(完整版)直接证明与间接证明练习题

合集下载

一轮复习课时训练§9.2:直接证明与间接证明

一轮复习课时训练§9.2:直接证明与间接证明

第九章§2:直接证明与间接证明(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在由正数组成的等比数列{a n }中,若a 3a 4a 5=33π,则cos(log 3a 1+log 3a 2+…+log 3a 7)的值为A .-1B .32C .1D .-322.若c>1,a =c -c -1,b =c +1- c.则下列结论中正确的是A .a>bB .a =bC .a<bD .a ≤b3. 如图,O ,A ,B 是平面上的三点,若OA →=a ,OB →=b ,设P 为AB 的垂直平分线CP 上的任意一点,向量OP →=p ,若|a|=4,|b|=2,则p·(a -b)等于A .6B .5C .3D .14.若函数f(x)=e x sinx ,则此函数图象在点(4,f(4))处的切线的倾斜角为A .π2B .0C .钝角D .锐角 5.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心,依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知△ABC 的顶点A(2,0),B(0,4),若其欧拉线方程为x +y -5=0,则顶点C 的坐标是A .(-2,0)B .(2,0)C .(-4,0)D .(4,0)二、填空题:本大题共3小题,每小题8分,共24分.6.如果a a +b b>a b +b a ,则a 、b 应满足的条件是______________.7.为迎接2010年广州亚运会,大赛组委会规定:在大赛期间每天主办方要安排专用大巴接送运动员到各比赛场馆参赛,每辆大巴可乘坐20人,已知第t 日参加比赛的运动员人数M 与t 的关系是M(t)=⎩⎪⎨⎪⎧30t +60,1≤t ≤6-3t 2+61t +88,7≤t ≤12,为了保证赛会期间运动员都能按时参赛,主办方应至少准备大巴的数量为________.8.已知三棱锥S —ABC 的三视图如图所示,在原三棱锥中给出下列命题:①BC ⊥平面SAC ;②平面SBC ⊥平面SAB ;③SB ⊥AC.其中所有正确命题的代号是__________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)已知:a>0,求证:a 2+1a 2 -2≥a +1a-2.10.(本小题满分18分,(1)小问8分,(2)小问10分) 设函数f(x)=x +sinx x,g(x)=xcosx -sinx. (1)求证:当x ∈(0,π)时g(x)<0;(2)若存在x ∈(0,π),使得f(x)<a 成立,求a 的取值范围.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:cos(log 3a 1+log 3a 2+…+log 3a 7)=cos[log 3(a 1a 2·…·a 7)]=cos(log 337π)=-1. 答案:A2.解析:假设a>b ,则c -c -1>c +1-c ⇒2c>c +1+c -1⇒4c>2c +2c 2-1⇒c>c 2-1⇒c 2>c 2-1.此式显然成立,故假设成立.答案:A3. 解析:p =OC →+CP →=a +b 2+CP →, ∴p·(a -b)=(a +b 2+CP →)·(a -b) =12(a +b)(a -b)=12(42-22)=6. 答案:A4.解析:f ′(x)=(e x sinx)′=e x sinx +e x cosx =e x (sinx +cosx),f ′(4)=e 4(sin4+cos4),因为sin4<0,cos4<0,所以f ′(x)<0,所以切线斜率为负值,则切线的倾斜角为钝角. 答案:C5.解析:AB 中点为(1,2),直线AB 的垂直平分线方程为y -2=12(x -1),将其与欧拉线方程联立,解得外心(-1,1),设C(a ,b),则重心G(2+a 3,4+b 3),有4+b 3=2+a 3+2与 (a +1)2+(b -1)2=10,联立得a =-4,b =0.答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:∵a a +b b>a b +b a ⇔(a -b)2·(a +b)>0⇔a ≥0,b ≥0且a ≠b. 答案:a ≥0,b ≥0且a ≠b7.解析:本题只需求出分段函数的最大值即可,当1≤t ≤6时,M 的最大值为240;当7≤t ≤12时,M 的最大值为398,故至少应准备大巴20辆.答案:208.解析:由三视图知,在三棱锥S —ABC 中,底面ABC 为Rt △且∠ACB =90°.又∵SA ⊥底面ABC ,∴BC ⊥AC ,且BC ⊥SA ,并且SA ∩AC =A.∴BC ⊥平面SAC.命题①正确.由已知推证不出②③命题正确.答案:①三、解答题:本大题共2小题,共36分.9.(本小题满分18分) 证明:要证a 2+1a 2-2≥a +1a -2, 只要证:a 2+1a 2+2≥a +1a+2, ∵a>0,故只要证:(a 2+1a 2+2)2≥(a +1a +2)2, 即:a 2+1a2+4a 2+1a 2+4≥a 2+1a 2+2+22(a +1a )+2, 只要证:2a 2+1a 2≥2(a +1a), 只要证:4(a 2+1a 2)≥2(a 2+1a 2+2),即:a 2+1a2≥2. 上述不等式显然成立,故原不等式成立.10.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)g ′(x)=cosx -xsinx -cosx =-xsinx , ∵x ∈(0,π),∴g ′(x)≤0,∴g(x)在(0,π)上单调递减,又g(0)=0,∴当x ∈(0,π)时,g(x)<g(0)=0.(2)∵f(x)=x +sinx x =1+sinx x, ∴f ′(x)=xcosx -sinx x 2, 由(1)知,当x ∈(0,π)时,f ′(x)<0,∴f(x)在(0,π)上单调递减,则当x ∈(0,π)时,当x →0时,sinx x→1,f(x)→2, 由题意知,f(x)<a 在(0,π)上有解,∴a>f(x)max ,∵f(x)<2,从而a ≥2.。

高二数学直接证明与间接证明试题答案及解析

高二数学直接证明与间接证明试题答案及解析

高二数学直接证明与间接证明试题答案及解析1.用反证法证明命题:“若是三连续的整数,那么中至少有一个是偶数”时,下列假设正确的是()A.假设中至多有一个偶数B.假设中至多有两个偶数C.假设都是偶数D.假设都不是偶数【答案】D【解析】反证法证明命题时,应假设命题的反面成立.“中至少有一个是偶数”的反面是:“都不是偶数”,故应假设都不是偶数.【考点】反证法的概念.2.设则()A.都不大于B.都不小于C.至少有一个不大于D.至少有一个不小于【答案】C【解析】假设都小于或等于﹣2,即a+≤﹣2,b+≤﹣2,c+≤﹣2,将三式相加,得a++b++c+≤﹣6,又因为a+≤﹣2,b+≤﹣2,c+≤﹣2,三式相加,得a++b++c+≤﹣6,所以a++b++c+≤﹣6成立.故选C.【考点】反证法与放缩法.3.用反证法证明命题“三角形的内角中至多有一个钝角”时,假设正确的是()A.三个内角中至少有一个钝角B.三个内角中至少有两个钝角C.三个内角都不是钝角D.三个内角都不是钝角或至少有两个钝角【答案】B【解析】反证法的第一步为否定结论,而原题中结论为三角形的内角中至多有一个钝角,即三角形的内角中有一个钝角或没有钝角,显然,其否定为三角形的内角中至少有两个钝角.【考点】反证法.4.用反证法证明命题:“若a,,能被5整除,则a,b中至少有一个能被5整除”,那么假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a,b有一个能被5整除D.a,b有一个不能被5整除【答案】B【解析】反证法中,假设的应该是原结论的对立面,故应该为a,b都不能被5整除.【考点】反证法.5.(1)用综合法证明:()(2)用反证法证明:若均为实数,且,,求证:中至少有一个大于0【答案】(1)详见解析,(2)详见解析.【解析】(1)综合法证明,实质先按分析法分析,再按综合法的写法.(2)反证法证明,关键在于正确假设:假设都不大于0,则,又,两者矛盾,故假设错误。

高考复习数学直接证明与间接证明专项练习(附解析)

高考复习数学直接证明与间接证明专项练习(附解析)

2019高考复习数学直接证明与间接证明专项练习(附解析)直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。

