第一章半导体器件
半导体基础知识
G
S 图 P 沟道结型场效应管结构图
S 符号
二、工作原理
N 沟道结型场效应管用改变 UGS 大小来控制漏极电
流 ID 的。
耗尽层
D 漏极
*在栅极和源极之间
加反向电压,耗尽层会变
栅极
G
N
P+ 型 P+
沟 道
N
S 源极
宽,导电沟道宽度减小, 使沟道本身的电阻值增大, 漏极电流 ID 减小,反之, 漏极 ID 电流将增加。
e
e
图 三极管中的两个 PN 结
c
三极管内部结构要求:
N
b
PP
NN
1. 发射区高掺杂。
2. 基区做得很薄。通常只有 几微米到几十微米,而且掺杂较 少。
3. 集电结面积大。
e
三极管放大的外部条件:外加电源的极性应使发射 结处于正向偏置状态,而集电结处于反向偏置状态。
三极管中载流子运动过程
c
Rc
IB
I / mA
60
40 死区 20 电压
0 0.4 0.8 U / V
正向特性
2. 反向特性 二极管加反向电压,反 向电流很小; 当电压超过零点几伏后, 反向电流不随电压增加而增
I / mA
–50 –25
0U / V
击穿 – 0.02 电压 U(BR) – 0.04
反向饱 和电流
大,即饱和;
反向特性
常用的 5 价杂质元素有磷、锑、砷等。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4
半导体基础知识
第一章、半导体器件
1、为什么将自然界导电性能中等的半导体材料制成本征半导体,导电性能极差,又将其掺杂,改善导电性能?
制成本征半导体是为了讲自然界中的半导体材料进行提纯,然后人工掺杂,通过控制掺杂的浓度就可以控制半导体的导电性,以达到人们的需求
2、为什么半导体器件的温度稳定性差?是多子还是少子是影响温度稳定性的主要因素?
导致半导体性能温度稳定性差的主要原因有二:β
(1)禁带宽度与温度有关(一般,随着温度的升高而变窄);(2)少数载流子浓度与温度有关(随着温度的升高而指数式增加)。
多子。
3、为什么半导体器件有最高工作频率?
这是因为半导体器件的主要组成单元是PN结,PN结的显著特征是单向导电性,因为PN结的反向截止区是由耗尽层变宽导致截止,而这个过程是需要一定的时间的,如果频率太高导致时间周期小于截止时间就可能造成PN结失去单向导电性,导致半导体器件不能正常工作,所以半导体器件有最高工作频率的限制。
4、整流,是指将交流电变换为直流电称为AC/DC变换,这正变换的功率流向是由电源传向负载,称之为整流。
5、为什么基极开路集电极回路会有穿透电流?
虽然集电结是反偏的,虽然基极是开路的,但是,晶体管芯,是块半导体材料。
半导体材料,又不是绝缘体,加上电压,就有微弱的电流,这很正常。
从集电区向基区出现的“反向饱和电流Icbo”,在基极没有出路,就流向发射极了。
这一流动,就形成了一个Ib。
这个Ib,就引出了一个贝塔倍的Ic; 这个Ib和Ic之和,就是穿透电流Iceo,等于(1+贝塔)Icbo。
6、
展开。
模拟电子技术基础简明教程-(第三版)第一章
(a)外形图
21
(b)符号
第二节 半导体二极管
半导体二极管的类型: 按半导体材料分:有硅二极管、锗二极管等。 按 PN 结结构分:有点接触型和面接触型二极管。 点接触型管子中不允许通过较大的电流,因结电容
小,可在高频下工作。 面接触型二极管 PN 结的面积大,允许流过的电流
大,但只能在较低频率下工作。 按用途划分:有整流二极管、检波二极管、稳压
O
U
图 1.2.8
30
第二节 半导体二极管
2. 扩散电容 Cd
P区 耗 尽 层 N 区
是由多数载流子在扩散过程中积累而引起的。+ I
V P 区中电子
- R
N 区中空穴
浓 度 分布
浓 度 分布
x
Ln
Lp
在某个正向电压下,P 区中的电子浓度 np(或 N
区的空穴浓度 pn)分布曲线如图中曲线 1 所示。
路中反向电流非常小,几乎等于零, PN 结处
于截止状态。
PN 结具有单向导电性。
正向偏置:
电源正极接P区,负极接N区,即“P正N负” 反向偏置:
电源正极接N区2,0 负极接P区,即“P负N正”
第二节 半导体二极管
2 二极管的伏安特性
半导体二极管又称晶体二极管。 二极管的结构: 将 PN 结封装在塑料、玻璃或金属外壳里,再 从 P 区和 N 区分别焊出两根引线作正、负极。
28
