密码学
第2章密码学概论
2 5
8 2 2 1 1 9
2 2
1 3 6 1 2 6 9 7 5
6 2 9 2 2 2 2 7 2 1 2 3 1 2 6 1 5 8 6 4 2
3 1 7 2
z
i c v t
w q n g r z g v t
w a v z h c q y g l m
维吉尼亚密码示例 明文为polyalphabetic cipher,(多字母替换密码) 密钥K=RADIO, 用维吉尼亚密码加密。 方法:将明文串转化为对应的数字(a-0,…,z-25),每5个 一组,进行模26运算。
法国密码分析人员断定这种密码是不可破译的。他们甚至根 本就懒得根据搞到的情报去复制一台ENIGMA。
在十年前法国和波兰签订过一个军事合作协议。波兰方面一 直坚持要取得所有关于ENIGMA的情报。既然看来自己拿着 也没什么用,法国人就把从施密特那里买来的情报交给了波 兰人。和法国人不同,破译ENIGMA对波兰来说至关重要, 就算死马也要当作活马医。后来英国应情报部门在波兰人的 帮助下于1940年破译了德国直至1944年还自认安全可靠的 ENIGMA的密码系统。
v
e
y
o u r
s
e
2 4 0 1 4 3 8 1 2 1 2 4 1 4 2 1 0 2 4 2 1 2 1 1 4 2 7 8 4 1 7 8 1 4 4 0 7 8
d
e c
e p t
i
v
e
d e
c
e
p t
i
v
e
d e
c
e
p
t
i
3
4 2 4 1 1 8 2 4 3 4 2 4 1 1 8 2 4 3 4 2 4 1 1 8 5 9 1 5 9 1 5 9
什么是密码学?
什么是密码学?
密码学是一门关于信息安全和加密原理的学科。
它涉及到设计和使用密码算法来保护通信和数据的机密性、完整性和可用性。
密码学可以分为两个主要领域:对称加密和非对称加密。
对称加密是一种加密方法,使用相同的密钥对数据进行加密和解密。
这意味着发送方和接收方都必须共享相同的密钥才能进行安全的通信。
常见的对称加密算法包括DES,AES和RC4。
非对称加密是一种加密方法,使用一对密钥进行加密和解密。
这对密钥被称为公钥和私钥。
公钥可以公开给任何人,用于加密数据,而私钥只能由数据的接收方使用来解密数据。
这种方法保证了通信的安全性,因为即使公钥被泄露,攻击者也无法解密数据。
常见的非对称加密算法包括RSA和椭圆曲线密码算法。
密码学还涉及到其他领域,如哈希函数和数字签名。
哈希函数将任意长度的数据转换为固定长度的哈希值,用于验证数据的完整性。
数字签名使用非对称加密算法来验证数据的来源和完整性。
密码学在现代社会中起着重要的作用,保护着我们的个人隐私和敏感信息。
了解密码学的基本原理和工作方式有助于我们更好地理解信息安全的重要性,并采取适当的措施来保护我们的数据。
第四章 密码学基础1
混乱:
指明文、密钥和密文之间的统计关系尽可能
复杂,使得攻击者无法理出三者的相互依赖 关系。
s-p网络的轮函数包括3个变换:代换、 置换、密钥混合。
4.3.2 DES数据加密标准
1 算法简介
数据加密标准(Data Encryption Standard,DES) 是使用 最广泛的密码系统。1973年美国国家标准局征求国家 密码标准文字,IBM公司于1974年提交,于1977年被 采纳为DES。 DES出现后20年间,在数据加密方面发挥了不可替代的 作用。20世纪90年代后,随着技术的发展,密钥长度 偏短,DES不断传出被破译的进展情况。1998年12月 美国国家标准局不再用DES作为官方机密,推荐为一般 商业应用,于2001年11月发布了高级加密标准 (AES)。
字母表是循环的,Z后面的是A,能定义替换
表,即密钥。 明文:a b c d e f g h I j k l m n o p q r s t uvwxyz 密文: D E F G H I J K L M N O P Q R S T U VWXYZABC
Caesar算法能用如下公式表示: C=E(3,m)=(m+3) mod 26 如果对字母表中的每个字母用它之后的第k个 字母来代换,而不是固定其后面第3个字母, 则得到了一般的Caesar算法: C=E(k,m)=(m+k) mod 26
如果加密、解密用不同的密钥,是非对 称加密。图解
Ek1(P)=C
Dk2(C)=P Dk2(Ek1(P))=P
4.1.3密码的分类 1按应用技术分:
手工密码 机械密码 电子机内乱密码
通过电子电线,程序进行逻辑运算,以少量制乱
密码学概述
密码学概述
密码学是一门研究保护信息安全的学科。
它涉及设计和使用密码算法,以确保敏感数据在传输和存储过程中得到保护。
密码学的目标是保密性、完整性、身份验证和不可抵赖性。
密码学分为两个主要领域:对称密码和公钥密码。
对称密码使用相同的密钥进行加密和解密,其主要方法有替换和置换。
常见的对称密码算法包括DES、AES和RC4。
公钥密码也称为非对称密码,使用一对密钥:公钥和私钥。
公钥用于加密数据,私钥用于解密数据。
公钥密码算法具有更高的安全性和密钥管理的便利性。
常见的公钥密码算法包括RSA和椭圆曲线密码算法(ECC)。
除了对称密码和公钥密码,密码学还涉及其他重要概念,如哈希函数、数字签名和数字证书。
哈希函数将任意长度的数据映射为固定长度的哈希值,用于验证数据的完整性。
数字签名使用私钥生成数字签名,用于验证数据的身份和不可抵赖性。
数字证书由可信的第三方机构颁发,用于验证公钥的真实性和所有者身份。
密码学在现代通信和计算机系统中扮演着至关重要的角色,确保数据的安全传输和存储。
随着技术的不断发展,密码学也在不断进步,以应对不断出现的安全威胁和攻击。
什么是密码学?
