(定义:如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称为二次方根.如果x 2=a ,那么x 就叫做a 的平方根,也称为二次方根.设计意图:先让学生填空,什么数的平方等于9,100等,引入平方根,什么数的平方等于16,反之,16的平方根就是多少,同时渗透开方与乘方互为逆运算.归纳:一个正数的平方根有2个,它们互为相反数.一个正数a 的正的平方根,记作“a ”,正数a 的负的平方根记作“-a ”.这两个平方根合起来记作“±a ”,读作“正、负根号a ”活动2:1.一个数的平方等于0,这个数是多少?2.在下列括号中,你能填写适当的数使等式成立吗?如果不能,请说明理由.( )2=4, ( )2=169 ,( )2=7, ( )2=0, ( )2=-1,( )2=-9.3.通过上面的交流,你又有什么发现?设计意图:利用平方根的定义求平方根,先让学生填空,让学生通过例子自己去归纳总结平方根的求法和正数、零、负数的平方根的情况,理解负数没有平方根.总结:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根!练习:判断下列说法是否正确:(1)-2是4的平方根; ( )(2)4的平方根是-2 ; ( )(3)(-5)2的平方根是±5;( )(4)2表示2的正的平方根 ; ( )(5)2的平方等于2 ; ( )(6)-a 没有平方根. ( )活动3:例题教学例1 求下列各数的平方根.(1)25;(2)1681 ;(3)15;(4)0.09. 设计意图:巩固平方根的定义,让学生首先判断这些数是否都有平方根,根据规律各个数的平方根有几个?通过例题教学示范和学生自己动手解题,体验成功的喜悦.练习:1.写出下列各数的平方根.81, 3, 0,1.44, 0.81 ,412.2.求下列各式中的x .(1) x ²=36 ; (2) x ²=15 .学生先独立思考,再与同学交流,后请学生上黑板展示.设计意图:结合学生的表述,让学生明白每一步运算的算理,并进行自我评价和修正.理解平方与开平方互为逆运算,可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.巩固提升1.下列说法正确的是( )(将序号写在括号里)①3是3的平方根;②25的平方根是-5;③0的平方根是0;④1的平方根是1;⑤16 =±4;⑥(-3)2平方根是±3;⑦5是(-5)2的平方根;⑧3的平方根是±9;⑨±4 是 16 的平方根;⑩7是 35 的平方根.2.填空:(1)7的平方根是;(2)一个数有一个平方根是-7,则它的另一个平方根是,这个数是;(3)4a+1的平方根是±5,则a= ;(4)要使x-5有平方根,则x的取值是 .3.求下列各式中的x.(1) x²=64 ;(2)(x+1)²=9 .设计意图:鼓励学生独立完成,检测本节课所学知识的掌握情况,以便补差补缺.思维拓展:一个数m它的平方根分别是n+1和n-3,求m、n的值设计意图:满足学生的不同需要和发展.三、小结回顾1.我今天的收获有:2.我还有一些疑问:设计意图:鼓励学生自己总结本课所学的内容,充分体现了以学生为主体的教学理念,从而带给学生学习数学的快乐.四、布置作业课堂作业:课本 P97习题4.1第1、3;课后作业:1.必做《伴你学》随堂练习部分;学有余力的学生完成迁移应用.2.预习平方根第二课时,自学教材,并试着做一做课后练习.设计意图:作业分层布置,考虑到学生的差异性,让每个学生都有事做,都能体会到成功.。

(八年级数学教案)平方根教学设计

(八年级数学教案)平方根教学设计

平方根教学设计八年级数学教案[课题]:义务教育课程实验教科书数学(苏科版)八年级上册第二章第3节(第1 课时一、教学目标:知识与技能目标:1•知道平方根的概念,能熟练地求出一个正数的平方根。