第二节 半导体二极管
二极管的电容效应
当二极管上的电压发生变化时,PN 结中储存的 电荷量将随之发生变化,使二极管具有电容效应。
电容效应包括两部分 势垒电容 扩散电容
1. 势垒电容
是由 PN 结的空间电荷区变化形成的。
第1章常用半导体器件
ui=0时直流电源作用
根据电流方程,rd
uD iD
UT ID
小信号作用
Q越高,rd越小。 静态电流
3. 二极管电路应用举例
(1)开关电路(掌握)
方法:假设法,将D管断开 原则一:单向导电性
阳极 a
k 阴极
D
V阳>V阴,D管正偏,导通 V阳< V阴,D管反偏,截止
原则二:优先导通原则(多二极管电路中)
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。
N区自由电 子浓度远高
于P区。
扩散运动
扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低,产生内电场。
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。
2
98 0.98
100
综上所述,实现晶体三极管放大作用的 两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。
正偏电压工作,通电流→发光,电信号→光信号 光颜色:红、橙、黄、绿(与材料磷、砷、镓、化有关)
3. 激光二极管
(a)物理结构 (b)符号
发光二极管
光电二极管
一、晶体管的结构及类型 二、晶体管的电流放大原理 三、晶体管的共射输入特性和输出特性 四、温度对晶体管特性的影响 五、主要参数
三极管:电流放大(三个电极)
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
半导体器件的基础知识
向电压—V(BR)CBO。 当集电极开路时,发射极与基极之间所能承受的最高反
向电压—V(BR)EBO。
精选课件
28
1.2 半导体三极管
③ 集电极最大允许耗散功率 PCM 在三极管因温度升高而引起的参数变化不超过允许值时, 集电极所消耗的最大功率称集电极最大允许耗散功率。
三极管应工作在三极 管最大损耗曲线图中的安 全工作区。三极管最大损 耗曲线如图所示。
热击穿:若反向电流增大并超过允许值,会使 PN 结烧 坏,称为热击穿。
结电容:PN 结存在着电容,该电容为 PN 结的结电容。
精选课件
5
1.1 半导体二极管
1.1.3 半导体二极管
1.半导体二极管的结构和符号 利用 PN 结的单向导电性,可以用来制造一种半导体器 件 —— 半导体二极管。 电路符号如图所示。
将两个 NPN 管接入判断 三极管 C 脚和 E 脚的测试电 路,如图所示,万用表显示阻
值小的管子的 值大。
4.判断三极管 ICEO 的大小 以 NPN 型为例,用万用 表测试 C、E 间的阻值,阻值 越大,表示 ICEO 越小。
精选课件
33
1.2 半导体三极管
1.2.6 片状三极管
1.片状三极管的封装 小功率三极管:额定功率在 100 mW ~ 200 mW 的小功率 三极管,一般采用 SOT-23形式封装。如图所示。
精选课件
21
1.2 半导体三极管
由图可见: (1)当 V CE ≥ 1 V 时,特性曲线基本重合。 (2)当 VBE 很小时,IB 等于零,三极管处于截止状态。
精选课件
22
1.2 半导体三极管
(3)当 VBE 大于门槛电压(硅管约 0.5 V,锗管约 0.2 V) 时,IB 逐渐增大,三极管开始导通。
第一章 半导体器件知识
第一章《半导体器件的基础知识》一、填空:1、半导体的导电能力随着(掺入杂质)、(光照)、(温度)和(输入电压和电流的改变)条件的不同而发生很大的变化,其中,提高半导体导电能力最有效的办法是(掺入杂质)。
2、(纯净的半导体)叫本征半导体。
3、半导体可分为(P )型半导体和(N )型半导体,前者( 空穴)是多子,(电子)是少子。
4、PN结加(正向电压)时导通,加(反向电压)时截止,这种特性称为(单向导电)性。
5、PN结的反向击穿可分为(电)击穿和(热)击穿,当发生(热)击穿时,反向电压撤除后,PN结不能恢复单向导电性。