什么是密码学?密码学是一门研究密码学理论与密码技术的学科,是信息安全领域不可或缺的一部分。
它涉及的范围广泛,包括数据加密、数字签名、身份认证等。
随着信息安全技术的逐步发展,密码学也愈加重要和广泛应用。
1. 密码学的起源密码学的历史可追溯到古代。
最早有关密码学的文献记载可追溯至公元前400年左右。
在历史上,密码学曾发挥过重要作用,如在二战中的阿兰·图灵破解纳粹德国的恩格玛密码机等事件中。
2. 密码学的分类(1)对称密钥密码学:在加密和解密过程中使用相同的密钥。
通常使用的加密算法有DES、AES等。
(2)非对称密钥密码学:在加密和解密过程中使用不同的密钥。
常用的算法有RSA、DSA等。
(3)哈希函数密码学:“哈希”把任意长度的输入(又叫做预映射,pre-image)“压缩”到某一固定长度的输出上(称为哈希值),且输入的数据量越大,输出值的信息量越小,也就是说不同的输入可能相同的输出。
常用的哈希函数有MD5、SHA-1等。
3. 密码学的应用(1)数据加密:数据加/解密可防止机密数据泄露,确保数据传输的完整性。
(2)数字签名:数字签名可以验证文档在传递过程中是否被篡改,确认文档的完整性,具有很高的安全性。
(3)身份认证:基于密码学的身份认证技术可以确保只有被授权的用户能够访问特定系统或应用程序,确保系统和数据的安全性和完整性。
4. 密码学的未来随着信息安全和隐私保护的日益重要,密码学的发展也愈加迅速。
未来,密码学将会在云计算、大数据、物联网等领域更加广泛地应用,需要不断创新和进一步研究加强相应领域的安全保护。
总结:密码学涉及领域广泛,适用于数据加密、数字签名、身份认证等场景。
在信息安全领域中起到至关重要的作用,对云计算、大数据、物联网等领域的发展起到积极促进作用。
密码学的研究内容
密码学的研究内容一、引言密码学是一门研究如何将信息以一种不能被未经授权者理解的方式进行编码、传输和存储的科学。
它是信息安全领域中至关重要的组成部分,涉及多个方面的研究内容。
本文将详细介绍密码学的主要研究内容,包括密码编码学、密码分析学、协议密码学、密钥管理学、身份认证与数字签名以及隐私保护等方面。
二、密码编码学密码编码学是密码学的一个分支,主要研究如何将信息进行加密,以保证其机密性和安全性。
通过对明文进行一系列的算法处理,生成无法理解的密文,只有在拥有解密密钥的情况下才能恢复原始信息。
密码编码学还包括对加密算法的优化和改进,以适应不同的应用场景和安全需求。
三、密码分析学密码分析学是密码学的另一个分支,主要研究如何对加密的信息进行破解和窃取。
密码分析学涉及对加密算法的深入理解和分析,通过分析密文和可能的密钥,尝试恢复出原始信息。
密码分析学对于评估加密算法的安全性、发现其潜在的弱点以及促进加密算法的改进和发展具有重要意义。
四、协议密码学协议密码学主要研究如何设计和分析安全协议,以确保协议参与方之间的安全通信和数据交换。
安全协议涉及多个步骤和操作,包括密钥交换、身份认证、数据完整性保护等。
协议密码学关注如何通过密码技术来保证协议的安全性,以及如何发现和纠正协议中的安全漏洞。
五、密钥管理学密钥管理学是密码学中关于密钥生成、存储、分发和使用的研究领域。
在加密通信中,只有拥有正确的密钥才能解密密文并获取明文信息。
因此,密钥管理对于保证通信安全至关重要。
密钥管理学涉及如何安全地生成和管理密钥,以及如何确保密钥在分发和使用过程中的安全性和可靠性。
六、身份认证与数字签名身份认证与数字签名是密码学在实践中广泛应用的技术。
身份认证技术用于验证通信参与方的身份,防止假冒攻击;数字签名技术用于验证信息的完整性和来源,防止信息被篡改或伪造。
这些技术对于保障电子交易、电子政务和电子商务等领域的安全性具有重要意义。
七、隐私保护隐私保护是密码学的一个重要研究方向。
密码学是什么
密码学是什么1、什么是密码学密码学(Cryptography)是一门研究保护信息安全的学科,旨在发明和推广应用用来保护信息不被未经授权的实体获取的一系列技术。
它的研究规定了认证方式,加密算法,数字签名等技术,使得信息在网络上传输的安全性得到有效保障。
2、密码学发展历史从古代祭祀文本,到中世纪以前采用信封保护信息,再到如今运用根据科学原理设计的隐藏手段来免受攻击,形成了自己独特的新时代——密码学从古至今飞速发展。
在古代,人们提出基于门限理论的“将信息隐藏在古文献中”的想法,致使密码学技术的研究进入一个全新的研究水平。
噬血无声的18世纪,密码学技术得到了按比例加密法、变换锁以及一些其他加密技术的发明,使得发送者可以保护其传输的信息安全性。
20世纪,随着计算机科学、数学和通信学的迅猛发展,对于密码学的研究不断深入,密码破译也得到了彻底的结束。
3、密码学的应用密码学技术的应用正在不断的扩大,已经影响到计算机安全,电子商务,社交媒体,安全性协议。
其中,在计算机安全领域,应用的最广的就是网络安全了,例如使用数字签名,校验数据完整性及可靠性;实现密码认证,提高网络安全性;确保交易安全,实现交易无痕迹。
此外,在其他领域,还应用于支付货币,移动通信,数字信息传输,数字家庭,多媒体看门狗等。
4、密码学体系建设根据国家科学研究规划,国家建立自己的密码体系,推动密码学发展,建立一套完整的标准化体系,促进社会的网络安全发展,促进新的网络体系的快速发展,并且提出国家大力研究密码学,在国际技术水平上更具有单调作用和竞争优势。
