第五章 材料力学

合集下载

05材料力学第五章

05材料力学第五章

对称弯曲(平面弯曲)
一般情况下,工程中受弯杆件的横截面都至少有一个通 过几何形心的对称轴,因而整个杆件都有一个包含轴线的纵 向对称面。如下图,当作用于杆件的外力都在这个纵向对称 平面上时,可以想象到,弯曲变形后的轴线也将是位于这个 对称面内的一条曲线。这种情况的变形我们就称为平面弯曲 变形,简称为平面弯曲。 q
C A b a c D B
RA
RB
P2=P

(1)求支座反力
RA RB P 60 kN
(2)计算C 横截面上的剪力QSC和弯矩 MC .
看左侧
QSC P 60kN 1
M C P1 b 6.0kN.m
(3)计算D横截面上的剪力QSD 和弯矩 MD . 看左侧
QSD R A P1 60 60 0
不论在截面的左侧或右侧向上的外力均将引起正值的弯矩, 而向下的外力则引起负值的弯矩. 左侧梁段 顺时针转向的外力偶引起正值的弯矩 逆时针转向的外力偶引起负值的弯矩
右侧梁段
逆时针转向的外力偶引起正值的弯矩 顺时针转向的外力偶引起负值的弯矩
左顺右逆为正
求弯曲内力的法则
任一截面的剪力Q=∑[一侧横向力的代数和]
支座的简化
载荷的简化
对称弯曲
纵向对称面
外力作用在此 纵向对称面内
变形后的轴线仍 在纵向对称面内
简支梁:一端固定绞支座一端可动铰支座
RAx A RAy
m
A
P
B
y
RBy
求内力——截面法 RAx A
RAy
m
P
B
剪力 弯曲构件内力 弯矩 1、弯矩M 构件受弯时,横截面上其作用面垂 RAy 直于截面的内力偶矩. 2、 剪力QS 构件受弯时,横截面上其作用线平行 于截面的内力.

材料力学课件第5章

材料力学课件第5章

M
zM
x
等截面梁
y
注意 当梁为变截面梁时, max 并不一定
发生在|M|max 所在面上.
22
5.3 横力弯曲时梁横截面上的正应力 弯曲正应力强度条件
h
常用图y形Wz
c b
Wz =Iz /ymax
z
Wz
Iz h
bh3 2 12 h
bh2 6
2
h2
h1
y
c
z
Wz
Iz h1
1 ( b1h13 h1 6
z
于是
M
E
Iz
M

1 M
EIz
y
x
代入
E
y得
My
Iz
15
5.2 纯弯曲时梁横截面上的正应力
常用图形y、Iz
h
y
1.矩形
dy
c
y z
Iz
Ay2 d A
h 2
y2b d y bh3
h 2
12
b
y
同理:
Iy
hb3 12
z
Iz
b1h13 12
b2h23 12
c
b2 b1
同理: I y
h1b13 12
y
12 rp
mn
x2
x
x1
12
dx
'=
x2 FN1
FN2
'=
38
5.4 横力弯曲时梁横截面上的切应力 弯曲切应力强度条件
F
Fx 0
FN 2 FN1 dx b
x1
y
12 rp mn
x2
x
12
dx