以下是直接证明与间接证明专项练习,请考生认真练习。

1.(2019山东,文4)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根2.要证:a2+b2-1-a2b2≤0,只要证明()A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1)(b2-1)≥03.设a,b,c均为正实数,则三个数a+,b+,c+()A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于24.(2019天津模拟)p=,q=(m,n,a,b,c,d均为正数),则p,q的大小为()A.p≥qB.p≤qC.p>qD.不确定5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负6.(2019福建三明模拟)命题“如果数列{an}的前n项和Sn=2n2-3n,那么数列{an}一定是等差数列”是否成立()A.不成立B.成立C.不能断定D.与n取值有关7.用反证法证明“如果a>b,那么”假设内容应是.8.在不等边三角形中,a为最大边,要想得到角A为钝角的结论,三边a,b,c应满足.9.已知a>0,求证:≥a+-2.10.已知在数列{an}中,a1=5,且an=2an-1+2n-1(n≥2,且nN*).(1)证明:数列为等差数列;(2)求数列{an}的前n项和Sn.能力提升组11.已知m>1,a=,b=,则以下结论正确的是()A.a>bB.aa+b,那么a,b应满足的条件是.13.设a,b,c均为正数,且a+b+c=1,证明:≥1.14.△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c.求证:.15.(2019福建宁德模拟)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f'(x)=,g(x)=f(x)+f'(x).(1)求g(x)的单调区间和最小值.(2)是否存在x0>0,使得|g(x)-g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.参考答案1.A解析:“至少有一个”的否定为“没有”.2.D解析:因为a2+b2-1-a2b2≤0?(a2-1)(b2-1)≥0,故选D.3.D解析:a>0,b>0,c>0,∴≥6,当且仅当a=b=c=1时,等号成立,故三者不能都小于2,即至少有一个不小于2.4.B解析:q==p.5.A解析:由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数.由x1+x2>0,可知x1>-x2,即f(x1)b2+c2解析:由余弦定理cos A=<0,则b2+c2-a2<0,即a2>b2+c2.9.证明:要证≥a+-2,只需要证+2≥a+.又a>0,所以只需要证,即a2++4+4≥a2+2++2+2,从而只需要证2≥只需要证4≥2,即a2+≥2,而上述不等式显然成立,故原不等式成立. 10.(1)证明:设bn=,则b1==2.因为bn+1-bn=[(an+1-2an)+1]=[(2n+1-1)+1]=1,所以数列为首项是2,公差是1的等差数列.(2)解:由(1)知,+(n-1)×1,则an=(n+1)·2n+1.因为Sn=(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n+1],所以Sn=2·21+3·22+…+n·2n-1+(n+1)·2n+n.设Tn=2·21+3·22+…+n·2n-1+(n+1)·2n,①2Tn=2·22+3·23+…+n·2n+(n+1)·2n+1.②②-①,得Tn=-2·21-(22+23+…+2n)+(n+1)·2n+1=n·2n+1,所以Sn=n·2n+1+n=n·(2n+1+1).11.B解析:a=,b=,又,即aa+b?()2·()>0?a≥0,b≥0,且a≠b.13.证明:因为+b≥2a,+c≥2b,+a≥2c,所以+(a+b+c)≥2(a+b+c),即≥a+b+c.所以≥1.14.证明:要证,即证=3,也就是=1,只需证c(b+c)+a(a+b)=(a+b)(b+c),即证c2+a2=ac+b2.又△ABC三内角A,B,C成等差数列,所以B=60°,由余弦定理,得b2=c2+a2-2accos 60°,即b2=c2+a2-ac,故c2+a2=ac+b2成立.于是原等式成立.15.解:(1)因为(ln x)'=,所以f(x)=ln x,g(x)=ln x+,g'(x)=.令g'(x)=0得x=1.当x(0,1)时,g'(x)<0,故(0,1)是g(x)的单调递减区间,当x(1,+∞)时,g'(x)>0,故(1,+∞)是g(x)的单调递增区间,因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g(1)=1.(2)满足条件的x0不存在.理由如下:假设存在x0>0,使得|g(x)-g(x0)|<对任意x>0成立,“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

直接证明与间接证明练习题(基础、经典、好用)

直接证明与间接证明练习题(基础、经典、好用)

直接证明与间接证明一、选择题1.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数2.要证:a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥03.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定4.(2013·东莞调研)对于平面α和共面的直线m 、n ,下列命题中真命题是( )A .若m ⊥α,m ⊥n ,则n ∥αB .若m ∥α,n ∥α,则m ∥nC .若m ⊂α,n ∥α,则m ∥nD .若m 、n 与α所成的角相等,则m ∥n5.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A二、填空题6.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b ≥2成立的条件的个数是________.7.(2013·阳江月考)下面有3个命题:①当x >0时,2x +12x 的最小值为2;②若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2.③在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22.类比到空间,若三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S —ABC 的外接球的半径R =a 2+b 2+c 22. 其中错误..命题的序号为________. 8.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.三、解答题9.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3;(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.10.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a>c . 11.(2013·珠海模拟)在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,若1a +b+1b +c =3a +b +c,试问A 、B 、C 是否成等差数列,若不成等差数列,请说明理由.若成等差数列,请给出证明.解析及答案一、选择题1.【解析】 “自然数a ,b ,c 中恰有一个偶数”的否定为“a ,b ,c 中至少有两个偶数或都是奇数”.【答案】 B2.【解析】 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.【答案】 D3.【解析】 ∵P 2=2a +7+2a a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .【答案】 C4.【解析】 对于平面α和共面直线m 、n .设m ,n 确定的平面为β,对于C ,若m ⊂α,则m =α∩β,从而n ∥α可得m ∥n ,因此C 正确.【答案】 C5.【解析】 ∵a +b2≥ab ≥2ab a +b,又f (x )=(12)x 在R 上是减函数,∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 【答案】 A二、填空题6.【解析】 要使b a +a b ≥2,只要b a >0且a b >0,所以a ,b 不为0且同号即可,故有3个.【答案】 37.【解析】 对于①,2x +12x 取得最小值为2的条件是x =0,这与x >0相矛盾;易证②成立;对于③,可将该三棱锥补成长方体,其外接球的直径恰好是长方体的体对角线.【答案】 ①8.【解析】 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π),∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.【答案】 332 三、解答题9.【证明】 (1)x 是正实数,由基本不等式知 x +1≥2x ,1+x 2≥2x ,x 3+1≥2x 3,故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立).(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立.由(1)知,当x >0时,不等式成立.当x ≤0时,8x 3≤0,又(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立.10.【证明】 (1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根.即1a 是函数f (x )的一个零点.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f (1a )>0与f (1a )=0矛盾,∴1a ≥c ,又∵1a ≠c ,∴1a >c .11.【解】 A 、B 、C 成等差数列,下面用综合法给出证明:∵1a+b+1b+c=3a+b+c,∴a+b+ca+b+a+b+cb+c=3,∴ca+b+ab+c=1,∴c(b+c)+a(a+b)=(a+b)(b+c),∴b2=a2+c2-ac.在△ABC中,由余弦定理,得cos B=a2+c2-b22ac=ac2ac=12,∵0°<B<180°,∴B=60°.∴A+C=120°=2B,∴A、B、C成等差数列.。

限时集训(三十九) 直接证明与间接证明

限时集训(三十九) 直接证明与间接证明

限时集训(三十九) 直接证明与间接证明(限时:45分钟 满分:81分)一、选择题(本大题共6小题,每小题5分,共30分)1.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤CB .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A2.(2013·成都模拟)设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.若P =a +a +7,Q =a +3+a +4(a ≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定4.(2013·银川模拟)设a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b ,a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立,其中正确判断的个数为( )A .0B .1C .2D .35.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列6.在R 上定义运算:⎪⎪⎪⎪⎪⎪ab c d =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32 C.12 D.32二、填空题(本大题共3小题,每小题5分,共15分)7.某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么他的反设应该是________.8.设S n =12+16+112+…+1n (n +1)(n ∈N *),且S n +1·S n +2=34,则n 的值是________. 9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.三、解答题(本大题共3小题,每小题12分,共36分)10.已知a >0,1b -1a >1,求证:1+a >11-b. 11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. 12.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1.限时集训(三十九) 直接证明与间接证明答 案1.A 2.A 3.C 4.C 5.B 6.D7.“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|则|f (x 1)-f (x 2)|≥12” 8.5 9.⎝⎛⎭⎫-3,32 10.证明:∵1b -1a,a >0, ∴0<b <1,要证1+a >11-b, 只需证1+a ·1-b >1,只需证1+a -b -ab >1,只需证a -b -ab >0,即a -b ab >1,即1b -1a>1. 这是已知条件,所以原不等式成立.11.解:(1)由已知得⎩⎨⎧ a 1=2+1,3a 1+3d =9+32,解得d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1)得b n =S n n=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则 b 2q =b p b r .即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0. ∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. ∴p =r .与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.12.解:(1)由已知得a n +1=a n +1,则a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,1为公差的等差数列.故a n =1+(n -1)×1=n .(2)由(1)知,a n =n ,从而b n +1-b n =2n . b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1=1-2n1-2=2n -1.因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1)=-2n <0,所以b n ·b n +2<b 2n +1.。

滚动测试3 直接证明与间接证明(解析版)

滚动测试3 直接证明与间接证明(解析版)