2•能描述平方根的特征,理解开方与乘方两者之间的联系与区别。

过程与方法目标:让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。

情感与态度目标:1•学生积极参与数学活动,培养其对数学的好奇心与求知欲。

2.过数学活动,使学生获得成功的体验,并形成实事求是的态度。

二、教学重、难点:重点:对平方根概念的描述与刻画难点:对平方根性质的探索三、学情分析:知识背景:学生已经学会了乘方运算.能力背景:能借助乘方运算解决其逆运算-----开平方预测目标:1.能熟练地求一个正数的平方根.2•知道乘方与开方的联系与区别四、教具准备:多媒体五、教学过程:(一)创设情景,引入新课师:小明到装饰城购买瓷砖,老板给了他一块面积为4dm2的正方形瓷砖,聪明的你能告诉小明这块瓷砖的边长吗?(幻灯片显示)生:2dm(学生异口同声)师:若面积为5 dm2则边长为多少呢?生1:边长为2.5 dm(生1好耍小聪明,回答问题不假思索)生2:边长不能为2.5 dm师:为什么?生2:因为如果边长为2.5 dm,那么它的面积就为6.25 dm2所以不正确.(此时学生中出现了一阵骚动,有的学生还怀疑数字出错了,建议把数字改为9,并说出其中的原因.)生3:要是能知道几的平方等于5就好了.(生3是一个基础较好的学生,很爱动脑筋,此时有不少学生对他的见解表示赞成)(二) 实践探索,揭示新知:1. 平方根的定义(幻灯片显示)一般地,如果一个数的平方根等于a,那么这个数叫做a的平方根(square root),也称为二次方根也就是说,如果x2=a那么x叫做a的平方根.例如:22=4,(-2)2=4,叫做4的平方根32=9,(-3)2=9,叫做9的平方根2. 探索平方根的性质:a. 看一看:观察下面的式子:(幻灯片显示)①12=1, (-1)2=1②0.52=0.25, (-0.5)2=0.25③()2= , (- )2=(1)请你写出一个与上面式子类同的式子(2)你发现了什么结论?生1:互为相反数的两个数的平方相等.生2:平方等于同一个数的数有两个,它们互为相反数.生3: 士都是1的平方根生4:一个正数的平方根有2个,一个正的,一个负的,并且互为相反数.一个正数a有两个平方根,它们互为相反数.(在学生的交流与探索之中,思维的火花不断绽放,逐渐地点出了新知•)b. 介绍平方根的表示方法:(幻灯片显示)一个正数a有两个平方根,它们互为相反数.正数a的正的平方根,记作""正数a的负的平方根,记作"-"这两个平方根合在一起记作"士"c. 想一想在下列各括号中,能填写适当的数使等式成立吗?如果能够,请填写;如果不能, 请说明理由,并与同学交流.①()2=9()2=25()2=②()2=2()2=3()2=0③()2二2(对于① 学生在较短的时间内很顺利地做完了;② ③ 较① 有一定的难度,有一部分的学生通过指点也能做出。

苏科版数学八年级上册平方根ppt演讲教学

苏科版数学八年级上册平方根ppt演讲教学

B、2个
C、3个 D、4个
2、如果a 的一个平方根是4,则另一个平方根是(-4)
3、一个数x的平方根等于m+1和m-3,则m=(1 ), x=(4 )。
4、一个数的平方等于它本身,这个数是(0和1 ). 一个数的平方根等于它本身,这个数是( 0 ).
苏科版数学八年级上册平方根ppt演讲 教学
15
苏科版数学八年级上册平方根ppt演讲 教学
8
三、例题教学,学会解题
例1 求下列各数的平方根: (1)25 ;
解: 因为(±5)²=25,
所以25的平方根是±5
即 25 5;
写成平方式 文字描述 符号表达式
求一个数的平方根的运算叫做开平方。
开平方与平方互为逆运算。
苏科版数学八年级上册平方根ppt演讲 教学
8
苏科版数学八年级上册平方根ppt演讲 教学
20
6、若a+1平方根是±5,则a=( 24 )。 若a+1平方根是0,则a=(-1)。 若a+1没有平方根,则a(< -1 )。
苏科版数学八年级上册平方根ppt演讲 教学
17
苏科版数学八年级上册平方根ppt演讲 教学
19
五、运用新知 解决问题
【问题】 你能求下列直角三角形中x 的值吗?
x2 =20 , x=?
例1 求下列各数的平方根:
(3)15 ;
解: 15的平方根是 15;
苏科版数学八年级上册平方根ppt演讲 教学
10
苏科版数学八年级上册平方根ppt演讲 教学
11
三、例题教学,学会解题
例1 求下列各数的平方根:
(4)- 52
解:因为- 52 25 52 写成平方式 所以- 52的平方根是 5 文字描述