《材料力学》第五章

《材料力学》第五章

按集中力P和自重 共同作用时校核。 和自重q共同作用时校核 (2) 按集中力 和自重 共同作用时校核。 a.内力分析,画内力图,确定危险截面; a.内力分析,画内力图,确定危险截面; 内力分析 q单独作用时,
1 2 1 M q= ql = × 801 × 9.52=9.04(kNm ) 8 8
危险截面在中间截面
W z=
Iz =
πd 4
64
πd 3
32
对于各种型钢,其惯性矩和抗弯模量可查型钢表
例5.1 螺栓压板夹紧装置如图5.5a所示。已知板长3a=150mm, 压板材料的弯曲许用应力[σ]=140MPa。试计算压板传给工件的最 大允许压紧力F。 解:(1)外力分析,画力学简图; 外力分析,画力学简图; 外力分析 (2)内力分析,画内力图,确定危险截面; 内力分析,画内力图,确定危险截面; 内力分析 M max = M B = Fa 截面B (3)根据强度条件,进行计算。 根据强度条件,进行计算。 根据强度条件 根据强度条件
FRA = 2.5kN , FRB = 10.5kN ,
(2)内力分析,画内力图,确定危险截面; 内力分析,画内力图,确定危险截面; 内力分析 最大正弯矩在截面C上,
mC = 2.5kNm
最大负弯矩在截面B上, mB = −4kNm (3)求σmax,根据强度条件,进行校核。 求 根据强度条件,进行校核。 截面B:
σ max
161.5 × 106 = =135.7(MPa ) 1190 × 103
考虑自重与不考虑自重梁内应力相差(143.3-135.7)/143.3×100% =5.3%。因此,计算应力时一般可忽略杆自重的影响。
例5.3 T形截面铸铁梁。已知 [σt]=30MPa, [σc]=160MPa。 Iz=763 cm4,y1 = 52mm 。试校核梁的强度。 外力分析, 解:(1)外力分析,求支座反力 外力分析 求支座反力;

材料力学 第五章

材料力学 第五章

t min t max
结论: 翼缘部分tmax« 腹板上的tmax,只计算腹板上的tmax。
铅垂剪应力主要腹板承受(95~97%),且tmax≈ tmin Q 故工字钢最大剪应力 tmax ; Af
②圆截面:
t max
4Q 4 t 3 A 3
Q 2 2t A
③ 薄壁圆环:
t max
M
qL2 8
+ M1 Mmax x
五、梁的正应力强度条件 1、危险面与危险点分析: 一般截面,最大正应力发生在弯矩绝对值最大的截面的上下 边缘上。
s
2、正应力强度条件:
M
s
s
s max
M max s Wz
17
3、强度条件应用:依此强度准则可进行三种强度计算: 校核强度: 、校核强度:
q=3.6kN/m
例3 矩形(bh=0.12m0.18m)截 B 面木梁如图,[s]=7MPa,[t]=0. 9 M Pa,试求最大正应力和最大剪应 力之比,并校核梁的强度。 – 解:画内力图求危面内力
qL 2
A
Q +
L=3m
qL 2
x
M
qL 8
+
2
Qmax
M max
qL 3600 3 5400 N 2 2
y M ( x) dx
矩中性轴等距离处,剪应力
相等。 2、研究方法:分离体平衡。 在梁上取微段如图b; 在微段上取一块如图c,平衡
M(x)+d M(x)
z
t1 s
t
y
x
s1
图c
X N
2
N1 t1b(dx) 0
M N1 sdA A Iz

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学第五章弯曲内力

材料力学第五章弯曲内力
2、判断各段Q、M图形状:
CA和DB段:q=0,Q图为水平线, M图为斜直线。
AD段:q<0, Q图为向下斜直线, M图为上凸抛物线。
3、先确定各分段点的Q 、M 值,用相应形状的线条连接。
32
§5-6 纯弯曲时的正应力
• 纯弯曲(Pure Bending):某段梁的 内力只有弯矩没有剪力时,该段 梁的变形称为纯弯曲。
如图(b)示。
qL A
x1Q1
图(a) M1
图(b)
Y qL Q1 0 Q1 qL
mA(Fi) qLx1 M1 0 M1 qLx1
17
2--2截面处截取的分离体如图(c) qL
Y qL Q2 q(x2 a) 0 Q2 qx2 a qL
剪力等于梁保留一侧横向外
②写出内力方程
Q(x)
P
Q( x ) YO P
M(x) PL
x
M( x ) YOx MO
P( x L ) x
③根据方程画内力图
20
F
a
b
A
C
x1 x2
FAY
l
FS Fb / l
Fa / l
Fab/ l
M
[例]图示简支梁C点受集中力作用。
试写出剪力和弯矩方程,并画 B 出剪力图和弯矩图。
4. 标值、单位、正负号、纵标线
31
例 外伸梁AB承受荷载如图所示,作该梁的Q---M图。
3kN
6kN m 2kN/m
A C
B D
1m
4m
FA
Q 4.2
(kN) +
E
_
3
x=3.1m
1m
FB
_
3.8