滚动测试3直接证明与间接证明(解析版)一、选择题1.在不等边三角形中,a 为最大边,要想得到A ∠为钝角的结论,三边c b a ,,应满足什么条件( )A .222c b a +<B .222c b a += C.222c b a +> D .222c b a +≤【解析】 C 若A ∠为钝角,由余弦定理知02cos 222<-+=bc a c b A ,∴.0222<-+a c b .2.设数列{a n }为等差数列,且6,682=-=a a ,n S 是}{n a 的前n 项和,则( )A .54S S <B .54S S =C .56S S <D .56S S =【解析】 B 06682=+-=+a a ,05=∴a ,又公差0>d ,∴45S S =.3.在ABC ∆中,"0">•AC AB 是“ABC ∆为锐角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 B 由”0“>⋅AC AB ⇒A ∠为锐角,而角C B ,并不能判定,反之若ABC ∆为锐角三角形,一定有”0“>⋅AC AB .4.已知函数)2sin(Φ+=x y 的图象关于直线8π=x 对称,则Φ可能是( ) A.2π B .4π- C.4π D.π43【解析】 C 由题意知,1)4sin(±=+ϕπ,所以当4πϕ=时,12sin )44sin(==+πππ.5.已知c b a ,,是三条互不重合的直线,βα,是两个不重合的平面,给出四个命题: ①a ∥b ,b ∥α,则a ∥α;②α⊂b a ,,a ∥β,b ∥β,则α∥β;③a ⊥α,a ∥β,则βα⊥;④α⊥a ,b ∥α,则b a ⊥.其中正确命题的个数是( )A .1B .2 C.3 D .4【解析】 B ①因为a ∥b ,b ∥α,a ∥α或α⊂a ⇒,所以①不正确.②因为α⊂b a ,,a ∥β,b ∥β,当a 与b 相交时,才能α∥β,所以②不正确. ③a ∥β,过a 作一平面γ,设c =βγ ,则c ∥a ,又α⊥a ⇒α⊥c ⇒βα⊥,所以③正确.④α⊥a ,b ∥α⇒b a ⊥,所以④正确.综上知③,④正确.6.0,0>>b a 则下列不等式中不成立的是( )A .221≥++ab b a B.4)11)((≥++b a b a C.b a ab b a +≥+22 D.ab b a ab≥+2【解析】 D 特殊法,取4,1==b a ,则D 项不成立.7.有一个奇数列1,3,5,7,…,现进行如下分组:第1组含有一个数{1},第2组含有两个数{3,5};第3组含有三个数{7,9,11};…试观察每组内各数之和与其组的编号数n 的关系为( )A .等于2nB .等于3nC .等于4nD .等于)1(+n n【解析】 B 前三组数分别求和得1,8,27,即3333,2,1 ,所以猜想第n 组数的和为3n .8.用反证法证明命题:“R d c b a ∈,,,,1,1=+=+d c b a ,且1>+bd ac ,则d c b a ,,,中至少有一个负数”时的假设为 ( )A .d c b a ,,,中至少有一个正数B .d c b a ,,,全为正数C .d c b a ,,,全都大于等于0D .d c b a ,,,中至多有一个负数【解析】 C “至少有一个负数”的对立面是“一个负数也没有”,即“全都大于等于0”.9.在ABC ∆中, 1tan tan >⋅B A ,则ABC ∆是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】 A 因为1tan tan >⋅B A ,所以角A ,角B 只能都是锐角,所以0tan >A ,0tan >B ,0tan tan 1<⋅-B A ,所以0tan tan 1)tan(<⋅-=+B A B A .所以B A +是钝角,即角C 为锐角.10.平面内有四边形ABCD 和点O ,OD OB OC OA +=+,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形【解析】 D OD OB OC OA +=+,OC OD OB OA -=-∴,CD BA =∴,ABCD ∴为平行四边形.11.函数)(x f 是]1,1[-上的减函数,βα、是锐角三角形的两个内角,且βα≠,则下列不等式中正确的是( )A.)(cos )(sin βαf f >B.)(cos )(cos βαf f >C.)()βαsin (cos f f >D.)()(βαsin sin f f >【解析】 C 解析:因为βα、是锐角三角形的两个内角, 所以2πβα>+,所以022>->>βπαπ,所以ββπαsin )2cos(cos =-<.而)1,0(cos ∈α,)1,0(sin ∈β,)(x f 在[-1,1]]1,1[-上是减函数,故)()βαsin (cos f f >.12.设11log 111log 111log 111log 15432+++=P ,则( )A .10<<PB .21<<PC .32<<PD .43<<P【解析】 B 1205log 4log 3log 2log 11111111=+++=P ,2121log 120log 11log 1111111=<<=,即21<<P .二、填空题13.命题“R b a ∈,,若0|1||1|=-+-b a ,则1==b a ”用反证法证明时应假设为【解析】 1,1≠≠b a 或14.用反证法证明“一个三角形不能有两个直角”有三个步骤:①︒>∠+︒+︒=∠+∠+∠1809090C C B A ,这与三角形内角和为︒180矛盾,故假设错误;②所以一个三角形不能有两个直角;③假设ABC ∆中有两个直角,不妨设︒=∠90A ,︒=∠90B .以上步骤正确的顺序是 【解析】 ③①②15.有下列四个命题:①同一平面内,与两条相交直线分别垂直的两条直线必相交;②两个不相等的角不是直角;③平行四边形的对角线互相平分;④已知R y x ∈,,且2>+y x ,求证:y x 、中至少有一个大于1.其中适合用反证法证明的是【解析】 ①②④16.若,a lg b lg 是方程01422=+-x x 的两个实根,则2)(lg b a的值等于【解析】 2 : 21lg lg ,2lg lg =⋅=+b a b a ,∴2)(lg b a224lg lg 4)lg (lg )lg (lg 22=-=-+=-=b a b a b a17.在ABC ∆中,C B A ,,的对边分别为c b a ,,,︒=60B ,ac b =2,则ABC ∆的形状是【解析】 等边三角形 由条件知ac ac c a B ac c a b =︒-+=-+=60cos 2cos 222222,即0222=+-c ac a ,所以0)(2=-c a ,所以c a =.又因为︒=60B ,所以ABC ∆为等边三角形.18.已知等差数列}{n a ,n S 表示前n 项和,093>+a a ,09<S ,则321,,S S S , 中最小的 是【解析】 5S 由于}{n a 为等差数列,所以02693>=+a a a .092)(95919<=+=a a a S .19.观察下列式子:232112<+,353121122<++,441312117222<+++,…,则可以猜想:当2≥n 时,有【解析】 222131211n ++++ <n n 12-左边为n 项和:222131211n ++++ ,右边为分式,易知2≥n 时为n n 12-.20.若下列两个方程0)1(22=+-+a x a x ,0222=-+a ax x 中至少有一个方程有实数根,则实数a 的取值范围是【解析】 ),1[]2,(+∞---∞假设这两个方程都没有实数根,则⎩⎨⎧<-⨯-=∆<--=∆,0)2(4)2(,04)1(22221a a a a即⎩⎨⎧<+>-+,02,012322a a a a 即⎪⎩⎪⎨⎧<<->-<02,31,1a a a 或12-<<-∴a .故两个方程至少有一个有实数根,a 的取值范围是2-≤a 或1-≥a .。

13.4直接证明与间接证明

13.4直接证明与间接证明

4 直接证明与间接证明一、选择题(每小题7分,共35分)1.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( )A .a >bB .a <bC .a =bD .a ≤b2已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .2|FP 2|=|FP 1|+|FP 3|D .|FP 2|2=|FP 1|·|FP 3|3.已知f (1,1)=1,f (m ,n )∈N *(m ,n ∈N *),且对任意m ,n ∈N *都有:①f (m ,n +1)=f (m ,n )+2;②f (m +1,1)=2f (m ,1).给出以下三个结论:(1)f (1,5)=9;(2)f (5,1)=16;(3)f (5,6)=26.其中正确结论的个数为( )A .3B .2C .1D .04.设x 、y 、z >0,a =x +1y ,b =y +1z ,c =z +1x,则a 、b 、c 三数( ) A .至少有一个不大于2 B .都小于2C .至少有一个不小于2D .都大于25.定义一种运算“*”:对于自然数n 满足以下运算性质:(ⅰ)1*1=1,(ii )(n+1)*1=n*1+1则n*1等于 ( )A .nB .n +1C .n -1D .n 2二、填空题(每小题6分,共24分)6.如果a a +b b >a b +b a ,则a 、b 应满足的条件是_______________________________.7.设x ,y ,z 是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是________.(填写所有正确条件的代号) ①x 为直线,y ,z 为平面;②x ,y ,z 为平面;③x ,y 为直线,z 为平面;④x ,y 为平面,z 为直线;⑤x ,y ,z 为直线.8.下面有4个命题:①当x >0时,2x +12x 的最小值为2; ②若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x ,且其一个焦点与抛物线y 2=8x 的焦点重合,则双曲线的离心率为2;③将函数y =sin 2x 的图象向右平移π6个单位,可以得到函数y =sin ⎝⎛⎭⎫2x -π6的图象; ④在Rt △ABC 中,AC ⊥BC ,AC =a ,BC =b ,则△ABC 的外接圆半径r =a 2+b 22; 类比到空间,若三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为a 、b 、c ,则三棱锥S —ABC 的外接球的半径R =a 2+b 2+c 22. 其中错误..命题的序号为________(把你认为错误命题的序号都填上). 9.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是________.(填序号)三、解答题(共41分)10.(13分)设f (x )=3ax 2+2bx +c ,若a +b +c =0,f (0)>0,f (1)>0,求证:a >0且-2<b a<-1.11.(14分)已知a >0,求证:a 2+1a 2-2≥a +1a-2.12.(14分)已知a ,b ,c 是互不相等的实数.求证:由y =ax 2+2bx +c ,y =bx 2+2cx +a 和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.答案1.A2.C3.A4.C5.A6. a ≥0,b ≥0且a ≠b7. ①③④8. ①③9. ③10. 证明 f (0)>0,∴c >0,又∵f (1)>0,即3a +2b +c >0.①而a +b +c =0即b =-a -c 代入①式,∴3a -2a -2c +c >0,即a -c >0,∴a >c .∴a >c >0.又∵a +b =-c <0,∴a +b <0.∴1+b a <0,∴b a<-1.又c =-a -b , 代入①式得,3a +2b -a -b >0,∴2a +b >0,∴2+b a >0,∴b a >-2.故-2<b a<-1. 11. 证明 要证 a 2+1a 2-2≥a +1a -2, 只要证 a 2+1a 2+2≥a +1a+ 2. ∵a >0,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a +22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2,即a 2+1a2≥2, 而上述不等式显然成立,故原不等式成立.12. 证明 假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点(即任何一条抛物线与x 轴没有两个不同的交点),由y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b ,得Δ1=(2b )2-4ac ≤0,Δ2=(2c )2-4ab ≤0,Δ3=(2a )2-4bc ≤0.上述三个同向不等式相加得,4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0,∴2a 2+2b 2+2c 2-2ab -2bc -2ca ≤0,∴(a -b )2+(b -c )2+(c -a )2≤0,∴a =b =c ,这与题设a ,b ,c 互不相等矛盾,因此假设不成立,从而命题得证.。