6、由于管芯结构的不同,二极管可分为(点)接触型、(面)接触型、(平面)接触型三种,其中(点)接触型的二极管PN结面积(小),适宜半导体在高频检波电路和开关电路,也可以作小电流整流,面接触型和平面型二极管PN结接触面(大),载流量(大),适于在(大电流)电路中使用。
7、二极管的两个主要参数是(最大整流电流)和(最高反向电压)使用时不能超过,否则会损坏二极管。
8、在一定的范围内,反向漏电流与反加的反向电压(无关),但随着温度的上升而(上升),反向饱和电流越大,管子的性能就越(差)。
9、硅二极管的死区电压为(0、5)V,锗二极管的死区电压为(0、2)V。
10、三极管起放大作用的外部条件(发射结正偏)和(集电结反偏)11、晶体三极管具有电流放大作用的实质是利用(基极)电流实现对(集电极)电流的控制。
12、3DG8D表示(NPN型硅材料高频小功率三极管);3AX31E表示(PNP型锗材料低频小功率三极管)。
13、三极管的恒流特性表现在(放大)区,在饱和区,三极管失去(放大)作用,集电结、发射结均(正)偏。
14 集---射击穿电压V(BR)CEO是指(基极开路)时集电极和发射极间所承受的最大反向电压,使用时,集电极电源电压应(>)这个数值。
15三极管的三种基本联结方式可分为(共基极电路),(共集电极电路)和(共发射极电路)。
精品文档-模拟电子技术(江晓安)(第三版)-第1章
第一章 半导体器件
图 1 – 5 P型半导体的共价键结构
第一章 半导体器件
1.2PN 结
1.2.1 异型半导体接触现象 在P型和N型半导体的交界面两侧, 由于电子和空穴的
浓度相差悬殊, 因而将产生扩散运动。 电子由N区向P区扩 散; 空穴由P区向N区扩散。 由于它们均是带电粒子(离 子), 因而电子由N区向P区扩散的同时, 在交界面N区剩下 不能移动(不参与导电)的带正电的杂质离子; 空穴由P区向 N区扩散的同时, 在交界面P区剩下不能移动(不参与导电) 的带负电的杂质离子, 于是形成了空间电荷区。 在P区和N 区的交界处形成了电场(称为自建场)。 在此电场 作用下, 载流子将作漂移运, 其运动方向正好与扩散运动方 向相反, 阻止扩散运动。 电荷扩散得越多, 电场越强, 因而 漂移运动越强, 对扩散的阻力越大。 当达到平衡时, 扩散运 动的作用与漂移运动的作用相等, 通过界面的载流子总数为 0, 即PN结的电流为0。 此时在PN区交界处形成一个缺 少载流子的高阻区, 我们称为阻挡层(又称为耗尽层)。 上述 过程如图1-6(a)、 (b)所示。
所谓“齐纳”击穿, 是指当PN结两边掺入高浓度的杂 质时, 其阻挡层宽度很小, 即使外加反向电压不太高(一般为 几伏), 在PN结内就可形成很强的电场(可达2×106 V/cm), 将共价键的价电子直接拉出来, 产生电子-空穴对, 使反向电 流急剧增加, 出现击穿现象。
第一章 半导体器件
对硅材料的PN结, 击穿电压UB大于7V时通常是 雪崩击穿, 小于4V时通常是齐纳击穿;UB在4V和7V之间 时两种击穿均有。由于击穿破坏了PN结的单向导电特性, 因而一般使用时应避免出现击穿现象。
CT
dQ dU
S W
第一章 半导体器件
1.常用半导体器件
第五节 场效应晶体管
N沟道增强型MOS管 N沟道耗尽型MOS管 MOS管的主要参数及使用注意事项
返回
场效应晶体管是用输入回路的电场效应来控 制半导体中的多数载流子,使流过半导体内的电 流大小随电场强弱而变化,形成电压控制其导电 的一种半导体器件。与晶体管相比场效应晶体管 更易于集成。
场效应晶体管有两种: 结型场效应晶体管 绝缘栅型场效应晶体管
发光二极管的发光颜色取决于使用的材料。
发光二极管只能工作在正向偏置状态,工 作 时电路中必须串接限流电阻。
返回
第四节 晶体管
晶体管的基本结构和类型 晶体管的电流分配和放大原理 晶体管的特性曲线 晶体管的主要参数 温度对晶体管特性和参数的影响
返回
一、晶体管的基本结构和类型
集电极
集电结
集电区
基极
基区
返回
例2、已知ui = 6sinωt,UZ =3V,画输出波形。
ui /V
6
ui
VS
3
uo O
ωt
uo
3
O
ωt
返回
例3、图示电路中,稳压管VS1、VS2的稳压值分
别为UZ1=5V,UZ2=7V,正向压降为0.7V,若
输入电压Ui波形如图所示,试画出输出电压波
形。
Ui
R
12V
Ui R
Uo 6V VS1 VS2 -2V