材料力学第五章

材料力学第五章
l
F l a x
l
材料力学
第五章 梁的剪力图与弯矩图
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力;梁的横截面上作用在 纵向平面内的内力偶矩是与梁 的弯曲相对应,故称为弯矩。
材料力学
第五章 梁的剪力图与弯矩图
为使无论取横截面左边或右边为分离体,求得同一横
截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号
要以其所在横截面处梁的微段的变形情况确定,如下图。
材料力学
第五章 梁的剪力图与弯矩图
综上所述可知: (1) 横截面上的剪力——使截开部分梁产生顺时针方向
转动为正;产生逆时针方向转动为负。
(2) 横截面上的弯矩——作用在左侧面上使截开部分 逆时针方向转动,或者作用在右侧截面上使截开部分顺时 针方向转动者为正;反之为负。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
材料力学
第五章 梁的剪力图与弯矩图
§5.2 梁的内力及其与外力的相互关系
Ⅰ. 梁的剪力和弯矩(梁的横截面上的两种内力)
图a所示跨度为l的简支梁其
约束力为:
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。
扭转 —内力为扭矩。如各种传动轴等。
(轴)
弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
材料力学
梁的分类
F
q
第五章 梁的剪力图与弯矩图

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

材料力学性能_第五章

材料力学性能_第五章
每一次小扩展,便认为是一次断 裂过程,△K为裂纹尖端控制裂纹扩
展的复合力学参量。
精品文档
§5.3 疲劳裂纹(liè 扩展 wén)
36
二、疲劳裂纹扩展速率
lg(da/dN)~lg△K曲线
I区(初始段) △K≤△Kth: da/dN值很小,裂纹不扩展。 △K>△Kth: △K↑,da/dN↑,裂纹扩展 但不快。 I区所占寿命不长。 II区(主要(zhǔyào)段) △K↑,da/dN较大,裂纹亚稳扩展,是决 定疲劳裂纹扩展寿命的主要段。 III区(最后段) △K↑,da/dN↑↑,裂纹失稳扩展。
从而在破坏前就被修理(xiūlǐ)或报废。
精品文档
§5.3 疲劳裂纹 扩展 (liè wén)
34
一、疲劳裂纹扩展曲线
高频疲劳试验机;
固定裂纹预制长度a0、应力比r和应 力幅△σ; 作a~N曲线,曲线斜率da/dN为裂 纹扩展速率。 裂纹达到ac,da/dN无限大,裂 纹失稳扩展,试样最后断裂。 若改变应力△σ1增加到△σ2则裂纹
材料力学 性能 (cái liào lì xué)
第五章 材料(cáiliào)在变动载荷下 的力学性能
精品文档
第五章 材料在变动(biàndòng)载荷下的力学性能

5-1 金属疲劳现象(xiànxiàng)及特点
5-2 疲劳曲线及基本(jīběn)疲劳力学性能
有时在疲劳区的后部,还可看到沿扩展方向的疲劳台阶
(高应力作用)。 3、瞬断区
一般在疲劳源的对侧。脆性材料为结晶状断口;韧性材料有放射状 纹理;边缘为剪切唇。
精品文档
§5.1 金属(jīnshǔ)疲劳现象及特点
16
2024Al合金(héjīn)疲劳条纹