直接证明与间接证明 知识点+例题+练习

直接证明与间接证明 知识点+例题+练习





1.分析法的特点:从未知看需知,逐步靠拢已知.
2.综合法的特点:从已知看可知,逐步推出未知.
3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易
寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从
条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常
常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.
4.利用反证法证明数学问题时,要假设结论错误,并用假设的命
题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是
错误的.
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2014·安阳模拟)若a<b<0,则下列不等式中成立的是________.
①1
a<
1
b;②a+
1
b>b+
1
a;③b+
1
a>a+
1
b;④
b
a<
b+1
a+1
.
2.用反证法证明命题:“已知a,b∈N,若ab可被5整除,则a,b中至少有一个能被5整除”时,应反设________成立.
3.(2014·上海模拟)“a=1
4”是“对任意正数x,均有x+
a
x≥1”的
________条件.教学效果分析。

12.3 直接证明与间接证明 练出高分(含答案解析)

12.3 直接证明与间接证明  练出高分(含答案解析)

§12.3 直接证明与间接证明A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( )A .ac 2<bc 2B .a 2>ab >b 2 C.1a <1bD.b a >ab答案 B解析 a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0,∴a 2>ab .① 又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.2. 设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( )A .a >bB .a <bC .a =bD .a ≤b答案 A解析 a =lg 2+lg 5=1,b =e x , 当x <0时,0<b <1,∴a >b .3. 分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C解析 由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐b 2+a (a +b )<3a 2⇐b 2+a 2+ab <3a 2 ⇐b 2+ab <2a 2⇐2a 2-ab -b 2>0⇐a 2-ab +a 2-b 2>0⇐a (a -b )+(a +b )(a -b )>0 ⇐a (a -b )-c (a -b )>0⇐(a -b )(a -c )>0,故选C.4. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数 答案 B解析 自然数a ,b ,c 中为偶数的情况为a ,b ,c 全为偶数;a ,b ,c 中有两个数为偶数;a ,b ,c 全为奇数;a ,b ,c 中恰有一个数为偶数,所以反设为a ,b ,c 中至少有两个偶数或都是奇数.二、填空题(每小题5分,共15分)5. 设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________.答案 m <n解析 取a =2,b =1,得m <n .再用分析法证明: a -b <a -b ⇐a <b +a -b⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立.6. 用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是_____. 答案 a ,b ,c ,d 全是负数解析 “至少有一个”的否定是“一个也没有”,故结论的否定是“a ,b ,c ,d 中没有一个非负数,即a ,b ,c ,d 全是负数”.7. 设x ,y ,z 是空间的不同直线或不同平面,且直线不在平面内,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是________(填写所有正确条件的代号).①x 为直线,y ,z 为平面;②x ,y ,z 为平面;③x ,y 为直线,z 为平面;④x ,y 为平面,z 为直线;⑤x ,y ,z 为直线. 答案 ①③④解析 根据线面关系定理判定. 三、解答题(共22分)8. (10分)已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证明12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1、x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). ∴cos x 1cos x 2>0,sin(x 1+x 2)>0, 1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1、x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式是显然成立的. 因此,12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.9. (12分)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明由已知得SA 2+AD 2=SD 2, ∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD . ∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面SBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.故不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若a ,b ∈R ,则下面四个式子中恒成立的是( )A .lg(1+a 2)>0B .a 2+b 2≥2(a -b -1)C .a 2+3ab >2b 2D.a b <a +1b +1答案 B解析 在B 中,∵a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0, ∴a 2+b 2≥2(a -b -1)恒成立.2. 设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2 答案 C解析 因为a +1b +b +1c +c +1a≤-6,所以三者不能都大于-2.3. 已知f (1,1)=1,f (m ,n )∈N *(m ,n ∈N *),且对任意m ,n ∈N *都有:①f (m ,n +1)=f (m ,n )+2;②f (m +1,1)=2f (m ,1).给出以下三个结论: (1)f (1,5)=9;(2)f (5,1)=16;(3)f (5,6)=26. 其中正确结论的个数为( )A .3B .2C .1D .0答案 A解析 (1)由f (1,1)=1和f (m ,n +1)=f (m ,n )+2 得f (1,2)=f (1,1+1)=f (1,1)+2=1+2=3, f (1,3)=f (1,2)+2=5,f (1,4)=f (1,3)+2=7, f (1,5)=f (1,4)+2=9;(2)由f (1,1)=1和f (m +1,1)=2f (m,1)得f (2,1)=f (1+1,1)=2f (1,1)=2,f (3,1)=2f (2,1)=4, f (4,1)=2f (3,1)=8,f (5,1)=2f (4,1)=16;(3)由f (m ,n +1)=f (m ,n )+2得f (5,6)=f (5,5)+2, 而f (5,5)=f (5,4)+2,f (5,4)=f (5,3)+2,f (5,3)=f (5,2)+2,f (5,2)=f (5,1)+2=16+2=18, 则f (5,6)=26.二、填空题(每小题5分,共15分)4. 关于x 的方程ax +a -1=0在区间(0,1)内有实根,则实数a 的取值范围是__________.答案 ⎝⎛⎭⎫12,1解析 (1)当a =0时,方程无解.(2)当a ≠0时,令f (x )=ax +a -1,则f (x )在区间(0,1)上是单调函数.依题意,得f (0)f (1)<0, ∴(a -1)(2a -1)<0,∴12<a <1.5. 若a ,b ,c 为Rt △ABC 的三边,其中c 为斜边,那么当n >2,n ∈N *时,a n +b n 与c n 的大小关系为____________. 答案 a n +b n <c n解析 取a =b =1,c =2,易知当n >2时,a n +b n =2,c n =(2)n =2·(2)n -2>2,由题意,a n +b n 与c n 的大小关系应该是确定的,故猜想a n +b n <c n .事实上,注意a <c ,b <c ,n >2,所以有a n +b n =a 2a n -2+b 2b n -2<a 2c n -2+b 2c n -2=(a 2+b 2)c n -2=c n ,故a n +b n <c n .6. 凸函数的性质定理为如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上 是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A 、B 、C ∈(0,π),∴f (A )+f (B )+f (C )3≤f⎝⎛⎭⎫A +B +C 3=f ⎝⎛⎭⎫π3,即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.三、解答题7. (13分)已知函数f (x )=ln x -a (x -1)x +1.(1)若函数f (x )在(0,+∞)上为单调递增函数,求a 的取值范围; (2)设m ,n ∈R +,且m >n ,求证:m -n ln m -ln n <m +n 2.(1)解 f ′(x )=1x -a (x +1)-a (x -1)(x +1)2=(x +1)2-2ax x (x +1)2=x 2+(2-2a )x +1x (x +1)2.因为f (x )在(0,+∞)上为单调增函数, 所以f ′(x )≥0在(0,+∞)上恒成立. 即x 2+(2-2a )x +1≥0在(0,+∞)上恒成立. 当x ∈(0,+∞)时,由x 2+(2-2a )x +1≥0, 得2a -2≤x +1x.设g (x )=x +1x ,x ∈(0,+∞).g (x )=x +1x≥2x ·1x=2, 所以当且仅当x =1x ,即x =1时取等号,即g (x )的最小值为2. 则2a -2≤2,即a ≤2. 故a 的取值范围是(-∞,2].(2)证明 要证m -n ln m -ln n <m +n2,只需证m n -1ln m n <m n +12,即证ln m n >2⎝⎛⎭⎫m n -1m n +1,则只需证ln m n -2⎝⎛⎭⎫m n-1mn +1>0.设h (x )=ln x -2(x -1)x +1.由(1),知h (x )在(1,+∞)上是单调递增函数,又mn>1,所以h ⎝⎛⎭⎫m n >h (1)=0.即ln m n -2⎝⎛⎭⎫m n -1m n +1>0成立. 所以m -n ln m -ln n <m +n2.。