5、总结综上所述,我们可以看到,密码学是一门相对年轻的学科,但是它在近十数年中有着突飞猛进的发展,并且把它妥善运用到了当今信息时代。
密码学研究实际上在不断推动并加强现代通信网络的安全性,使得更多的人群乐于在网上购买等等,为人们的网络安全提供了有效的保障。
只要把它的研究应用得当,密码学必将为更多的人带来更多的安全保障。
密码学
密码学英文是Cryptography。
源自希腊语kryptós(隐藏的)和gráphein(书写)。
是研究如何隐密地传递信息的学科。
现代的密码学是一般被认为是数学和计算机科学的分支。
在信息论里也有涉及。
密码学的首要目的是隐藏讯息的涵义,并不是隐藏讯息的存在。
密码学也促进了计算机科学。
特别是在於电脑与网路安全技术的发展。
先介绍几个术语:1.加密(encryption)算法指将普通信息(明文,plaintext)转换成难以理解的资料(密文,ciphertext)的过程。
与之相反的是解密(decryption)算法。
两者统称加解密。
加解密包括两部分:算法和密钥。
密钥是一个加解密算法的秘密参数,通常只通讯者拥有。
2.密码协议(cryptographic protocol):指使用密码技术的通信协议(communication protocol)。
加解密演算法和密码协议是密码学研究的两大课题。
经典密码学近代以前的密码学。
只考虑信息的机密性(confidentiality)。
西方世界的最早的起源可以追述到秘密书信。
希罗多德的《历史》中就记载过。
介绍一下最古典的两个加密技巧:1.移位式(Transposition cipher):将字母顺序重新排列。
例如Dave is killer变成Adev si likrel2.替代式(substitution cipher):有系统地将一组字母换成其他字母或符号。
例如fly at once变成gmz bu podf(每个字母用下一个字母取代)。
凯撒密码是最经典的替代法,据传由古罗马帝国的皇帝凯撒发明。
用在与远方将领的通讯上,每个字母被往后位移三格字母所取代。
下面讲一下密码在近代以前的种种记载:早期基督徒使用密码学模糊他们写作的部份观点以避免遭受迫害。
666或部分更早期的手稿上的616是新约基督经启示录所指的野兽的数字常用来暗指专迫害基督徒的古罗马皇帝尼禄(Nero)。
第二章密码学概论
qiix qi ejxiv xli xske tevxc
14
第二章 密码学概论
2.2 经典密码体制
1、移位密码 : 下面是用移位法加密的一个英文句子,请大家破解: TIF JT B TUVEFOU
15
第二章 密码学概论
2.2 经典密码体制
2、替换密码 :
对字母进行无规则替换,密钥空间K由26个符号0,1,…25的所有 可能置换构成。每一个置换π都是一个密钥
第二章 密码学概论
上述密码是对所有的明文字母都用一个固定的代换进行 加密,因而称作单表(简单)代替密码,即明文的一个字符 单表(简单)代替密码 单表 用相应的一个密文字符代替。加密过程中是从明文字母表到 密文字母表的一一映射。 单表密码的弱点:明文和密文字母之间的一一代替关系。 单表密码的弱点 这使得明文中的一些固有特性和规律(比如语言的各种统计 特性)必然反映到密文中去。
24
第二章 密码学概论
2.2 经典密码体制
优点: 优点:
密钥空间26d>1.1*107 能抵抗简单的字母频率分析攻击。 多表密码加密算法结果将使得对单表置换用的简单频率分析方法失 效。 借助于计算机程序和足够数量的密文,经验丰富的密码分析员能在 一小时内攻破这样的密码。 –重合指数方法:用于预测是否为多表替换密码 –Kasiski方法:利用字母串重复情况确定周期
3
第二章 密码学概论 给密码系统(体制)下一个形式化的定义: 定义: (密码体制)它是一个五元组(P,C,K,E,D)满足条件: (1)P是可能明文的有限集;(明文空间) (2)C是可能密文的有限集;(密文空间) (3)K是一切可能密钥构成的有限集;(密钥空间) ek ∈E *(4)任意k∈ K,有一个加密算法 dk : C → P 和相应的解 密算法 ,使得 和 分别为加密解密函数,满足dk(ek(x))=x, 这里 x ∈P。 加密函数e 必须是单射函数, 加密函数 k必须是单射函数,就是一对一的函数 密码系统的两个基本元素是算法和 密码系统的两个基本元素是算法和密钥 算法 好的算法是唯密钥而保密的 柯克霍夫斯原则 已知算法,无助于推导出明文或密
密码学详细分类
密码学详细分类密码学是研究保护信息安全的科学和技术领域。
根据应用领域、算法类型和安全目标,密码学可以被详细分类如下:1. 对称密码学(Symmetric Cryptography):对称密码学使用相同的密钥进行加密和解密。
常见的对称密码算法有DES、AES和IDEA 等。
2. 非对称密码学(Asymmetric Cryptography):非对称密码学使用不同的密钥进行加密和解密。
公钥密码学是非对称密码学的主要分支,它使用一对密钥,包括公钥和私钥。
公钥可以公开,而私钥必须保密。
常见的非对称密码算法有RSA、Diffie-Hellman和椭圆曲线密码算法等。
3. 哈希函数(Hash Function):哈希函数将任意长度的输入数据转换为固定长度的输出,常用于验证数据的完整性和生成数字指纹。
常见的哈希函数有MD5、SHA-1、SHA-256和RIPEMD等。
4. 数字签名(Digital Signature):数字签名用于验证消息的真实性和完整性,并确认消息的发送者。