( NPN: VBC. > VNBP>NVE V C V B V E
PNP: VC<PUNB <PVE)V C V B V E
返回
例2:有三只晶体管,分别为 锗管β=150, ICBO=2μA; 硅管β=100,ICBO=1μA; 硅管β=40,ICEO=41μA;试从β和温度稳定 性选择一只最佳的管子。 解: β 值大,但ICBO也大,温度稳定性较差; β 值较大,ICBO=1μA,ICEO=101 μA ; β 值较小,ICEO=41μA, ICBO=1μA。 、 ICBO相等,但 的β 较大,故 较好。
半导体器件的基础知识
第一章半导体器件的基础知识半导体器件:二极管:二极管是由PN结构成的,具有单向导电性,正向导通;反向截至。
PN结的电流是P向N流。
硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V~0.2V。
硅二极管的导通电压约0.6V~0.7V,锗二极管的导通电压约0.2V~0.3V。
二极管的电压与电流变化不成线性关系,所以二极管属于非线性器件。
三极管:三极管是由两个紧靠在一起的PN 结组成的,按材料的不同分为PNP型和NPN型。
三极管有三个引脚,分别为发射极(E)、基极(B)、集电极(C)。
一般常用的三极管有80系列的,8050(NPN),8550(PNP)。
90系列的,9012、9015为PNP外,其余都为NPN。
电流放大电路:三极管的电流分配关系式:I E=I B+I C,也就是发射极电流=基极电流+集电极电流。
集电极电流的变化是基极电流变化量的59倍。
三极管的电流放大实际上是基极较小电流的变化,控制集电极电流较大的变化。
三极管的放大电路分为1共集电极放大、2共基极放大、3共发射极放大。
因为三极管也是PN结构成的,所以也是非线性器件,硅管导通电压也为0.7V,锗管为0.2V。
三极管的三种状态:1放大(发射结正偏,集电结反偏)。
NPN:I C>I B>I E PNP:I E>I B>I C2饱和(发射结和集电结都正偏)。
3截至(发射结和集电结都反偏)。
正偏:电流P向N流。
反偏:电流N向P流。
三极管是电流控制器件,就是输入电流控制输出电流的半导体器件。
三极管的输出特性曲线如图:三极管的检测:用数字万用表测量时,先把万用表的档位调到导通挡上,然后用表笔分别测量每两个引脚。
只要想着电流是P向N流的。
场效晶体管:是利用输入电压来控制输出电流的器件,称为电压控制型器件,它可分为结型和绝缘栅型两大类。
场效晶体管有三个电极,分别是漏极(D)、源极(S)和栅极(G)。
它们的D极和S极可交换使用。
第一章常用半导体器件 (2)
Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路
第一章半导体器件基础知识
江西应用技术职业学院
16
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2. 最高反向工作电压 UR
工作时允许加在二极管两端的反向电压值。通常将击穿电
压 UBR 的一半定义为 UR 。
第
二
3. 反向电流 IR
节
通常希望 IR 值愈小愈好。
半 导
4. 最高工作频率 fM
体 二
如果给PN外加反向电压,即P区接电源的负极,N区接电源的
正极,称为PN结反偏,如图所示。
外加电压在PN结上所形成的外电场与PN结内电场的方向相同, 第
增强了内电场的作用,破坏了原有的动态平衡,使PN结变厚,加 强了少数载流子的漂移运动,由于少数载流子的数量很少,所以 只有很小的反向电流,一般情况下可以忽略不计。这时称PN结为
江西应用技术职业学院
22
本章概述
第一节 第二节 第三节 第四节 第五节
第一章 半导体器件基础知识
2.光电二极管 光电二极管又称光敏二极管,是一种将光信号转换为电信号的 特殊二极管(受光器件)。光电二极管的符号如图所示。
受光面
受光面
第
二
节
半
光电二极管工作在反向偏置下,无光照时,流过光电二极管的电 导
管
第五节
击穿并不意味管子损坏,若控制击穿电流,电
压降低后,还可恢复正常。
江西应用技术职业学院
15
第一章 半导体器件基础知识
三、温度对二级管特性的影响
本章概述
1.温度升高1℃,硅和锗二极管导通时的正向压降UF将
减小2.5mv左右。
第一节