数学选修2-2直接证明与间接证明练习题含答案

数学选修2-2直接证明与间接证明练习题含答案

数学选修2-2直接证明与间接证明练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 求证:√2+√3>√5()A.综合法B.分析法C.综合法、分析法配合使用D.间接证法2. 要证√2−√3<√6−√7成立,只需证( )A.(√2+√7)2<(√3+√6)2B.(√2−√6)2<(√3−√7)2C.(√2−√3)2<(√6−√7)2D.(√2−√3−√6)2<(−√7)23. “执果索因”是下列哪种证明方法的特点()A.数学归纳法B.反证法C.分析法D.综合法4. 如图是解决数学问题的思维过程的流程图:图中①、②两条流程线与“推理与证明”中的思维方法相匹配是()A.①-分析法,②-综合法B.①-综合法,②-分析法C.①-综合法,②-反证法D.①-分析法,②-反证法5. 以下是解决数学问题的思维过程的流程图:在此流程图中,①②两条流程线与“推理与证明”中的思维方法匹配正确的是()A.①—综合法,②—分析法B.①—分析法,②—综合法C.①—综合法,②—反证法D.①—分析法,②—反证法6. 命题“对于任意角θ,cos4θ−sin4θ=cos2θ”的证明:“cos4θ−sin4θ=(cos2θ−A.分析法B.综合法C.综合法、分析法结合使用D.间接证法7. 已知,,,则下列三个数,,()A.都大于B.至少有一个不大于C.都小于D.至少有一个不小于8. 已知a,b,c>0,则ba ,cb,ac的值()A.都大于1B.都小于1C.至多有一个不小于1D.至少有一个不小于19. 用反证法证明命题:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,应假设()A.a,b,c中至多一个是偶数B.a,b,c中至少一个是奇数C.a,b,c中全是奇数D.a,b,c中恰有一个偶数10. 某同学证明√5+√13<√7+√11的过程如下:∵√13−√11>√7−√5>0,∴√13+√11<√7+√5,∴√13−√112<√7−√52,∴√5+√13<√7+√11,则该学生采用的证明方法是()A.综合法B.比较法C.反证法D.分析法11. 若P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,下列框图表示的证明方法是________.12. 分析法是从要证明的结论出发,逐步寻求使结论成立的________条件.13. 下列对分析法表述正确的是________;(填上你认为正确的全部序号)①由因导果的推法;②执果索因的推法;③因果分别互推的两头凑法;④逆命题的证明方法.14. 用分析法证明:若a,b,m都是正数,且a<b,则a+mb+m >ab.完成下列证明过程:∵b+m>0,b>0,∴要证原不等式成立,只需证明b(a+m)>a(b+m),即只需证明________.∵m>0,∴只需证明b>a,由已知显然成立,∴原不等式成立.15. 下列表述:①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证法;⑤反证法是逆推法.正确的语句有是________(填序号).16. 下列表述:①综合法是执因导果法;②分析法是间接证法;③分析法是执果索因法;④反证法是直接证法.正确的语句是________(填序号).17. 用反证法证明命题“如果${018. 已知x1>0,x1≠1且x n+1=x n(x n2+3)3x n2+1(n=1,2,…),试证:“数列{x n}对任意的正整数n,都满足x n>x n+1,”当此题用反证法否定结论时应为________.19. 用反证法证明命题:“x2−(a+b)x+ab≠0,则x≠a且x≠b”,首先要假设________.20. (选修4−1几何证明选讲)如图,AD // BC,∠A=90∘,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F求证:AB=FC.21. (1)若a≥1,用分析法证明√a+1+√a−1<2√a; 21.(2)已知a,b都是正实数,且ab=2,求证:(2a+1)(b+1)≥9.22. 试比较下列各式的大小(不写过程)(1)1−√2与√2−√3(2)√2−√3与√3−√4通过上式请你推测出√n−1−√n与√n−√n+1(n≥2且n∈N)的大小,并用分析法加以证明.23. 用综合法或分析法证明:如果3sinβ=sin(2α+β),求证tan(α+β)=2tanα.24. 下列命题是真命题,还是假命题,用分析法证明你的结论. 命题:若a>b>c,且a+b+c=0,则√b2−aca<√3.25. 记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0, x0)为坐标的点为函数y=f(x)图象上的不动点.(1)若函数f(x)=2x−1x+a的图象上有且仅有两个不动点,试求a的取值范围.(2)已知二次函数f(x)=ax2+bx+c(a,b,c∈R且a>0),满足{f(0)≥1f(1+sin a)≤1(a∈R),且y=f(x)的图象上有两个不动点(x1, x1),(x2, x2),记函数y=f(x)的对称轴为x=x0,求证:如果x1<2<x2<4,那么x0>−1.26. 已知“一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大”.(1)设一个圆和一个正方形的周长相等,都为l,请你用l分别表示出圆和正方形的面积,并用分析法证明该命题;27. 在正方体ABCD−A1B1C1D1中,A1D的中点为E,BD的中点为F,证明:CD1 // EF.28. 用分析法证明√3+√5>√2+√4.29. 用分析法证明:已知a>0,b>0,求证:a+b2≥2aba+b.30. 设直线l1:y=k1x+1,l2:y=k2x−1,其中实数k1,k2满足k1k2+2=0.证明:l1与l2相交.31. 用分析法证明:√6+√7>√3+√10.32. 请用综合法或分析法、反证法证明:(1)如果a>0,b>0,则lg(a3+b3)≥lg(a+b)+lg ab;(2)若a,b,c为正数且abc=1,求证:a2+b2+c2≥1a +1b+1c.33. 用反证法证明:√2不是有理数.34. 设a3+b3=2,求证a+b≤2.35. 已知x,y>0,且x+y>2.求证:1+xy ,1+yx中至少有一个小于2.36. 如图,△ABC中,D,E分别是AC,AB上的点,且BE=CD,BD,CE相交于点P,AP平分∠BAC,求证:AB=AC.37. 记集合T={0, 1, 2, 3, 4, 5, 6, 7},a i(i=1, 2, 3, 4)是T中可重复选取的元素.(1)若将集合M={a1×83+a2×82+a3×8+a4|a i∈T, i=1, 2, 3, 4}中所有元素按从小到大的顺序排列,求第2008个数所对应的a i(i=1, 2, 3, 4)的值;(2)若将集合N={a18+a28+a38+a48|a i∈T, i=1, 2, 3, 4}中所有元素按从大到小的顺序排列,求第2008个数所对应的a i(i=1, 2, 3, 4)的值.38. 设0<x1<x2<π2.(1)证明:x1>sin x1(2)x1sin x2cos x1>x2sin x1cos x2.39. 已知△ABC中,B=C=2π5,记cos A=x,cos B=cos C=y.(1)求证:1+y=2x2;(2)若△ABC的面积等于2sinπ5,求AC边上的中线BD的长.参考答案与试题解析数学选修2-2直接证明与间接证明练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】综合法与分析法【解析】直接利用分析法证明不等式,推出结果后,判断选项.【解答】证明:因为√2+√3和√5都是正数,所以为了证明√2+√3>√5,只需证明(√2+√3)2>(√5)2,展开得5+2√6>5,即2√6>0,显然成立,所以不等式√2+√3>√5.上述证明过程应用了分析法.故选B.2.【答案】A【考点】综合法与分析法【解析】对于不等式而言,若想两边同时平方使得大小号不变,必须保证两边均为正数.【解答】解:要证√2−√3<√6−√7,只需证√2+√7<√3+√6,只需证(√2+√7)2<(√3+√6)2.故选A.3.【答案】C【考点】综合法与分析法【解析】针对证明方法的定义和特点以及分类,逐个选项验证即可.【解答】解:综合法是执因导果,从前到后,分析法是执果索因,从后往前;由反证法的定义可得,反证法是假设命题的否定成立,由此推出矛盾,从而得到假设不成立,即命题成立;数学归纳法的基本形式:设P(n)是关于自然数n的命题,:若1∘的自然数n都成立.故选C.4.【答案】B【考点】分析法的思考过程、特点及应用【解析】根据综合法和分析法的定义,可知由已知到可知进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,进而得到答案.【解答】解:根据已知可得该结构图为证明方法的结构图:∵由已知到可知,进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,故①②两条流程线与“推理与证明”中的思维方法为:①-综合法,②-分析法.故选B.5.【答案】A【考点】分析法的思考过程、特点及应用【解析】根据综合法和分析法的定义,可知由已知到可知进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,进而得到答案.【解答】解:根据已知可得该结构图为证明方法的结构图:∵由已知到可知,进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,故①②两条流程线与“推理与证明”中的思维方法为:①—综合法,②—分析法.故选A.6.【答案】B【考点】分析法的思考过程、特点及应用【解析】此题暂无解析【解答】解:在证明过程中使用了大量的公式和结论,有平方差公式,同角的关系式,所以在证明过程中,使用了综合法的证明方法.故选B.7.【答案】D【考点】【解析】假设3个数a+4b b+9cc+16a都小于6,则a+4b+b+9c+c+16a≤18利用基本不等式可得,a+4b +b+9c+c+16a=(a+16a)+(b+4b)+(c+9c)≥18,这与假设矛盾,故假设不成立,即3个数a+4b b+9cc+16a至少有一个不小于6,故选D.【解答】此题暂无解答8.【答案】D【考点】反证法进行简单的合情推理合情推理的作用【解析】此题暂无解析【解答】解:令a=b=c,则ba =cb=ac=1,排除A,B.令a=1,b=2,c=4,则ba =cb=2,ac=14,排除C.对于D,假设ba <1,cb<1,ac<1,则b<a,c<b,a<c,相加得a+b+c<a+b+c,矛盾.故选D.9.【答案】C【考点】反证法【解析】用反证法证明数学命题时,应先假设命题的否定成立,求得命题:“a,b,c中至少有一个是偶数”的否定,即可得到结论.【解答】解:由于用反证法证明数学命题时,应先把要证的结论进行否定,得到要证的结论的反面.而命题:“a,b,c中至少有一个是偶数”的否定为:“a,b,c中全是奇数”.故选C.10.A【考点】综合法与分析法【解析】从推理过程(是“执因索果”还是“执果索因”)即可得到答案.【解答】解:从推理形式来看,从√13−√11>√7−√5>0入手,推出√13+√11<√7+√5,继而得到√13−√112<√7−√52,最后得到√5+√13<√7+√11,是“执因索果”,是综合法证明,故选:A.二、填空题(本题共计 9 小题,每题 3 分,共计27分)11.【答案】综合法【考点】综合法与分析法【解析】根据证题思路,是由因导果,是综合法的思路,故可得结论.