材料力学第五章

材料力学第五章
思考:
FSC
q0 x q ( x) l
是否可以将梁上的分布荷载全部用静力等效后的 合力代替来求截面C的内力?
§5-3 剪力和弯矩
例题 解: 1. 确定支反力 Fy 0 FAy FBy 2 F
M
FAy 2. 用截面法研究内力 FSE ME FAy FBy
A
0
FBy 3a Fa 2 F a F 5F FBy FAy 3 3 F 5F F 0 F 2 F F y SE SE 3 3 a 5F 3a M 0 2 F M O E 2 3 2 3Fa ME 2
a
F
b
A
FAY
x1
C x2
l
B
FBY
例题5-3 图示简支梁C点受集中力作用。 试写出剪力和弯矩方程,并画 出剪力图和弯矩图。 解:1.确定约束力 M A=0, M B=0
FS
Fb / l
FAy=Fb/l
FBy=Fa/l
Fa / l
Fab / l


M
2.写出剪力和弯矩方程 =Fb / l 0 x1 a x AC FS x1 M x1 =Fbx1 / l 0 x1 a FS x2 = Fa / l a x2 l CB M x2 =Fal x2 / l a x2 l
FCy
D
FBy 29kN
§5-2
受弯杆件的简化
q =20kN/m F MA Me=5kN· m C A B FAx D E K FBy FAy 1m 3m 1m 1m
AB梁
F F
0.5m
x y
0 0 0
FAx 0

材料力学-第五章

材料力学-第五章

第九单元(2)第五章弯曲应力§5-2 引言以弯曲为主要变形的构件称为梁,如房屋的梁与火车的轮轴。

本章主要研究外力作用在同一平面,变形也在同一平面的梁。

实际上,这也是最常见的情况。

三种静定梁固定铰简支梁可动铰(链杆)固定端悬臂梁集中载荷分布载荷集中力偶外伸梁§5-2 剪应弯矩方程与剪应力弯矩图一、剪力与弯矩研究梁的内力,仍使用截面法,由取出段的平衡,可知除了存在剪力,还存在弯矩。

Q,M“+”符号:使保留段顺时针转使保留段内凹Q,M“-”符号:二、剪力弯矩方程与剪力弯矩图剪力、弯矩与坐标X间的解析关系式,即()()==Q Q x M M x称为剪力方程与弯矩方程。

表示剪力与弯矩沿梁轴变化的另一重要方法为图示法,图示曲线称为剪力、弯矩图。

例1:1.求支反力M R PB A ==-∑04M R P A B ==∑054M y =∑0校核(为保证正确, 要求校核)2.建立Q ,M 方程(截面法)AB 段:()Q R Px a A 11404==-<<()M R x Px x a A 11111404==-≤≤BC 段:()Q P x a 220=<<()M Px x a 2220=-≤≤ 也可以只建一个坐标系, BC 段:()Q P a x a 2145=<<()()M P a x a x a 211545=--≤≤3.画图Q 图 M 图 例2:(分布截荷,注意力系简化条件) 1.支反力R qaR qa A B ==43832. Q ,M 方程AB :()Q R qx qa qx x a A 11114303=-=-<<()M R x qx qax qxx a A 1112112112431203=-=-≤≤BC :()Q qx x a 2220=≤<()M qx x a 2222120=-≤≤3.画Q ,M 图第10单元刚架:由刚性接头连接杆件所组成的结构。

材料力学(I)第五章

材料力学(I)第五章

挠曲线近似微分方程为 q EIw M x lx x 2 ( 2) 2 q lx 2 x 3 C1 ( 3) 通过两次积分得: EIw 2 2 3 q lx 3 x 4 EIw C1 x C 2 ( 4 ) 2 6 12
由挠曲线可见,该梁的max和wmax均在x=l的 自由端处。由(5)、(6)两式得 2 2 2 Fl Fl Fl max | x l EI 2 EI 2 EI Fl 3 Fl 3 Fl 3 wmax w | x l 2 EI 6 EI 3 EI
b x2 F x a EIw C 2 (1 ) 2 F l 2 2
2
b x2 F C1 (1) EIw1 l 2 b x3 EIw1 F C1 x D1 ( 2) l 6
b x3 F x a EIw 2 F l 6 6 C 2 x D2 ( 2 )
26
例题 5-3
4. 建立转角方程和挠度方程 将C1、C2、D1、D2代入(1)、(1')和(2)、(2')式得两 段梁的转角方程和挠曲线方程如下:
左段梁 (0 x a )
1 w1
右段梁 (a x l )
2 w 2
Fb l 1 2 2 2 2 Fb 1 2 2 2 x a x l b ( 3 ) l b x ( 3 ) 2lEI b 3 2lEI 3 w2 Fbx 2 Fb l 3 3 2 2 w1 l b 2 x 2 ( 4) x a x l b x (4 ) 6lEI 6lEI b