数字签名通常使用非对称密码学中的私钥进行生成,公钥用于验证签名的有效性。
5. 密码协议(Cryptographic Protocols):密码协议是一组规则和步骤,用于在通信过程中确保信息的安全性。
常见的密码协议有SSL/TLS、IPsec和SSH等。
6. 密码编码学(Cryptanalysis):密码编码学是破解密码系统的科学和技术,旨在破译加密消息或恢复加密密钥。
7. 随机数生成器(Random Number Generator):随机数生成器用于生成随机数或伪随机数序列,这在密码学中是非常重要的。
这些分类只是密码学研究中的一部分,每个分类下又有更多的细分和特定算法。
密码学的发展涵盖了广泛的应用领域,包括网络安全、电子商务、数据保护和身份认证等。
密码学总结
密码学总结密码学是一门研究数据保护和信息安全的学科,它使用数学和计算机科学的方法来设计和破解密码系统。
随着信息技术的迅猛发展,密码学在现代社会中变得尤为重要。
在本文中,我将对密码学的基本原理、常见算法以及密码学的应用进行总结。
一、密码学的基本原理1. 对称加密算法对称加密算法是一种加密和解密使用相同密钥的加密方法。
常见的对称加密算法有DES、AES等。
这些算法使用相同的密钥来对数据进行加密和解密,速度较快,但密钥的管理比较困难。
2. 公钥加密算法公钥加密算法是一种使用两个互相关联的密钥进行加密和解密的方法。
公钥可以公开给任何人,而私钥则只有密钥的持有者能够使用。
常见的公钥加密算法有RSA、ECC等。
公钥加密算法能够实现安全的密钥交换和数字签名,但加密和解密的速度较慢。
3. 哈希函数哈希函数是一种将任意长度的输入数据映射为固定长度输出的函数。
它具有单向性和抗碰撞性的特点,即很难从哈希值推导出原始数据,且不同的输入很难产生相同的哈希值。
常见的哈希函数有MD5、SHA-1和SHA-256等。
二、常见的密码学算法1. DES算法DES算法是一种对称加密算法,使用56位密钥对64位的数据块进行加密。
由于DES算法使用较短的密钥长度,使其易受到暴力破解的攻击。
因此,现在更常用的是3DES算法,它对数据块进行三次加密。
2. AES算法AES算法是一种对称加密算法,由美国国家标准与技术研究所(NIST)于2001年发布。
AES算法使用128位、192位或256位的密钥对数据进行加密。
它的加密效率和安全性较高,被广泛应用于各个领域。
3. RSA算法RSA算法是一种公钥加密算法,由Rivest、Shamir和Adleman三位科学家于1977年提出。
RSA算法使用一个公钥和一个私钥进行加密和解密。
它的安全性基于大整数分解的困难性,被广泛用于数字签名、密钥交换等场景。
三、密码学的应用1. 数据加密密码学广泛应用于数据加密领域,保护敏感数据的安全性。
密码学
① 将信息理论引入到密码,把数千年历史的密码学推 向科学轨道,形成了科学的秘密钥密码学学科
② 用概率统计的观点对信息源、密钥源、接收和截获 的密文进行了数学描述和定量分析,提出了通用的 秘密钥密码系统模型 ③ 用信息论的观点分析消息源、密钥源、接收和截获 的密文,全面阐述了完全保密、纯密码、理论保密 和实际保密等新概念,为密码学奠定了理论基础
变革
5
7.2 密码系统和密码体制 7.2.1 术语
明文(或消息)——需要进行变换来隐藏的消息 (载荷 着信息)
密文 ( 或密报 )—— 明文经过某种变换后成为一种载 荷着(不能被非授权者所理解的)隐藏信息的消息
加密——明文变换成密文的操作过程 解密——利用密钥从密文恢复明文的操作过程 接收者——预定接收密文的人员
关键——接收者需知道密钥
6
7.2.1 术语(续)
加密算法——对明文进行加密所采用的一组法则 解密算法——用密钥将密文进行解密所用的一组法 则 加密密钥——控制加密算法进行的一组密钥 解密密钥——控制解密算法进行的一组密钥 单钥 ( 私钥 ) 密码体制 —— 加密密钥与解密密钥相同, 或从一个易得出另一个的密码体制 双钥 ( 公钥 ) 密码体制 —— 加密密钥与解密密钥不同, 且从一个难以得出另一个的密码体制 双钥体制是现代密码学的核心 密码分析——在未知密钥的情况下,通过分析从截 7
1949年,香农发表 “保密系统的通信理论” 论文
C.E.Shannon. Communication Theory of Secrecy
System. Bell Systems Technical Journal, 1949, (28):
密码学重要知识点总结
密码学重要知识点总结一、密码学的基本概念1.1 密码学的定义密码学是一门研究如何保护信息安全的学科,它主要包括密码算法、密钥管理、密码协议、密码分析和攻击等内容。
密码学通过利用数学、计算机科学和工程学的方法,设计和分析各种密码技术,以确保信息在存储和传输过程中不被未经授权的人所获得。
1.2 密码学的基本原理密码学的基本原理主要包括保密原则、完整性原则和身份认证原则。
保密原则要求信息在传输和存储过程中只能被授权的人所获得,而完整性原则要求信息在传输和存储过程中不被篡改,身份认证原则要求确认信息发送者或接收者的身份。
1.3 密码学的分类根据密码的使用方式,密码学可以分为对称密码和非对称密码两种。
对称密码是指加密和解密使用相同的密钥,而非对称密码是指加密和解密使用不同的密钥。
1.4 密码学的应用密码学广泛应用于电子商务、金融交易、通信、军事、政府和企业等领域。