【解答】解:∵P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,∴证明方法是由因导果,是综合法的思路故答案为:综合法12.【答案】充分【考点】综合法与分析法【解析】利用分析法的定义和分析法证题的方法,逐步寻求使结论成立的充分条件,只要使结论成立的充分条件已具备,此结论就一定成立.【解答】解:分析法是从要证明的结论出发,逐步寻求使结论成立的充分条件,只要使结论成立的充分条件已具备,此结论就一定成立.故答案为充分.13.【答案】②【考点】综合法与分析法【解析】根据分析法的定义可得,分析法是执果索因法.解:根据分析法的定义可得,分析法是执果索因法,是直接证法.故答案为:②.14.【答案】bm>am【考点】分析法的思考过程、特点及应用【解析】本题考查分析法证明不等式的方法,属于基础题,根据分析法证明不等式的方法,由b(a+m)>a(b+m)可得bm>am,即可求解.【解答】解:由b(a+m)>a(b+m)可得ab+bm>ab+am,即证bm>am.故答案为:bm>am.15.【答案】①②③【考点】综合法与分析法【解析】根据综合法的定义可得①②正确;根据分析法的定义可得③正确,④不正确;由反证法的定义可得,⑤不正确.【解答】解:根据综合法的定义可得,综合法是执因导果法,是顺推法,故①②正确.根据分析法的定义可得,分析法是执果索因法,是直接证法,故③正确,④不正确.由反证法的定义可得,反证法是假设命题的否定成立,由此推出矛盾,从而得到假设不成立,即命题成立,故不是逆推法,故⑤不正确.故答案为:①②③.16.【答案】①③【考点】命题的真假判断与应用综合法与分析法反证法与放缩法【解析】针对证明方法的定义和特点以及分类,逐个选项验证即可.【解答】解:综合法是执因导果,从前到后,分析法是执果索因,从后往前,综合法和分析法都是直接证法,反证法是一种间接证法,故可判断①③正确,②④错误.故答案为:①③17.【答案】√x≥√y反证法【解析】此题暂无解析【解答】解:由于√x<√y的否定为√x≥√y,根据用反证法证明命题的方法,应先假设要证的结论的否定成立,故应假设:√x≥√y,故答案为:√x≥√y.18.【答案】存在正整数n,使x n≤x n+1【考点】反证法【解析】此题暂无解析【解答】解析根据全称命题的否定,是特称命题,即“数列{x n}对任意的正整数n,都满足x n>x n+1”的否定为“存在正整数m,使x n≤x n+1”.19.【答案】x=a或x=b【考点】反证法【解析】根据用反证法证明数学命题的方法,应先假设要证命题的否定成立,求得要证命题的否定,可得答案.【解答】解:根据用反证法证明数学命题的方法,应先假设要证命题的否定成立,而要证命题的否定为“x=a或x=b”,故答案为:x=a或x=b.三、解答题(本题共计 20 小题,每题 10 分,共计200分)20.【答案】证明:∵以点B为圆心、BC长为半径画弧,交AD边于点E,∴BC=BE,∵四边形ABCD为矩形,∴∠A=90∘,AE // BC,∴∠AEB=∠FBC,而CF丄BE,∴∠BFC=90∘,在Rt△ABE和Rt△FCB中,BE=BC,∠AEB=∠FBC,∴Rt△ABE≅Rt△FCB,∴AB=FC.【考点】综合法与分析法由题意得BC=BE,再根据矩形的性质得∠A=90∘,AE // BC,则∠AEB=∠FBC,而CF丄BE,则∠BFC=90∘,根据直角三角形全等的判定易得到Rt△ABE≅Rt△CFB,利用三角形全等的性质即可得到AB=FC.【解答】证明:∵以点B为圆心、BC长为半径画弧,交AD边于点E,∴BC=BE,∵四边形ABCD为矩形,∴∠A=90∘,AE // BC,∴∠AEB=∠FBC,而CF丄BE,∴∠BFC=90∘,在Rt△ABE和Rt△FCB中,BE=BC,∠AEB=∠FBC,∴Rt△ABE≅Rt△FCB,∴AB=FC.21.【答案】证明:(1)因a≥1,所以,要证√a+1+√a−1<2√a,只需证明a+1+2√a2−1+a−1<4a,即证√a2−1<a,只需证明a2−1<a2,即−1<0,此不等式显然成立,于是√a+1+√a−1<2√a.(2)因a,b都是正实数,所以,2a+b≥2√2ab=4,当且仅当b=2a,即a=1,b=2时等号成立,∴(2a+1)(b+1)=2ab+(2a+b)+1≥4+4+1=9.【考点】综合法与分析法【解析】(1)只需证明a+1+2√a2−1+a−1<4a,即证√a2−1<a,只需证明a2−1< a2.(2)利用基本不等式证明2a+b≥2√2ab=4,化简不等式的左边,把此结论代入,可证得不等式成立.【解答】证明:(1)因a≥1,所以,要证√a+1+√a−1<2√a,只需证明a+1+2√a2−1+a−1<4a,即证√a2−1<a,只需证明a2−1<a2,即−1<0,此不等式显然成立,于是√a+1+√a−1<2√a.(2)因a,b都是正实数,所以,2a+b≥2√2ab=4,当且仅当b=2a,即a=1,b=2时等号成立,∴(2a+1)(b+1)=2ab+(2a+b)+1≥4+4+1=9.22.【答案】解:(1)1−√2<√2−√3;(2)√2−√3<√3−√4猜想:√n−1−√n<√n−√n+1(n≥2且n∈N)证明:要证:√n−1−√n<√n−√n+1(n≥2且n∈N)即证:(√n−1−√n)2<(√n−√n+1)2整理得:√n2+n>√n2−n+1平方整理得:2n−1>2√n2−n平方并整理得:1>0而此不等式一定成立,故猜想正确【考点】综合法与分析法不等式比较两数大小【解析】猜想:√n−1−√n<√n−√n+1(n≥2且n∈N),再用分析法证明即可.【解答】解:(1)1−√2<√2−√3;(2)√2−√3<√3−√4猜想:√n−1−√n<√n−√n+1(n≥2且n∈N)证明:要证:√n−1−√n<√n−√n+1(n≥2且n∈N)即证:(√n−1−√n)2<(√n−√n+1)2整理得:√n2+n>√n2−n+1平方整理得:2n−1>2√n2−n平方并整理得:1>0而此不等式一定成立,故猜想正确23.【答案】证明:将条件化为:3sin[(α+β)−α]=sin[(α+β)+α],展开得:3sin(α+β)cosα−3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα,即:2sin(α+β)cosα=4cos(α+β)sinα,由cos(α+β)cosα≠0,两边同除以cos(α+β)cosα,可得tan(α+β)=2tanα.【考点】分析法的思考过程、特点及应用两角和与差的三角函数【解析】把已知等式左边的角β变为(α+β)−α,右边的角2α+β变为(α+β)+α,然后左右两边分别利用两角和与差的正弦函数公式化简,移项合并后,在等式两边同时除以cosαcos(α+β),利用同角三角函数间的基本关系变形可得证.【解答】证明:将条件化为:3sin[(α+β)−α]=sin[(α+β)+α],展开得:3sin(α+β)cosα−3cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα,即:2sin(α+β)cosα=4cos(α+β)sinα,由cos(α+β)cosα≠0,两边同除以cos(α+β)cosα,可得tan(α+β)=2tanα.24.【答案】解:此命题是真命题.∵a>b>c,且a+b+c=0,∴a>0,c<0.<√3,只需证√b2−ac<√3a,要证√b2−aca即证b2−ac<3a2,也就是证(a+c)2−ac<3a2,即证(a−c)(2a+c)>0,∵a−c>0,2a+c=a+c+a=−b+a>0,∴(a−c)(2a+c)>0成立,故原不等式成立,即命题为真.【考点】不等式的基本性质分析法的思考过程、特点及应用【解析】采用分析法来证,先把不等式转化为:√b2−ac<√3a,两边平方b2−ac<3a3,整理后得到一恒成立的不等式即可.【解答】解:此命题是真命题.∵a>b>c,且a+b+c=0,∴a>0,c<0.<√3,只需证√b2−ac<√3a,要证√b2−aca即证b2−ac<3a2,也就是证(a+c)2−ac<3a2,即证(a−c)(2a+c)>0,∵a−c>0,2a+c=a+c+a=−b+a>0,∴(a−c)(2a+c)>0成立,故原不等式成立,即命题为真.25.【答案】=x0,解:(1)若点(x0, x0)是不动点,则2x0−1x0+a即x02+(a−2)x0+1=0,由题意函数f(x)=2x−1的图象上有且仅有两个不动点,∴a=x+a4.(2)设g(x)=f(x)−x=ax2+(b−1)x+1,∵a>0,∴由条件x1<2<x2<4,得g(2)<0,g(4)>0.即{4a+2b−1<0 16a+4b−3>0由可行域可得ba <2,∴x0=−b2a>−1.【考点】综合法与分析法【解析】(1)根据不动点的定义,得出方程x02+(a−2)x0+1=0,利用函数f(x)=2x−1x+a的图象上有且仅有两个不动点,求a的取值范围;(2)由x1<2<x2<4转化为g(x)=f(x)−x=0有两根:一根在2与4之间,另一根在2的左边,利用一元二次方程根的分布可证.【解答】解:(1)若点(x0, x0)是不动点,则2x0−1x0+a=x0,即x02+(a−2)x0+1=0,由题意函数f(x)=2x−1x+a的图象上有且仅有两个不动点,∴a=4.(2)设g(x)=f(x)−x=ax2+(b−1)x+1,∵a>0,∴由条件x1<2<x2<4,得g(2)<0,g(4)>0.即{4a+2b−1<0 16a+4b−3>0由可行域可得ba <2,∴x0=−b2a>−1.26.【答案】解:(1)依题意,圆的面积为π⋅(l2π)2,正方形的面积为(l4)2.因此本题只需证明π⋅(l2π)2>(l4)2.要证明上式,只需证明πl 24π2>l216,两边同乘以正数4l2,得1π>14.因此,只需证明4>π.因为4>π恒成立,所以π⋅(l2π)2>(l4)2.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积大.(2)一个球与一个正方体的表面积相等时,球的体积比正方体的体积大.【考点】分析法的思考过程、特点及应用类比推理【解析】(1)依题意,圆的面积为π⋅(l2π)2,正方形的面积为(l4)2,根据分析法的证明步骤可得结论;(2)周长类比表面积,面积类比体积,即可得出结论.【解答】解:(1)依题意,圆的面积为π⋅(l2π)2,正方形的面积为(l4)2.因此本题只需证明π⋅(l2π)2>(l4)2.要证明上式,只需证明πl 24π2>l216,两边同乘以正数4l2,得1π>14.因此,只需证明4>π.因为4>π恒成立,所以π⋅(l2π)2>(l4)2.这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积大.(2)一个球与一个正方体的表面积相等时,球的体积比正方体的体积大.27.【答案】证明:连接A1B,则∵正方体ABCD−A1B1C1D1中,A1D的中点为E,BD的中点为F,∴EF // A1B,∵A1D1 // BC,A1D1=BC,∴A1D1CB是平行四边形,∴CD1 // A1B,∴CD1 // EF.【考点】分析法的思考过程、特点及应用【解析】连接A1B,利用平行公理,即可证明.【解答】证明:连接A1B,则∵正方体ABCD−A1B1C1D1中,A1D的中点为E,BD的中点为F,∴EF // A1B,∵A1D1 // BC,A1D1=BC,∴A1D1CB是平行四边形,∴CD1 // A1B,∴CD1 // EF.28.【答案】证明:要证明√3+√5>√2+√4,只要证明:√3>√2,√5>√4,结论显然成立,∴√3+√5>√2+√4.【考点】分析法的思考过程、特点及应用【解析】寻找使不等式成立的充分条件,要是不等式成立,只要√3>√2,√5>√4.