工程力学—第五章材料力学的一般概念

工程力学—第五章材料力学的一般概念

§5-1 材料力学理论的建立
第一部《材料力学》出现17世纪以后,技术革命
法国科学家 库仑 (1736-1806)
通过实验修正了伽利略的错误,提出了最大切 应力强度理论。
法国科学家 纳维 1826年著《材料力学》
材料力学 —— 研究构件在外力作用下的变形、
受力与破坏或失效的规律,为合理设计构件提供有 关强度、刚度与稳定性分析的基本理论与方法。
教师:李炎
第 5 章 材料力学的一般概念
§5-1 材料力学简史 §5-2 材料力学的任务 §5-3 材料力学的研究对象 §5-4 荷载的分类 §5-5 变形固体及其基本假定 §5-6 内力与应力 §5-7 变形与位移 §5-8 杆件变形的基本形式
§5-1 材料力学简史
材料力学的发展是工程实际的迫切需要。
§5-5 变形固体的基本假设
任何固体在外力作用下都会发生形状和尺寸的改变,即变形。
对于变形固体,当外力在一定范围时,卸去外力后其变形会
完全消失,这种随外力卸去而消失的变形为“弹性变形”。
当作用于固体的外力大小超过一定范围,在外力卸去后固体 变形只能部分消失,还残留下一部分不能消失的变形,这种不能
消失的残余变形为“塑性变形”。
反之为负。
③ 全应力分解为:
a.垂直于截面的应力(法向分量)称为“正应力”;
F1


ΔN
lim
Δ A0
Δ
A

dN dA
p


M
F2
b.位于截面内的应力(切向分量)称为“切应力”。(剪应力)


ΔT
lim
Δ A0
Δ
A

dT dA
F1

第五章 材料力学的概念.

第五章 材料力学的概念.
第五章 材料力学的概念
5.1 材料力学的基本假设 5.2杆件的外力和内力 5.3正应力与切应力 5.4正应变与切应变 5.5杆件受力与变形的基本形式
5.1 材料力学的基本假设
一、 连续性假设
即假设组成固体的物质不留空隙地充满了固体的体积。实际上, 组成固体的粒子之间存在着空隙并不连续,但这种空隙与构件的尺寸 相比极其微小,可以不计。于是就认为固体在其整个体积内是连续的。 这样,在对某些力学量进行数学分析时,就可将其用连续性函数表示, 并可进行坐标增量为无限小的极限分析。
返回
5.4正应变与切应变
如果将弹性体看作由许多微小的单元体所组成,弹性体整体的 变形则是所有单元体变形累加的结果。而单元体的变形则与作用在其 上的应力有关。
围绕受力弹性体中的一点截取单元体(通常为正六面体).一般情 形下单元体的各个面上均有应力作用。下面考察两种最简单的情形, 分别如图5.4a、b所示。
下一页 返回
5.2杆件的外力和内力
三、 求解内力的截面法
为了揭示在外力作用下构件所产生的内力,确定内力的大小和方 向,通常采用截面法。截面法可以用以下四个步骤来概括: 1. 截 在构件上任意截面m-m处假想地截开构件,将构件分成两个部分, 见图5.2a。如果所取截面与构件的轴线垂直称为横截面,而构成任意 夹角的称为斜截面。 2. 取 任意取其中的一部分,注意在取的时候除了要取出这一部分的结 构几何图形,还要同时加上这一部分所受的全部外力,包括主动力和 约束力。
下一页 返回
5.1 材料力学的基本假设
二、 均匀性假设
即假设固体内到处具有相同的力学性能。就使用最多的金属来 说,组成金属的各晶粒的力学性能并不完全相同。但因构件或构件的 任一部分中都包含为数极多的晶粒,而且无规则地排列,固体的力学 性能是各晶粒的力学性能的统计平均值,所以可以认为各部分的力学 性能是均匀.这样,如从固体中取出一部分,不论大小,也不论从何 处取出,力学性能总是相同的。