2.温度每升高10℃,反向电流增加约一倍。
第一章半导体器件的基础知识
第一章半导体器件的基础知识一、填空题1、自然界中的物质按着导电能力分为、、三类。
2、半导体的导电能力会随着、、、和的变化而发生变化。
3、半导体材料主要有和两种。
4、半导体中的载流子是和。
5、主要靠导电的半导体称为N型半导体,主要靠导电的半导体称为P型半导体。
6、经过特殊工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界处就会出现一个特殊的接触面,称为结。
#7、PN结的特性是。
8、半导体二极管的符号是。
9、PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN 结的。
10、二极管的核心部分是一个,具有特性。
11、半导体二极管又称。
它是由,从P区引出的极和从N区引出的极以及将他们封装起来的组成。
12、由于管芯结构不同,二极管又分为、、。
13、二极管的导电性能由加在二极管两端的电压和流过二极管的电流来决定,这两者之间的关系称为二极管的。
用于定量描述这两者关系的曲线称为。
&14、当二极管两端所加的正向电压由零开始增大时,开始时,正向电流很小,几乎为零,二极管呈现很大电阻。
通常把这个范围称为,相应的电压称为。
15、硅二极管的死区电压约为;锗二极管的死区电压约为。
16、硅二极管管的导通电压约为,锗二极管管的导通电压约为,17、加在二极管的反向电压不断增大,当达到一定数值时,反向电流会突然增大,这种现象称为,相应的电压称为。
18、半导体二极管的主要参数有、。
19、半导体三极管的核心是。
20、半导体三极管的两个PN结将半导体基片分成三个区域:、}和。
由这三个区引出三个电极为:、和。
分别用字母、和。
其中区相对较薄。
21、半导体三极管中,通常将发射极与基极之间的PN结称为;集电极与基极之间的PN结称为。
22、由于半导体基片材料不同,三极管可分为型和型两大类。
23、半导体三极管常采用、和封装。
24、半导体三极管按功率分有和;按工作频率分有和;按管芯所用半导体材料分有和;按结构工艺分有和;按用途分有和。
第1章半导体元件及其特性
退出
注意: 注意: 半导体与导体不同, 半导体与导体不同,内部有两种载 流子参与导电——自由电子与空穴。在 流子参与导电 自由电子与空穴。 自由电子与空穴 外加电场的作用下, 外加电场的作用下,有: I=In(电子电流)+Ip(空穴电流) 电子电流) 空穴电流) 空穴导电的实质是价电子的定向移动! 空穴导电的实质是价电子的定向移动!
这四个价电子不仅受自身原子核的束缚, 这四个价电子不仅受自身原子核的束缚,还受到相邻 原子核的吸引,从而形成了共价键结构,如下图所示: 原子核的吸引,从而形成了共价键结构,如下图所示: 价电子(热激发) 价电子(热激发) 自由电子-空穴对 自由电子 空穴对 复合 平衡
(1)温度越高,自由电子 空穴 )温度越高,自由电子-空穴 对数目越多; 对数目越多; 空穴数目相等, (2)自由电子 空穴数目相等, )自由电子-空穴数目相等 对外不显电性。 对外不显电性。 硅(锗)原子在晶体中的共价键排列
退出
1.1.1 半导体的特点
1.半导体的特点 半导体的特点 半导体是制造电子器件的主要原料, 半导体是制造电子器件的主要原料,它的广泛应用不是 因为它的导电能力介于导体和绝缘体之间, 因为它的导电能力介于导体和绝缘体之间,而是它的电阻率 可以随温度、光照、杂质等因素的不同而呈现显著的区别。 可以随温度、光照、杂质等因素的不同而呈现显著的区别。
第 1 章
半导体元件及其特性
半导体基础知识与PN结 半导体基础知识与 结 二极管 晶体管 场效应管 本章小结
退出
1.1
半导体基础知识 PN结 与PN结
主要要求: 主要要求:
了解半导体材料的基本知识 了解半导体材料的基本知识 半导体 理解关于半导体的基本概念 理解关于半导体的基本概念 半导体 理解PN结的形成 理解PN结的形成 PN 掌握PN结的单向导电作用 掌握PN结的单向导电作用 PN
第1章半导体器件
在反向击穿状态下,让通过管子的电流在一定范围 内变化,这时管子两端电压变化很小,稳压二极管就 是利用这一点达到“稳压”效果的。
2 何谓杂质半 导体?N型半导 体中的多子是 什么?少子是 什么?