通过使用密码学技术,可以保护重要信息的安全,确保数据传输和存储的完整性,以及验证用户的身份。
二、密码算法2.1 对称密码对称密码是指加密和解密使用相同的密钥。
对称密码算法主要包括DES、3DES、AES 等,它们在实际应用中通常用于加密数据、保护通信等方面。
对称密码算法的优点是加解密速度快,但密钥管理较为困难。
2.2 非对称密码非对称密码是指加密和解密使用不同的密钥。
非对称密码算法主要包括RSA、DSA、ECC等,它们在实际应用中通常用于数字签名、密钥交换、身份认证等方面。
非对称密码算法的优点是密钥管理较为方便,但加解密速度较慢。
2.3 哈希函数哈希函数是一种能够将任意长度的输入数据映射为固定长度输出数据的函数。
哈希函数主要用于数据完整性验证、密码存储、消息摘要等方面。
常见的哈希函数包括MD5、SHA-1、SHA-256等。
2.4 密码算法的安全性密码算法的安全性主要由它的密钥长度、密钥空间、算法强度和密码破解难度等因素决定。
密码算法的安全性是密码学研究的核心问题,也是密码学工程应用的关键因素。
密码学基础知识
密码学基础知识密码学是研究加密、解密和信息安全的学科。
随着信息技术的快速发展,保护敏感信息变得越来越重要。
密码学作为一种保护信息安全的方法,被广泛应用于电子支付、网络通信、数据存储等领域。
本文将介绍密码学的基础知识,涵盖密码学的基本概念、常用的加密算法和密码学在实际应用中的运用。
一、密码学的基本概念1. 加密与解密加密是将明文转化为密文的过程,而解密则是将密文转化为明文的过程。
加密算法可分为对称加密和非对称加密两种方式。
对称加密使用同一个密钥进行加密和解密,速度较快,但密钥的传输和管理相对复杂。
非对称加密则使用一对密钥,公钥用于加密,私钥用于解密,更安全但速度较慢。
2. 密钥密钥是密码学中重要的概念,它是加密和解密的基础。
对称加密中,密钥只有一个,且必须保密;非对称加密中,公钥是公开的,私钥则是保密的。
密钥的选择和管理对于信息安全至关重要。
3. 摘要算法摘要算法是一种不可逆的算法,将任意长度的数据转化为固定长度的摘要值。
常见的摘要算法有MD5和SHA系列算法。
摘要算法常用于数据完整性校验和密码验证等场景。
二、常用的加密算法1. 对称加密算法对称加密算法常用于大规模数据加密,如AES(Advanced Encryption Standard)算法。
它具有速度快、加密强度高的特点,广泛应用于保护敏感数据。
2. 非对称加密算法非对称加密算法常用于密钥交换和数字签名等场景。
RSA算法是非对称加密算法中最常见的一种,它使用两个密钥,公钥用于加密,私钥用于解密。
3. 数字签名数字签名是保证信息完整性和身份认证的一种方式。
它将发送方的信息经过摘要算法生成摘要值,再使用私钥进行加密,生成数字签名。
接收方使用发送方的公钥对数字签名进行解密,然后对接收到的信息进行摘要算法计算,将得到的摘要值与解密得到的摘要值进行比对,以验证信息是否完整和真实。
三、密码学的实际应用1. 网络通信安全密码学在网络通信中扮演重要的角色。
《密码学》课件
THANKS
感谢观看
使用复杂密码
鼓励用户使用包含大写字母、小写字 母、数字和特殊字符的复杂密码。
使用密码管理工具
推荐用户使用密码管理工具,如 LastPass、1Password等,以方便管 理和存储多个密码。
05 经典密码学应用
网络安全
01
保障数据传输安全
通过加密技术对网络传输的数据 进行保护,防止数据被窃取或篡 改。
《经典密码学》ppt课件
contents
目录
• 密码学简介 • 加密算法 • 经典密码体制 • 密码破解与防御 • 经典密码学应用 • 未来密码学展望
01 密码学简介
密码学定义
密码学是一门研究保护信息安全的科 学,它涉及到信息的编码、传输、存 储和访问等各个环节的安全保密问题 。
密码学通过使用加密算法和密钥管理 等技术手段,对信息进行加密、解密 、认证和保护,以确保信息的机密性 、完整性和可用性。
密码学的重要性
01
02
03
保护国家安全
密码学在国家安全领域中 发挥着至关重要的作用, 如军事通信、情报传递等 。
保障商业利益
商业组织需要保护商业机 密和客户数据,避免商业 利益受到损失。
维护个人隐私
个人隐私的保护是社会文 明进步的体现,密码学能 够防止个人信息被非法获 取和滥用。
密码学的发展历程
密钥派生函数
使用密钥派生函数从原始密钥生成多个派生 密钥,以提高安全性。
多重哈希
使用多种哈希算法对密码进行多次哈希,增 加破解难度。
加密存储
使用加密算法将密码存储在安全环境中,只 有通过解密才能获取原始密码。
密码管理策略
定期更换密码
密码学基础知识
密码学基础知识密码学是研究如何在通信过程中确保信息的机密性、完整性和身份认证的学科。
以下是密码学的一些基础知识:1. 对称加密和非对称加密:对称加密使用相同的密钥来进行加密和解密,而非对称加密使用一对密钥,包括公钥和私钥。
公钥用于加密数据,私钥用于解密数据。
非对称加密也可以用于数字签名和身份验证。
2. 加密算法:加密算法是用于对数据进行加密和解密的数学算法。
常见的对称加密算法有AES(高级加密标准)和DES(数据加密标准),常见的非对称加密算法有RSA和椭圆曲线加密算法(ECC)。
3. 数字签名:数字签名用于验证消息的完整性和认证消息的发送者。
它使用发送者的私钥对消息进行加密,接收者使用发送者的公钥进行解密和验证。