4.1 平方根 苏科版八年级数学上册课件

4.1 平方根 苏科版八年级数学上册课件

练习
4 . 1 平方根
写出下列各数的平方根: 81,289,0,214,2.56,0.81.
解:81的平方根是± 81,即±9; 289 的平方根是± 289,即±17; 0的平方根是0;
4 . 1 平方根
214= 94, 214的平方根是±
9 4
,即±32;
2.56的平方根是± 2.56 ,即±1.6;
∵9>0,∴9有平方根,平方根是± 3. ∵5>0,∴5有平方根,平方根是± 5.
∵295>0,∴ 295有平方根,平方根是±35. 0有平方根,0的平方根是0.
4 . 1 平方根 9,5,295,0, -49, -8,-36.
∵- 49>0,∴-49 没有平方根. ∵ -8<0,∴-8 没有平方根. ∵-36<0,∴-36 没有平方根.
16 81
的平方根是±
1861,即±49;
(3) 15 的平方根是± 15 ;
(4) 0.09 的平方根是± 0.09 ,即±0.3.
4 . 1 平方根 练1
(1) 一个正数的平方根是2a-1 和a-5,则这个正数是 多少?
解:根据题意,得(2a-1) +(a-5)=0, 解得 a=2, ∴这个正数为(2a-1)2= (2×2-1)2=9.
4 . 1 平方根 一个正数有两个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根.
求一个数的平方根的运算叫做开平方.
4 . 1 平方根 例1 求下列各数的平方根:
(1) 25; (2) 1861; (3) 15; (4) 0.09. 解:(1) 25 的平方根是± 25,即±5;
(2)
4 . 1 平方根 我们曾将两个边长为 1 的正方形剪拼成一个边长为 a 的正方形,它的面积为 2,即 a2 = 2,a是2的正的平方 根,记作 2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 4.1 平方根(第1课时)
教材分析:
“平方根”是苏科版数学八年级上册第4章“实数”的第1节的内容,隶属于“数与代数”领域,是本章教学的重点和难点.本节共2课时,本节课是第1课时.由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,从而完成了初中阶段数的扩展.运算方面,在乘方运算的基础上以引入了开方运算,使代数运算得以完善.因此,本节课有助于了解n次方根的概念,为今后学习二次根式、方程、函数等知识作出了铺垫,提供了数学知识的积累.
教学目标:
1.了解平方根的概念,学会平方根的符号表示;
2.了解开方与乘方互为逆运算,会用平方根运算求一个非负数的平方根;
3.理解平方根的性质,懂得一个正数有两个平方根(它们互为相反数),0的平方根是0,负数没有平方根.
教学重点:
了解开方与乘方互为逆运算,能熟练地用平方根运算求一个非负数的平方根.
教学难点:
用平方根运算求一个非负数的平方根.
教学过程:
一、创设情景,复习旧知
师:想一想,什么是乘方运算?能举个例子吗?
生: 32,(-3)2,52,54,…
师:在“54”中,5、4分别叫什么?
生(众):5是底数,4是指数.
师:54的结果是多少?它又叫什么?
生(众):625,幂.
师:乘方运算是已知底数、指数,求幂的运算.
二、提出问题,引发探究
师:如果知道了指数、幂,问底数是多少呢?也就是说“已知x4=625,求x.”我们把这种运算称之为开方运算,就是已知幂、指数,求底数的运算.
师:我们研究数的运算往往是从简单的开始,你觉得我们可以先从“开几次方”开始研究呢?
生:1.
师:对于一个数的开1次方,是多少?有没有必要?
生:没有,开1次方还是它本身.
师:对的!那从“开几次方”开始?
生:开2次方.
师:到底“开几次方”?
生(众):开2次方.
师:二次方又称平方.那我们就从平方运算和对应的开平方运算开始.
师:我们知道22=4.若x2=4,x是多少?
生:±2.
师:x2=100呢?x2=169呢?
生:±10,±13.
师:能再举些列子吗?
生:……
师:你有什么发现?