3 P型半导体中的空 穴多于自由电子,是 否意味着带正电?N 型半导体是否带负 电?
10
1.1 半导体基础知识
g. PN结及其形成过程
杂质半导体的导电能力虽然比本征半导体极大增强,但它 们并不能称为半导体器件。
空间电荷区
P区
在一块晶片的两端分别注入三价 元素硼和五价元素磷
内电场 外电场
V
IS
13
1.1 半导体基础知识
i. PN结的电流方程
一般地:
qu
i I s (e kT 1)
可以简化为,
u
i
I
I
s
(eUT
1)
当T=300K时,
u
i I s (e 0.026 1)
14
1.1 半导体基础知识
j. PN结的伏安特性曲线
当u>> UT时,
u
i IseUT
反向截止区内反向饱和电流很小,可近似视为零值。
外加反向电压超过反向击穿电压UBR时,反向电流突然增大,二 极管失去单向导电性,进入反向击穿区。
23
1.2 半导体二极管
正向导通区的讨论
I (mA) 60
当外加正向电压大于死区电压时,二 极管由不导通变为导通,电压再继续增
第一章半导体器件特性
图1.1.5 P型半导体
多数载流子
少数载流子
空穴 — 多子 电子 — 少子
1.1 半导体的导电特性
小结 本讲主要介绍了下列半导体的基本概念:
本征半导体 本征激发、空穴、载流子
杂质半导体 P型半导体和N型半导体 受主杂质、施主杂质、多子、少子
1.2 PN结
1.2.1 PN结的形成
图1.2.1 载流子的 扩散运动
1.1 半导体的导电特性
1.1.2杂质半导体的导电特性
一、N 型半导体
+4
+4
+4
多数载流子
正离子 少数载流子
+4
+5
+4
磷原子
自由电子
载流子数 电子数
图1.1.4 N型半导体
电子为多数载流子 空穴为少数载流子
1.1 半导体的导电特性
二、P 型半导体
负离子
+4
+4
+4
+4
+3
+4
硼原子
空穴
载流子数 空穴数
1.5 场效应管
特点: 利用输入回路的电场效应控制输出回路的电流;仅 靠半导体中的多数载流子导电(单极型晶体管); 输入阻抗高(107~1012 ),噪声低,热稳定性 好,抗辐射能力强,功耗小。
分类:
1.5 场效应管
1.5.1结型场效应管 一、结构
N沟道结型场效应管结构示意图 N沟道管符号 P沟道管符号
1.4.1晶体管的结构及符号 结构: 三个区: 发射区、基区和集电区
三个极: 发射极、基极和集电极 两个结: 发射结、集电结
晶体管结构示意图
晶体管符号
1.4 双极型晶体管
半导体基础知识
3. 反向电流 IR
指二极管加反向峰值工作电压时的反向电 流。反向电流大,说明管子的单向导电性 差,因此反向电流越小越好。反向电流受 温度的影响,温度越高反向电流越大。硅 管的反向电流较小,锗管的反向电流要比 硅管大几十到几百倍。
以上均是二极管的直流参数,二极管的应用是 主要利用它的单向导电性,主要应用于整流、限幅、 保护等等。下面介绍两个交流参数。
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-25)
2.1.3 半导体二极管
一、基本结构
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线
基片
二极管的电路符号: P
面接触型
N
(1-26)
二、伏安特性
I
死区电压 硅管 0.6V,锗管0.2V。
受主原子。
硼原子
P 型半导体中空穴是多子,电子是少子。 (1-16)
三、杂质半导体的示意表示法
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
P 型半导体
N 型半导体
杂质型半导体多子和少子的移动都能形成电流。
但由于数量的关系,起导电作用的主要是多子。 近似认为多子与杂质浓度相等。
+4
半导体器件的特性
一、本征半导体的导电特性
第一章 半导体器件的特性
§1.1 半导体的导电特性
当温度升高,例如在室温条件下,将有少数 价电子获得足够的能量,克服共价键的束缚而成 为自由电子。此时,本征半导体具有一定的导电 能力,但由于自由电子的数量很少,因此它的导 电能力比较微弱。当部 分价电子挣脱共价键的 束缚成为自由电子的同 时,在原来的共价键中 留下一个空位,称为空 穴。空穴是半导体区别 于导体的重要特征。
一、PN结的形成
第一章 半导体器件的特性
§1.2 PN结
二、 PN结的单向导电性: 如果PN结两端加上不同极性的
直流电压,就可以打破上述的动态 平衡。下面将看到其导电性能有很 大差异。
二、PN结的单向导电性
第一章 半导体器件的特性
§1.2 PN结
