(完整版)直接证明与间接证明练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、直接证明与间接证明
三种证明方法的定义与步骤:
1. 综合法 是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。
2. 分析法 是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。
3. 反证法 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法.
反证法法证明一个命题的一般步骤: (1) 假设命题的结论不成立; (2) 根据假设进行推理,直到推理中导出矛盾为止 (3) 断言假设不成立(4) 肯定原命题的结论成立 题型一:用综合法证明数学命题
例1 :对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的
[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有
1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.
(1) 若函数()f x 为理想函数,求(0)f 的值;
(2)判断函数()21x g x =-(]1,0[∈x )是否为理想函数,并予以证明; 解析:(1)取021==x x 可得0)0()0()0()0(≤⇒+≥f f f f .
又由条件①0)0(≥f ,故0)0(=f .
(2)显然12)(-=x x g 在[0,1]满足条件①0)(≥x g ;
也满足条件②1)1(=g .若01≥x ,02≥x ,121≤+x x ,则
)]
12()12[(12
)]()([)(2
12
12121-+---=+-++x x x x x g x g x x g
0)12)(12(1222122121≥--=+--=+x x x x x x ,即满足条件③,
故)(x g 理想函数.
注:紧扣定义,证明函数()21x g x =-(]1,0[∈x )满足三个条件
题型二:用分析法证明数学命题