【解答】证明:要证明√3+√5>√2+√4,只要证明:√3>√2,√5>√4,结论显然成立,∴√3+√5>√2+√4.29.【答案】证明:因为a>0,b>0,要证a+b2≥2aba+b,只要证,(a+b)2≥4ab,只要证(a+b)2−4ab≥0,即证a2−2ab+b2≥0,而a2−2ab+b2=(a−b)2≥0恒成立,故a+b2≥2aba+b成立.【考点】不等式的证明分析法的思考过程、特点及应用【解析】利用分析法(执果索因),要证a+b2≥2aba+b,只需证明(a−b)2≥0即可,该式显然成立.【解答】证明:因为a>0,b>0,要证a+b2≥2aba+b,只要证,(a+b)2≥4ab,只要证(a+b)2−4ab≥0,即证a2−2ab+b2≥0,而a2−2ab+b2=(a−b)2≥0恒成立,故a+b2≥2aba+b成立.30.【答案】证明:假设l1与l2不相交,则l1与l2平行或重合,有k1=k2,代入k1k2+2=0,得k12+2=0.这与k1为实数的事实相矛盾,从而k1≠k2,即l1与l2相交.【考点】反证法【解析】此题暂无解析【解答】方法点拔:采用反证法.31.【答案】证明:要证√6+√7>√3+√10,只要证6+7+2√42>3+10+2√30,只要证2√42>2√30,即证42>30.而42>30显然成立,故原不等式成立.【考点】综合法与分析法【解析】分析使不等式√6+√7>√3+√10成立的充分条件,一直分析到使不等式成立的充分条件显然具备,从而不等式得证.【解答】证明:要证√6+√7>√3+√10,只要证6+7+2√42>3+10+2√30,只要证2√42>2√30,即证42>30.而42>30显然成立,故原不等式成立.32.【答案】证明:(1)(综合法)如果a>0,b>0,则a3+b3−(a+b)ab=a3−a2b+b3−ab2=a2(a−b)−b2(a−b)=(a2−b2)(a−b)=(a+b)(a−b)(a−b)=(a+b)(a−b)2≥0,当且仅且a=b时取等号,故a3+b3≥(a+b)ab,即lg(a3+b3)≥lg(a+b)+lg ab.(2)(分析法)要证a2+b2+c2≥1a +1b+1c,只要证a 2+b2+c2abc≥1a+1b+1c,即证a2+b2+c2≥bc+ac+ab,即证2a2+2b2+2c2−2bc−2ac−2ab≥0,即证a2−2ab+b2+b2−2bc+c2+a2−2ac+c2≥0,即证(a−b)2+(b−c)2+(a−c)2≥0,显然成立,且a=b=c时取等号,以上均可逆,则原不等式成立.【考点】不等式的证明综合法的思考过程、特点及应用分析法的思考过程、特点及应用对数的运算性质【解析】【解答】证明:(1)(综合法)如果a>0,b>0,则a3+b3−(a+b)ab=a3−a2b+b3−ab2=a2(a−b)−b2(a−b)=(a2−b2)(a−b)=(a+b)(a−b)(a−b)=(a+b)(a−b)2≥0,当且仅且a=b时取等号,故a3+b3≥(a+b)ab,即lg(a3+b3)≥lg(a+b)+lg ab.(2)(分析法)要证a2+b2+c2≥1a +1b+1c,只要证a 2+b2+c2abc≥1a+1b+1c,即证a2+b2+c2≥bc+ac+ab,即证2a2+2b2+2c2−2bc−2ac−2ab≥0,即证a2−2ab+b2+b2−2bc+c2+a2−2ac+c2≥0,即证(a−b)2+(b−c)2+(a−c)2≥0,显然成立,且a=b=c时取等号,以上均可逆,则原不等式成立.33.【答案】证明:假设√2为有理数,那么存在两个互质的正整数p,q,使得:√2=pq,于是p=√2q,两边平方得p2=2q2由2q2是偶数,可得p2是偶数.而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,s是正整数,代入上式,得:4s2=2q2,即q2=2s2.所以q也是偶数,这样p,q都是偶数,不互质,这与假设p,q互质矛盾.因此√2不是有理数.【考点】反证法【解析】假设√2为有理数,通过有理数的性质,推出矛盾的结论,即可得到结果.【解答】证明:假设√2为有理数,那么存在两个互质的正整数p,q,使得:√2=pq,于是p=√2q,两边平方得p2=2q2由2q2是偶数,可得p2是偶数.而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,s是正整数,代入上式,得:4s2=2q2,即q2=2s2.所以q也是偶数,这样p,q都是偶数,不互质,这与假设p,q互质矛盾.因此√2不是有理数.34.【答案】证明:假设a+b>2,则有a>2−b,从而a3>8−12b+6b2−b3,a3+b3>6b2−12b+8=6(b−1)2+2.因为6(b−1)2+2≥2,所以a3+b3>2,这与题设条件a3+b3=2矛盾,所以,原不等式a+b≤2成立.评析:利用反证法证明不等式的第二步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况.【考点】反证法【解析】此题暂无解析【解答】此题暂无解答35.【答案】证明:假设1+xy ,1+yx都不小于2,即1+xy≥2且1+yx≥2.因为x,y>0,所以1+x≥2y且1+y≥2x.把这两个不等式相加得2+x+y≥2(x+y),化简得x+y≤2,这与x+y>2矛盾.因此1+xy ,1+yx都不小于2是不可能的,即原命题成立.【考点】反证法【解析】此题暂无解析【解答】此题暂无解答36.【答案】证明:作DG⊥BC于G,作EH⊥BC于H,作PM⊥AC于M,作PN⊥AB于N,∵AP平分∠BAC,∴PM=PN,∵CD=BE,∴△CPD与△BPE的面积相等,∴△BCD与△CBE的面积相等,∴DG=EH,又∵CD=BE,∴△CGD≅△BHE,∴∠ABC=∠ACB,∴AB=AC.【考点】综合法与分析法【解析】作DG⊥BC于G,作EH⊥BC于H,作PM⊥AC于M,作PN⊥AB于N,先根据三角形面积相等求出DG=EH,利用全等三角形的判定定理即可得到△CGD≅△BHE,于是得到∠ABC =∠ACB ,利用等角对等边即可得到AB =AC . 【解答】证明:作DG ⊥BC 于G ,作EH ⊥BC 于H ,作PM ⊥AC 于M ,作PN ⊥AB 于N ,∵ AP 平分∠BAC , ∴ PM =PN , ∵ CD =BE ,∴ △CPD 与△BPE 的面积相等, ∴ △BCD 与△CBE 的面积相等, ∴ DG =EH , 又∵ CD =BE , ∴ △CGD ≅△BHE , ∴ ∠ABC =∠ACB , ∴ AB =AC . 37. 【答案】解:(1)记a 1×83+a 2×82+a 3×8+a 4=a 1a 2a 3a 4¯, 它表示一个8进制数;M 中最小值为0¯,第2008个数在十进制数中为2007, 将2007化为8进制数即为3727¯, 所以a 1=3,a 2=7,a 3=2,a 4=7.(2)因为a 18+a 28+a 38+a 48=18(a 1×83+a 2×82+a 3×8+a 4),括号内表示的8进制数,其最大值为7777¯; ∵ 7777¯=4095,从大到小排列,第2008个数为 4095−2008+1=2088因为2008=4050¯,所以a 1=4,a 2=0,a 3=5,a 4=0【考点】分析法的思考过程、特点及应用 【解析】(1)要将集合M ={a 1×83+a 2×82+a 3×8+a 4|a i ∈T, i =1, 2, 3, 4}中所有元素按从小到大的顺序排列,求第2008个数所对应的a i ,首先要搞清楚,M 集合中元素的特征,关键是要分析求第2008个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案. (2)要将集合N ={a 18+a 282+a 383+a 484|a i ∈T, i =1, 2, 3, 4}中所有元素按从大到小的顺序排列,求第2008个数所对应的a i ,首先要搞清楚,N 集合中元素的特征,同样要分析求第2008个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案. 【解答】解:(1)记a 1×83+a 2×82+a 3×8+a 4=a 1a 2a 3a 4¯, 它表示一个8进制数;M 中最小值为0¯,第2008个数在十进制数中为2007, 将2007化为8进制数即为3727¯, 所以a 1=3,a 2=7,a 3=2,a 4=7.(2)因为a 18+a 282+a 383+a 484=184(a 1×83+a 2×82+a 3×8+a 4),括号内表示的8进制数,其最大值为7777¯; ∵ 7777¯=4095,从大到小排列,第2008个数为 4095−2008+1=2088因为2008=4050¯,所以a 1=4,a 2=0,a 3=5,a 4=0 38. 【答案】证明:(1)令f(x)=x −sin x(0<x <π2),∴ f′(x)=1−cos x ≥0,∴ f(x)=x −sin x(0<x <π2)为增函数, ∵ 0<x 1<π2,∴ f(x 1)>f(0),即x 1−sin x 1>0, ∴ x 1>sin x 1;(2)令g(x)=x cot x(0<x <π2), 则g′(x)=cot x −xcsc 2x =sin x cos x−x sin 2x <0,∴ g(x)=x cot x(0<x <π2)为减函数, ∵ 0<x 1<x 2<π2,则x 1cos x 1sin x 1>x 2cos x2sin x 2,即x 1sin x 2cos x 1>x 2sin x 1cos x 2.【考点】综合法与分析法【解析】(1)构造函数f(x)=x−sin x(0<x<π2),利用导数证明其为增函数,则结论可证;(2)构造函数g(x)=x cot x(0<x<π2),利用导数证明其为增函数,则结论可证.【解答】证明:(1)令f(x)=x−sin x(0<x<π2),∴f′(x)=1−cos x≥0,∴f(x)=x−sin x(0<x<π2)为增函数,∵0<x1<π2,∴f(x1)>f(0),即x1−sin x1>0,∴x1>sin x1;(2)令g(x)=x cot x(0<x<π2),则g′(x)=cot x−xcsc2x=sin x cos x−xsin2x<0,∴g(x)=x cot x(0<x<π2)为减函数,∵0<x1<x2<π2,则x1cos x1sin x1>x2cos x2sin x2,即x1sin x2cos x1>x2sin x1cos x2.39.【答案】(1)证明:∵B=C=2π5,∴A=π−(B+C)=π−4π5=π5∴1+y=1+cos2π5=2cos2π5=2x2.…(2)解:设△ABC中,角B、C所对的边分别为b、c,则有12bc sin A=2sinπ5,∵b=c,A=π5,∴b2sinπ5=4sinπ5,故b=c=2.…又BD2=c2+(b2)2−2×c×b2cos A=22+12−2×2×1×cosπ5=5−4cosπ5,∴BD=√5−4cosπ5.…【考点】综合法与分析法【解析】(1)利用cos A=x,cos B=cos C=y,结合二倍角公式,可证结论;(2)利用三角形的面积公式,结合b=c,A=π5,求出BC,进而可求BD的长.【解答】(1)证明:∵B=C=2π5,∴A=π−(B+C)=π−4π5=π5∴1+y=1+cos2π5=2cos2π5=2x2.…(2)解:设△ABC中,角B、C所对的边分别为b、c,则有12bc sin A=2sinπ5,∵b=c,A=π5,∴b2sinπ5=4sinπ5,故b=c=2.…又BD2=c2+(b2)2−2×c×b2cos A=22+12−2×2×1×cosπ5=5−4cosπ5,∴BD=√5−4cosπ5.…。