1、 加正向电压,PN结导通:
当外电源的正极接P区,负极接N区时, PN结加的是正向 电压,称为正向偏置。此时外电场与内电场的方向相反,削弱 了内电场,使空间电荷区变窄(VD降低),有利于多子扩散,而 不利于少子漂移。扩散电流将大大超过漂移电流,在回路中形 成较大的正向电流,称 PN结处导通状态,呈现的电阻很小。
二、杂质半导体的导电特性
第一章 半导体器件的特性
§1.1 半导体的导电特性
2、P型半导体
如果在硅或锗的晶体中掺入少量的3价杂质元素, 如硼、镓、铟等,此时 杂质原子最外层有3个 价电子,因此它与周围 4个硅原子组成共价键 时,由于缺少一个电子 而形成空穴,如图所示。
二、杂质半导体的导电特性
第一章 半导体器件的特性
二极管的伏安特性与PN的伏安特性略有差别,主要是 因为:二极管正向偏置时,PN 结以外P区和N区的体电阻、电 极的接触电阻及引线电阻的存 在,使正向电流有所减小;在 反向偏置时, 由于PN结表面漏 电流的存在,使反向电流稍有 增大,且随反向电压的增高略 有增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳压二极管的参数:
(1)稳定电压 UZ (2)电压温度系数U(%/℃) 稳压值受温度变化影响的的系数。 (3)动态电阻
rZ
U Z I Z
(4)稳定电流IZ、最大、最小稳定电流Izmax、Izmin。 (5)最大允许功耗
PZM U Z I Z max
(1-37)
稳压二极管的应用举例 稳压管的技术参数: U zW 10V, I zmax 20mA, I zmin 5mA
(1-16)
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼 (或铟),晶体点阵中的某些半导体原子被杂质 取代,硼原子的最外层有三个价电子,与相邻的 半导体原子形成共价键时, 空穴 产生一个空穴。这个空穴 +4 可能吸引束缚电子来填补, 使得硼原子成为不能移动 的带负电的离子。由于硼 +3 原子接受电子,所以称为 硼原子 受主原子。
2. 反向击穿电压UBR
二极管反向击穿时的电压值。击穿时反向电 流剧增,二极管的单向导电性被破坏,甚至 过热而烧坏。手册上给出的最高反向工作电 压UWRM一般是UBR的一半。
(1-29)
3. 反向电流 IR
指二极管加反向峰值工作电压时的反向电 流。反向电流大,说明管子的单向导电性 差,因此反向电流越小越好。反向电流受 温度的影响,温度越高反向电流越大。硅 管的反向电流较小,锗管的反向电流要比 硅管大几十到几百倍。
(1-21)
电位V
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + +
V0
- - - - - -
P型区
空间 电荷 区
N型区
(1-22)
注意:
1.空间电荷区中没有载流子。 2.空间电荷区中内电场阻碍P中的空穴.N区 中的电子(都是多子)向对方运动(扩散 运动)。 3.P 区中的电子和 N区中的空穴(都是少), 数量有限,因此由它们形成的电流很小。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如: • 当受外界热和光的作用时,它的导电能
力明显变化。
• 往纯净的半导体中掺入某些杂质,会使
它的导电能力明显改变。
(1-4)
1.1.2 本征半导体
一、本征半导体的结构特点
现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
(1-8)
二、本征半导体的导电机理
1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。 在常温下,由于热激发,使一些价电子获 得足够的能量而脱离共价键的束缚,成为自由电 子,同时共价键上留下一个空位,称为空穴。
点接触型
触丝线 PN结
引线
外壳线
基片
面接触型
二极管的电路符号:
P
N
(1-27)
二、伏安特性
I
导通压降: 硅管0.6~0.7V, 锗管0.2~0.3V。
死区电压 硅管 0.6V,锗管0.2V。
反向击穿 电压UBR
U
(1-28)
三、主要参数 1. 最大整流电流 IOM
二极管长期使用时,允许流过二极管的最大 正向平均电流。
(1-11)
本征半导体中电流由两部分组成:
1. 自由电子移动产生的电流。
2. 空穴移动产生的电流。 本征半导体的导电能力取决于载流子的浓度。
温度越高,载流子的浓度越高。因此本征半 导体的导电能力越强,温度是影响半导体性 能的一个重要的外部因素,这是半导体的一 大特点。