4. 哈希函数:哈希函数将输入数据转换为固定长度的哈希值。
它们广泛用于密码学中的消息完整性检查和密码存储。
常见的哈希函数包括SHA-256和MD5,但MD5已经不推荐用于安全目的。
5. 密码协议:密码协议是在通信过程中使用的协议,旨在确保通信的安全性。
例如,SSL/TLS 协议用于在Web浏览器和服务器之间进行安全通信。
6. 密码学安全性:密码学的安全性取决于密钥的保密性和算法的强度。
一个安全的密码系统应该能够抵抗各种攻击,包括穷举攻击、字典攻击和选择明文攻击等。
7. 安全性协议和标准:密码学安全性协议和标准旨在确保系统和通信的安全性。
例如,PKCS (公钥密码标准)是用于公钥密码学的一组标准,TLS(传输层安全)是用于安全通信的协议。
需要注意的是,密码学是一个复杂的领域,有很多更高级的概念和技术。
以上只是一些基础的密码学知识,但足以了解密码学的基本原理和常用术语。
密码学专业主干课程
密码学专业主干课程
【原创实用版】
目录
1.密码学简介
2.密码学专业主干课程设置
3.密码学专业的应用领域
4.密码学专业的就业前景
正文
密码学是一门研究加密和解密技术的学科,其主要目的是保护信息的安全性和隐私性。
随着信息技术的不断发展,密码学在网络安全、电子商务、金融等领域中的应用越来越广泛,因此,密码学专业也成为了越来越受欢迎的专业之一。
密码学专业的主干课程主要包括数学基础、计算机网络、加密算法、数字签名、安全协议等方面的内容。
其中,数学基础是密码学的核心,涉及概率论、数论、组合数学等多个领域,为后续的学习打下坚实的基础。
计算机网络是密码学的重要应用领域,主要研究网络通信的安全和可靠性,包括网络攻击与防御、网络加密通信等内容。
加密算法和数字签名是密码学的核心技术,主要研究如何实现安全的加密和解密,以及如何实现数字签名等技术。
安全协议是密码学的应用领域之一,主要研究如何设计安全可靠的协议,以保证信息的安全性和隐私性。
密码学专业毕业后,可以选择从事网络安全、电子商务、金融等领域的工作。
例如,可以从事网络安全工程师、网络攻击与防御工程师、数字签名工程师等工作。
此外,密码学专业毕业生还可以选择在政府部门从事密码学相关领域的研究和管理工作。
随着信息技术的不断发展,密码学专业的就业前景非常广阔。
第2章 密码学
一个密码系统包含明文字母空 间、密文字母空间、密钥空间和算 法。密码系统的两个基本单元是算 法和密钥。 算法是一些公式、法则或程序, 规定明文和密文之间的变换方法; 密钥可以看成是算法中的参数。
如果取k=25,就可以得出下述 美军多年前曾使用过的一种加密算 法,即通过明文中的字母用其前面 的字母取代(A前面的字母视为Z)形 成密文的方法。 例如,当明文是 s e n d h e l p 时,则对应的密文为 R D M C G D K O。
续地处理输入元素,并随着该过程
的进行一次产生一个元素的输出。
现以最简单的古罗马凯撒大帝使 用过的凯撒密码为例,如果我们用数 字0,1,2,…,24,25分别和字母A, B,C,…,Y,Z相对应,则密文字母 Φ可以用明文字母θ表示如下: Φ = θ + 3(mod 26) (2-3)
例如,明文字母为Y,即θ=24 时,Φ=24+3=27=1(mod 26),因 此,密文字母为B。
密码学——主要研究通信保密, 而且仅限于计算机及其保密通信。 它的基本思想是通过变换信息的表 示形式来伪装需要保护的敏感信息, 使非授权者不能理解被保护信息的 含义。
所谓伪装,就是对传输的信息— 计算机软件中的指令和数据进行一组 可逆的数字变换。伪装前的原始信息 称为明文(plain text,通常记作P或 M);伪 装后的 信息称 为密文 (cipher text,记作C);伪装的过程称为加密 ( 由 明 文 变 成 密 文 的 过 程 , enciphering , 记 作 E); 加 密 要 在 加 密密钥(key,记作K)的控制下进行。
从上述的讨论,可见,对一个 密码系统的基本要求是: (1)知道KAB时,EAB容易计算。
(2)知道KAB时,DAB容易计算。
密码学技术
目录
1 密码学概述
4 散列函数
2
2 对称密码体制
5 数字签名
3 非对称密码体制
密码学概述
密码学概述
➢ 密码学(Cryptology)是安全工程与数学的交叉学科,是我们现在
很多安全协议的基础工具。狭义来说,它是研究信息系统安全保密
的科学,专门研究编制密码和破译密码,即对信息进行编码实现隐
仅加密算法本身可以公开,甚至加密用的密钥也可以公开。加密密钥和
解密密钥不一样,将解密密钥进行保密就可以保证安全加解密,这一思
想即著名的公钥密码体制。
1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman提
出了RSA公钥密码体制,它是第一个成熟的、真正实用的公钥密码体制,
蔽信息和对加密信息进行破译实现解密信息的一门学科。密码学包
括两个分支:密码编码学(Cryptography)和密码分析学
(Cryptanalyst)。前者研究如何加密,后者则研究如何解密,两
者相互对立而又相互促进。
密码学概述
➢ 总的来说,密码学的发展大体经历了三个阶段。
➢ (1)古代密码时期——手工时期 源于人类社会的需求是技术发展
的重要动力,在记载中表明:许多古代的文明包括古埃及、中国、
希伯来、亚述都在实践中应用了密码系统。可以说,早期密码的产
生和应用主要是来自于人类的战争,在战争时期就面临着通信安全