生:平方等于同一个数的数有两个,它们互为相反数.
师:x2=2呢?
(学生讨论)
师:在这里我们没有找到任何一个整数或分数的平方等于2,即无法找到一个有理数,使它的平方等于2.这怎么办呢?
师:为了确定一个数,使它的平方等于2,我们在平方数2的上面放上符号“”来表示,记作2,即()2
22=.这里的“”读作“根号”,2读作“根号2”.
师:此时,x会是多少?
±.
生:2
师:可以看出,使x2=a(a>0)成立的数有几个?
生(众):两个.
师:它们之间有什么关系?
生:它们互为相反数.
师:(板书定义)我们说,如果x 2=a (a ≥0),那么x 叫做a 的平方根,也称为二次方根.这就是我们今天所要学习的平方根(出示课题).正数a 的正的平方根记作“a ”负的平方根记作“a -”, 正数a 的两个平方根记作“a ±”,读作“正、负根号a ”.
三、尝试练习,巩固新知
(出示例题)例1 求下列各数的平方根:
(1)25;(2)1681
;(3)15;(4)0.09. (学生讲解,教师点评,巩固新知)
四、探索交流,发现性质
师:在下列各括号中能填写适当的数使等式成立吗?如果能,请填写;如果不能,请说明理由,并与同学交流.
( )2=9,( )2=5,( )2=925
,( )2=0, ( )2=-49
,( )2=-8,( )2=-36. 生:……
师:你有什么发现?
生:……
师:(板书性质)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
五、拓展练习,深化理解
(出示例题)例2 计算:
(1)36; (2)4
12
-; (3)81.0±. 师:式子36什么意思?
生:表示36的平方根.
师:再想想,看看黑板上的符号表示.
生:表示36的正的平方根.
师:正确!等于多少?
生:6. 师:式子4
12-什么意思? 生:表示4
12的负的平方根. 师:等于多少? 生:2
3-. 师:很好!那么,81.0±呢?
生:表示0.81的平方根.
(师生共同分析后,学生板演)
六、梳理小结,归纳提升
师:请同学们围绕以下几个问题展开梳理:(1)这节课你是怎样学习平方根的?(2)你对平方根有哪些认识?
生:……
师:同学们,乘方运算是已知底数、指数求幂的运算,开方运算是已知幂、指数求底数的运算,如果已知幂、底数求指数有什么运算呢?这将在高中学习中解决这样的问题.
教学反思:
1.立足研究教材,贴近学生现实
著名特级教师李庾南认为“教材不等于教学内容,教者应该从学生实际出发,力求学生的知识、智力、能力、情感、态度能达到各自的‘最近发展区’,创造性地用教材,重组教学内容,决不能只是讲教材”.本节课教材设计是以运用勾股定理计算直角三角形边长为实际情境,引导学生感悟研究“数的开方”的必要性,激发学生的求知欲.显然,边长的计算结果应该是算术平方根,而不是平方根,笔者觉得有值得商榷的地方.所以,笔者放弃了教材上的情境引入,而是从“什么是乘方运算”入手,引入“开方运算”,让学生初步感受乘方与开方互为逆运算,然后引导学生来具体研究平方运算和对应的开平方运算,再给出平方根的定义,让学生学会平方根的符号表示及求法,并归纳其性质.这样,不仅有利
于学生理解平方根的内涵,还能够更好地揭示开平方运算与平方运算之间的内在关联.
2.深刻理解教材,认真理解数学
钟启泉教授指出:“可以说,唯有‘用教材教’才能反映教学过程中教材的性质.这是因为,教学过程是一种社会交互作用的过程,知识不是教师通过传递信息强制性地灌输给学生的,而是学生自身以及在与教师交互作用之中建构的.”章建跃教授曾说:“在课堂教学中,要以数学知识的发生、发展过程和理解数学知识的心理过程为基本线索,为学生构建前后一致逻辑连贯的学习过程,使他们在掌握数学知识的过程中学会思考.”“用教材教”就需要我们深刻理解教材、认真理解数学,不仅包括本学段内数学知识的发生、发展可能,还要思考在后续高中阶段会有怎样的生长可能,也有利于学生能从整体上理解数学,构建数学认知结构.“幂、底数、指数”三个量之间的关系是平方根教学的生长点,笔者设计具有思考性的问题串,引发学生思维冲突,引导学生准确而深刻理解平方根概念,也为学习高中对数知识作了必要的准备.。

相关文档
最新文档