材料力学I第五章ppt课件

材料力学I第五章ppt课件
而对各段梁的近似微分方程积分时,都将出现两个积 分常数。要确定这些积分常数,除利用支座处的约束条件 (constraint condition)外,还需利用相邻两段梁在交界处的 连续条件(continuity condition)。这两类条件统称为边界条 件。
11
第五章 梁弯曲时的位移
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
6
第五章 梁弯曲时的位移
从几何方面来看,平面曲线的曲率可写作
1
x
1
w w2
3/ 2
1/为非负值的量,而w“是q = w' 沿
x方向的变化率,是有正负的。
w
1 w2
3/ 2
M x
EI
由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略
去,于是得挠曲线近似微分方程 w M x
7
EI
第五章 梁弯曲时的位移
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角
梁的横截面形心(即轴线AB上的点)在垂直于x轴方向的 线位移w称为挠度(deflection),横截面对其原来位置的角
位移q 称为横截面的转角(angle of rotation)。
1
第五章 梁弯曲时的位移
挠曲线(deflection curve)为一平坦而光滑的曲线,它 可以表达为: w=f(x),此式称为挠曲线方程。
由于梁变形后的横截面仍与挠曲线保持垂直,故横截面 的转角θ也就是挠曲线在该相应点的切线与x轴之间的夹角, 从而有转角方程:
q tanq w f x
2
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲
变形程度(挠曲线曲率的大小)有关,也与支座约束的条件

材料力学第五章

材料力学第五章

t矩
Fs 2Iz
( h2 4
y2)
t max
Fs h 2 8Iz
3 2
Fs bh
1.5t
t大小:沿截面宽度均匀分布,沿截面高度为抛物线分布。 t方向:与横截面上剪力方向相同;
二、工字形截面梁
腹板上切应力:t Fs Sz
b0
b0 I z [P151 式 (5.10)]
yz
其中Fs为截面剪力;Sz为y点以下的面积对中性轴之静矩;
横力弯曲最大正应力
s max
M max ymax IZ
8
5-3 横力弯曲时的正应力
第5章 弯曲应力
一、横力弯曲的最大正应力:
s max
Mmaxymax Iz
引入:W—抗弯截面系数 W I z
y
ymax
圆形 —W
Iz
d 4 / 64 d 3
ymax d / 2 32
矩形 — W Iz bh3 / 12 bh2
ymax h/ 2
6
s max
M max W
5-3 横力弯曲时的正应力
第5章 弯曲应力
弯曲正应力公式适用范围:
① 线弹性范围—正应力小于比例极限sp; ② 精确适用于纯弯曲梁; ③ 对于横力弯曲的细长梁(跨度与截面高度比L/h>5) ,上述公式的误差不大。
10
5-3 横力弯曲时的正应力
第5章 弯曲应力
A
Fs
qL
2+
L=3m
M
qL2
8
+
第5章 弯曲应力
[例] 矩形(bh=0.12m0.18m)截
面木梁如图,Байду номын сангаасs]=7MPa,[t]=0. 9

材料力学第五章

材料力学第五章
FS FS (x) M M (x) 上两式分别称为梁的剪力方程和弯矩方程,为了形象地描述剪力、弯矩 沿梁轴线的变化,常将剪力、弯矩方程用图线表示。这种图线分别称为剪力 图和弯矩图。
例5-2 求图5-9所示简支梁各截面内力,并作内力图。 (a)
(c) (d)
(b)
图5-9
(e)
解 (1)求约束力。注意固定铰 A 处 FAx 0 ,故梁 AB 受力如图 5-9(a) 所示。
材料力学
第五章 弯曲内力与强度计算
一 平面弯曲的概念与实例
二 梁的内力——剪力与弯矩