保密的需求,例如我国古代的烽火就是一种传递军情的方法,中国
古代的兵符就是用来传达信息的密令。还有许多以诗文、绘画的方
式把信息隐藏起来的记录,从而达到信息安全的目的。
未经授权的人无法读取其中的信息。这里未经过任何伪装或隐藏技术处理的消
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密码学——信息战中的一把利剑中文摘要:密码技术是保障信息安全的核心技术。
密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。
Abstract:Cryptographic techniques to protect the information security of the core technology. Cryptography is the practice of encoding and decoding of the struggle gradually developed, and along with the application of advanced science and technology has become a comprehensive cutting-edge technological sciences.中文关键字:密码学密码技术信息安全Keyword:Cryptology Crytography Security第一章引言密码学是研究编制密码和破译密码的技术科学。
研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。
一般来讲,信息安全主要包括系统安全及数据安全两方面的内容。
系统安全一般采用防火墙、病毒查杀、防范等被动措施;而数据安全则主要是指采用现代密码技术对数据进行主动保护,如数据保密、数据完整性、数据不可否认与抵赖、双向身份认证等。
密码技术是保障信息安全的核心技术。
密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。
随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。
它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。
密码技术不仅能够保证机密性信息的加密,而且完成数字签名、身份验证、系统安全等功能。
所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。
密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。
依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。
密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。
密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。
它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。
它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。
第二章研究背景揭开密码神秘的面纱,就可以看出它是一门科学,这门科学有它自己的研究领域,有它自己的发展动力,也有它自己的前进方向和目标。
追溯历史,可以很清楚的看到,保密的发展与通信是分不开的。
在电报电话发明之前,基本上都是用手工作业或简单的器械来实现密码变换。
人们多用口述或者手写的文字经由信使进行通信,重要的信息能否保得住秘密并安全到达收信人耳中或手里,就看信号是否忠诚。
其他的通信方式还有旗语、手语、烽烟信号等。
不过这些都必须事先约定好,只使收、发双方能解其意,才有保密作用。
“密本”由人们事先编制好的许多数字或文字组合构成,用以代表字、词组、短语等。
发信人只要按照“密本”的规定将要发送的明文用相应的数字组合或者文字组合代替,收信人再按照同一“密本”恢复原来的明文,就起到了保密通信的作用。
“密表”则是事先规定好的将明文变换成密文的规则表,不管是代表还是替换,都是将人们可理解的明文变换成不可理解的密文,以期达到保密的目的。
要想恢复明文,就必须按同一规则进行逆变换。
电报电话发明之后,由于政治、军事、外交及商业情报的需要,电子窃听技术随之迅速发展起来的。
19世纪时,人们可购买到与通信双方几乎相同的通信设备来截收或搭线窃听到有用的电子信息,并可用之篡改电子信息。
20世纪初,有了无线电通信之后,使得截收、窃听活动更加容易,截收者只须购买无线接收机就行了。
第三章密码学的发展历程密码学在公元前400多年就早已经产生了,正如《破译者》一书中所说“人类使用密码的历史几乎与使用文字的时间一样长”。
密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。
接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。
例如我国古代的烽火就是一种传递军情的方法,再如古代的兵符就是用来传达信息的密令。
就连闯荡江湖的侠士,都有秘密的黑道行话,更何况是那些不堪忍受压迫义士在秘密起义前进行地下联络的暗语,这都促进了密码学的发展。