(1-12)
本征半导体载流子的浓度
uD
UD
uD
(1-31)
5. 二极管的极间电容
二极管的两极之间有电容,此电容由两部分组成: 势垒电容CB和扩散电容CD。
势垒电容:势垒区是积累空间电荷的区域,当电压变化时, 就会引起积累在势垒区的空间电荷的变化,这样所表现出 的电容是势垒电容。 扩散电容:为了形成正向电流 (扩散电流),注入P 区的少子 (电子)在P 区有浓度差,越靠 近PN结浓度越大,即在P 区有电 子的积累。同理,在N区有空穴的 积累。正向电流大,积累的电荷 多。这样所产生的电容就是扩散 电容CD。
Ge
Si
通过一定的工艺过程,可以将半导体制成晶体。
(1-5)
本征半导体:完全纯净的、结构完整的半导体晶体。
在硅和锗晶体中,原子按四角形系统组成 晶体点阵,每个原子都处在正四面体的中心, 而四个其它原子位于四面体的顶点,每个原子 与其相临的原子之间形成共价键,共用一对价 电子。
硅和锗的晶 体结构:
(1-6)
(1-39)
1.3.2 光电二极管
反向电流随光照强度的增加而上升。
I U
照度增加
(1-40)
1.3.3 发光二极管
有正向电流流过
时,发出一定波长
范围的光,目前的 发光管可以发出从 红外到可见波段的 光,它的电特性与
一般二极管类似。
(1-13)
1.1.3 杂质半导体
在本征半导体中掺入某些微量的杂质,就会 使半导体的导电性能发生显著变化。其原因是掺 杂半导体的某种载流子浓度大大增加。
N 型半导体:自由电子浓度大大增加的杂质半导体, 也称为(电子半导体)。 P 型半导体:空穴浓度大大增加的杂质半导体,也 称为(空穴半导体)。
(1-14)
1、本征激发:半导体在热激发下产生自由电子和空穴对 的现象称为本征激发; 2、复合:自由电子运动过程中如果与空穴相遇就会填补 空穴,使两者同时消失,这种现象叫复合; 3、动态平衡:在一定温度下,本征激发所产生的自由电 子与空穴对时,与复合的自由电子与空穴对数目相等,故 达到动态平衡,即在一定温度下,本征半导体中载流子的 浓度是一定的,并且自由电子与空穴浓度相等。
ui
ui
RL
uo uo
t
t
(1-34)
二极管的应用举例2: ui
ui
R
uR
RL uo
uR
t
t
uo
t
(1-35)
§1.3 特殊二极管
1.3.1 稳压二极管
+
动态电阻:
曲线越陡, 电压越稳 定。 UZ
I
rZ
U Z I Z
稳压 误差 UZ
IZ IZ
U
rz越小,稳 压性能越好。
IZmax
(1-15)
多余 电子
+4 +5
+4
磷原子
+4
N 型半导体中 的载流子是什 么?
1.由施主原子提供的电子,浓度与施主原子相同。 2.本征半导体中成对产生的电子和空穴。 掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
(1-9)
空穴
+4
+4
自由电子
+4
+4 束缚电子
(1-10)
2.本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
+4
+4
P 型半导体中空穴是多子,电子是少子。
(1-17)
三、杂质半导体的示意表示法
- - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + N 型半导体
- - - - - - P 型半导体
(1-23)
2.1.2 PN结的单向导电性
PN 结加上正向电压、正向偏置的意思都是: P 区 加正、N 区加负电压。
PN 结加上反向电压、反向偏置的意思都是: P区 加负、N 区加正电压。
(1-24)
一、PN 结正向偏置
变薄 - + + + + 内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
——方程1
(1-38)
令输入电压降到下限 时,流过稳压管的电 流为Izmin 。
U ZW i I zmin 10mA RL
i ui
R DZ
iL iZ
RL
uo
0.8ui iR U zW 10R 10
——方程2
联立方程1、2,可解得:
ui 18.75V, R 0.5k
P
(1-32)
-
N
+
CB在正向和反向偏置时均不能忽略。而反向偏置 时,由于载流子数目很少,扩散电容可忽略。
PN结高频小信号时的等效电路:
rd
势垒电容和扩散电 容的综合效应
(1-33)
二极管:死区电压=0 .5V,正向压降0.7V(硅二极管) 理想二极管:死区电压=0 ,正向压降=0
二极管的应用举例1:二极管半波整流