剪力图与弯矩图

载荷集度、剪力与弯矩间的关系

纯弯曲时梁横截面上的正应力

梁的弯曲正应力强度条件及其应用

弯曲切应力

提高梁的弯曲强度的措施
第一节 平面弯曲的概念与实例
直杆在垂直于其轴线的外力或位于其轴线所在平面内的外力偶作用下, 杆的轴线将由直线变成曲线,这种变形称为弯曲。承受弯曲变形为主的杆 件通常称为梁。
(a)
(b) (c)
图5-12
解 (1)由静力平衡方程求出支座约束力。
FA
Me L
(方向向上)
FB
Me L
(方向向下)
(2)列剪力方程和弯矩方程。
FS ( x)
FA
Me L
(0 x L)
(a)
由于力偶在任何方向的投影皆等于零,所以无论在梁的哪一个横截面上,
剪力总是等于支座约束力 FA (或 FB )。所以在梁的整个跨度内,只有一个剪 力方程式(a)。
设 a x2 a b ,左段受力如图 5-9(c)所示。 由平衡方程求得
FS2 FAy F 0
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A2b228.52146 m .22m 0 A 146201.59
A 9210
例5-2 已知等截面简支梁 l = 2m,受均布载荷 q = 15 kN m 作用如图所示,[σ] =
160 MPa. 求:按正应力强度条件选择下列截面的尺寸并比较其面积。
q
A
BM
7.5kNm
l
x
解:1.作弯矩图 2.求截面尺寸
A1 48cm2 A2 37.6cm2 A3 34cm2 A4 14cm2
49cm3
A1:A2:A3:A43 . .4:3 2.6:9 2.4:3 1
例5-3 半径为 R 的圆环,弹性模量为 E,截面的直径为 d,R = 10 d,在 A, B 截面处有一微小缺口∆θ(图a),若将其焊接成如图(b)所示的圆环,求圆 环中最大正应力。
Mmaxq8l2
1522 8
7.5kNm
圆形
Wz
D3 32
D3 7.51063278.2mm
160
3.比较面积
圆环 矩形 工字钢
Wz
D3(14)
32
D3 176.50(11060.3542) 79.9mm
Wz
bh2 6
2b3 3
b3 37.5106 41.3mm 2160
WzM [m]ax7.51166004.69cm 3 选10号工字钢 Wz
例5-1 钢制等截面简支梁受均布载荷 q 作用如图( a ) 所示,横截面为 h = 2b
的矩形。已知材料许用应力[σ] = 120 MPa,l = 2 m,q = 50 kN/m。求:梁分
别按图 ( b ) 和图 ( c ) 放置时的截面尺寸并比较其面积大小。
q (a) A
l
解:1. 作弯矩图
(b)
=15 mm,梁与杆的许用正应力[ ] =160 MPa。试按正应力强度条件求许可
分布载荷集度 [q]。
D
解:1. 确定内力 FA = 3q/4 , FC = 9q/4
q A
2m C
B 1m
AB 梁的弯矩如图 所示
M q/2 max
2. 强度计算
查表得 10 工字钢 Wz = 49cm3 ,梁的最大应力
解:1. 确定弯矩
设圆环焊接后的半径为R1 ,由 于R1< R,曲率发生了变化,焊接 后圆环的截上会产生弯矩。
1 1M R1 R EI
两圆的周长相等
(2 )R2R 1
R1 (1 2)R
MR(2EI)E 2IR
2. 计算应力
max M I d2E 4. dR E 40
例5-4 梁杆组合结构受力如图 ( a ) 所示。AB 为10工字钢,拉杆 CD 直径 d
ql2
max l
max h
3. 综合比较
maxMmax lht max Wz 4Wz
m
ax
Mm Wz
ax4ql2
D3
一般实心截面梁,跨度 l 远远大于横向尺寸 h ,
D, ma.x max,
max max
空心截面
(
包括工字形,槽形),