事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。
例如在希特勒一上台时,德国就试验并使用了一种命名为“谜”的密码机,“谜”型机能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约4.2万年才能将所有的密钥可能组合试完,希特勒完全相信了这种密码机的安全性。
然而,英国获知了“谜”型机的密码原理,完成了一部针对“谜”型机的绰号叫“炸弹”的密码破译机,每秒钟可处理2000个字符,它几乎可以破译截获德国的所有情报。
后来又研制出一种每秒钟可处理5000个字符的“巨人”型密码破译机并投入使用,至此同盟国几乎掌握了德国纳粹的绝大多数军事秘密和机密,而德国军方却对此一无所知;太平洋战争中,美军成功破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,击毙了山本五十六,导致了太平洋战争的决定性转折。
因此,我们可以说,密码学为战争的胜利立了大功。
在当今密码学不仅用于国家军事安全上,人们已经将重点更多的集中在实际应用,在你的生活就有很多密码,例如为了防止别人查阅你文件,你可以将你的文件加密;为了防止窃取你钱物,你在银行账户上设置密码,等等。
随着科技的发展和信息保密的需求,密码学的应用将融入了你的日常生活。
密码学(Cryptogra phy)在希腊文用Kruptos(hidden)+graphein(to write)表达,现代准确的术语为“密码编制学”,简称“编密学”,与之相对的专门研究如何破解密码的学问称之为“密码分析学”。
密码学是主要研究通信安全和保密的学科,他包括两个分支:密码编码学和密码分析学。
密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。
这两者之间既相互对立又相互促进。
密码的基本思想是对机密信息进行伪装。
一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。
在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。
其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。
这些密码算法大都十分简单,现在已经很少在实际应用中使用了。
由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的基本原理和方法。
但是对古典密码学的研究,对于理解、构造和分析现代实用的密码都是很有帮助。
以下介绍我们所研究的古典密码学。
第四章密码技术古典密码术密码技术的应用一直伴随着人类文化的发展,其古老甚至原始的方法奠定了现代密码学的基础。
使用密码的目标就是使一份消息或记录对非授权的人是不可理解的。
可能有人认为这很容易,但你必须考虑原定的接收方是否能解读消息。
如果接收方是没有经验的,随便写个便条他也可能很长时间无法读懂。
因此不一定要求加密和解密方法特别复杂,它必须适应使用它的人员的智力、知识及环境。
1、古典加密方法最为人们所熟悉的古典加密方法,莫过于隐写术。
它通常将秘密消息隐藏于其它消息中,使真正的秘密通过一份无伤大雅的消息发送出去。
隐写术分为两种,语言隐写术和技术隐写术。
技术方面的隐写比较容易想象:比如不可见的墨水,洋葱法和牛奶法也被证明是普遍且有效的方法(只要在背面加热或紫外线照射即可复现)。
语言隐写术与密码编码学关系比较密切,它主要提供两种类型的方法:符号码和公开代码。
2、代替密码代替密码就是将明文字母表中的每个字符替换为密文字母表中的字符。
这里对应密文字母可能是一个,也可能是多个。
接收者对密文进行逆向替换即可得到明文。
代替密码有五种表现形式:(1)单表代替即简单代替密码或者称为单字母代替,明文字母表中的一个字符对应密文字母表中的一个字符。
这是所有加密中最简单的方法。
(2)多名码代替就是将明文字母表中的字符映射为密文字母表中的多个字符。
(3)多音码代替就是将多个明文字符代替为一个密文字符。
(4)多表代替即由多个简单代替组成,也就是使用了两个或两个以上的代替表。
(5)密本密本不同于代替表,一个密本可能是由大量代表字、片语、音节和字母这些明文单元和数字密本组组成。
3、换位密码在换位密码中,明文字符集保持不变,只是字母的顺序被打乱了。
比如简单的纵行换位,就是将明文按照固定的宽度写在一张图表纸上,然后按照垂直方向读取密文。
这种加密方法也可以按下面的方式解释:明文分成长为m个元素的块,每块按照n来排列。
这意味着一个重复且宽度为m的单字母的多表加密过程,即分块换位是整体单元的换位。
简单的换位可用纸笔容易实现,而且比分块换位出错的机会少。
尽管它跑遍整个明文,但它并不比整体单元换位提供更多的密码安全。
在第二次大世界中,德军曾一度使用一种被称为bchi的双重纵行换位密码,而且作为陆军和海军的应急密码,只不过密钥字每天变换,并且在陆军团以下单位使用。
此时英国人早就能解读消息了,两个不同的密钥字甚至三重纵行换位的使用也无济于事。
4、转轮密码随着电动打字机的使用,电动密码机开始在保密通信中大显身手。
在第二次世界大战中,转轮密码机的使用相当普遍。
它主要利用机械运动和简单电子线路,有一个键盘和若干转轮,实际上它是维吉尼亚密码的一种实现。