例5-8 由三根木梁胶合而成的悬臂梁截面尺寸如图 所示,跨度 l = 1m。( 1 ) 若胶合面上的许用切应力[τ] = 3.4 MPa,试根据胶合面的切应力强度条件求 许可载荷 F ;( 2 ) 求在该许可载荷作用下的最大弯曲正应力;( 3 ) 若木条间可 相对自由滑动,这时各木条截面上的弯曲正应力如何分布?最大正应力为多
m a xM IzCy134.0 6 0 116 0 6 0140 10M 7
由于 A. , C 截面的最大拉应力都超过许用应力,
σ-A
σ+C
梁的抗拉强度不够。
例5-6 图示简支梁 l = 2m,承受均布载荷q = 2 kN/m 作用,若分别采用面积相
等的实心和空心圆截面,实心截面 D = 40 mm,空心截面 = 0.6,( 1 ) 分别
计算它们的最大正应力;( 2 ) 若许用应力同为 [σ],空心截面的许可载荷是实 心截面的几倍?
解:1. 确定弯矩 2. 计算应力
实心截面
危险截面在梁的中央 C 截面
Mmax
ql2 8
1kNm
Wz
D3 32
maxW M z 32143016015M 9 Pa
空心截面
AD2(12)AD2
4
4
D50mm
y (c)
y
B
h
b z
z
b
h
Mmaxq8l2
5022 8
25kNm
M
2. 求图(b)截面尺寸
ql2/ 8
x
Wz
bh2 6
2b3 3
b3 3Mma x 3 3251606.79mm
2[]
2120
A2b226.7 9292m 102m
3. 求图(c)截面尺寸
Wz
hb2 6
b3 3
b3 3M [m ] a x3 3215 210608.55mm
例5-7 已知等截面简支梁,受均布载荷 q 作用如图( a ) 所示, 试比较下列各 截面的最大正应力和最大切应力。
解:1. 确定内力
Qm a x
1 2
ql
2. 计算应力
Mmax 圆形
1 8
矩m 形m maaaxxx4M 3W Q Q 32mA m zm Aaaaxxx43343qb8qblhq2l2hDl2工字m 钢maaxxmmaaxxQ M AW 腹 mmza板 2ax3xDl 82qqW hll2zt
例5-5 铸铁制成的槽形截面梁,c 为截面形心,Iz = 40×106 mm4,y1 = 140 mm,y2 = 60 mm,l = 4 m,q = 20 kN/m,m =20 kNm,[σ+] = 40 MPa,[ σ -] = 150 MPa。( 1 ) 作出危险截面的应力分布图;( 2 ) 校核梁的强度。
M 9q/32 A
C q/2
M m ax ຫໍສະໝຸດ q[]BWz 2Wz
q1≤2Wz [ ] =2×49×103×160 =15.68 kN/m
杆的最大应力 N 9q/4 [] A d2 /4
d2[] 125160
q2 9 9 1.2 56 kN
3. 综合分析
q m q i1 ,. q n 2 1.5 2k 6N/m
Wz
D3
32
(14)
m axW M z5 33 0 2(11 10.66 02)9.37MPa
3. 计算载荷
许用应力相同,则最大应力应相同
max
ql 2 8W z
m ax
ql 2 8W z
q q.W W z zD 3(D 1 34)530 (1 43 0 0 .64)1.7
空心截面的许可载荷是实心截面的 1.7 倍。
m
q
y
解:1. 作弯矩图
A
M A 20 kNm
σ+A
B
l 30.6 kNm
C
B
σ-C
y1 c
y2
危险截面在 A , C
z
MA = -20 kNm
MC = 30.6 kNm
2. 危险截面的应力分布
3. 强度校核
A 截面 m a xM IzAy14 2 0 01 16 60 01407M 0 P
C 截面 m a xM IzCy234.0 6 0 116 0 6 060 4.5 9M
相关文档
最新文档