高一数学直接证明与间接证明试题答案及解析

高一数学直接证明与间接证明试题答案及解析

高一数学直接证明与间接证明试题答案及解析1.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度【答案】B【解析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B点评:本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.2.用反证法证明命题“若a2+b2=0,则a、b全为0(a、b∈R)”,其反设正确的是()A.a、b至少有一个不为0B.a、b至少有一个为0C.a、b全不为0D.a、b中只有一个为0【答案】A【解析】把要证的结论否定之后,即得所求的反设.解:由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故选 A.点评:本题考查用反证法证明数学命题,得到“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,是解题的关键.3.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的假设为()A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数【答案】D【解析】用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a,b,c中至少有两个偶数或都是奇数”,由此得出结论.解:用反证法证明某命题时,应先假设命题的否定成立,而:“自然数a,b,c中恰有一个偶数”的否定为:“a,b,c中至少有两个偶数或都是奇数”,故选D.点评:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的关键.4.用反证法证明:“方程ax2+bx+c=0,且a,b,c都是奇数,则方程没有整数根”正确的假设是方为()程存在实数根xA.整数B.奇数或偶数C.正整数或负整数D.自然数或负整数【答案】A【解析】本题考查反证法的概念,逻辑用语,否命题与命题的否定的概念,逻辑词语的否定.根据反证法的步骤,假设是对原命题结论的否定,故只须对“方程没有整数根”写出否定即可.解:根据反证法的步骤,假设是对原命题结论的否定“方程没有整数根”的否定“方程存在实数根x为整数”.为整数.即假设正确的是:方程存在实数根x故选A.点评:一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.5.关于综合法和分析法说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.分析法又叫逆推证法或执果索因法D.综合法和分析法都是因果分别互推的两头凑法【答案】D【解析】根据综合法、分析法的定义可得结论.解:根据综合法的定义可得,综合法是执因导果法,是顺推法;根据分析法的定义可得,分析法是执果索因法,是直接证法.故选:D.点评:本题主要考查综合法、分析法的定义,属于基础题.6.某同学证明+<+的过程如下:∵﹣>﹣>0,∴<,∴<,∴+<+,则该学生采用的证明方法是()A.综合法B.比较法C.反证法D.分析法【答案】A【解析】从推理过程(是“执因索果”还是“执果索因”)即可得到答案.解:从推理形式来看,从﹣>﹣>0入手,推出<,继而得到<,最后得到+<+,是“执因索果”,是综合法证明,故选:A.点评:本题考查综合法与分析法,掌握二者的推理形式(“执因索果”为综合法,“执果索因”为分析法)是关键,属于中档题.7.已知a,b,c∈(0,1),则对于(1﹣a)b,(1﹣b)c,(1﹣c)a说法正确的是()A.不能都大于B.都大于C.都小于D.至少有一个大于【答案】A【解析】首先根据题意,通过反证法得出结论.解:假设(1﹣a)b,(1﹣b)c,(1﹣c)a中都大于即(1﹣a)b>,(1﹣b)c>,(1﹣c)a>,即>①>②>③①②③相加:++>由基本不等式++≤=矛盾所以假设不成立,∴(1﹣a)b,(1﹣b)c,(1﹣c)a中至少有一个不大于.故选:A.点评:本题考查反证法的应用,涉及不等式的证明与基本不等式的应用,属于中档题.8.要证:a2+b2﹣1﹣a2b2≤0,只要证明()A.2ab﹣1﹣a2b2≤0B.a2+b2﹣1﹣≤0C.﹣1﹣a2b2≤0D.(a2﹣1)(b2﹣1)≥0【答案】D【解析】将左边因式分解,即可得出结论.解:要证:a2+b2﹣1﹣a2b2≤0,只要证明(a2﹣1)(1﹣b2)≤0,只要证明(a2﹣1)(b2﹣1)≥0.故选:D.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.9.下面叙述正确的是()A.综合法、分析法是直接证明的方法B.综合法是直接证法、分析法是间接证法C.综合法、分析法所用语气都是肯定的D.综合法、分析法所用语气都是假定的【答案】A【解析】根据综合法、分析法的定义与证题思路,可得结论.解:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式,是直接证明的方法.故选:A.点评:综合法(由因导果)证明不等式、分析法(执果索因)证明不等式.10.要证明“”可选择的方法有以下几种,其中最合理的是.(填序号).①反证法,②分析法,③综合法.【答案】②【解析】分析不等式的形式,判断最合适证明的方法.解:因为,是含有无理式的不等式,如果利用反证法,其形式与原不等式相同,所以反证法不合适;综合法不容易找出证明的突破口,所以最还是的证明方法是分析法.故答案为:②.点评:本题考查反证法与分析法、综合法证明不等式的使用条件,基本知识的应用.11.证明命题:“f(x)=e x+在(0,+∞)上是增函数”,现给出的证法如下:因为f(x)=e x+,所以f′(x)=e x﹣,因为x>0,所以e x>1,0<<1,所以e x﹣>0,即f′(x)>0,所以f(x)在(0,+∞)上是增函数,使用的证明方法是()A.综合法B.分析法C.反证法D.以上都不是【答案】A【解析】由条件根据分析法和综合法的定义,可得结论.解:题中命题的证明方法是由所给的条件,利用所学的定理、定义、公式证得要证的结论,故此题的证明方法属于综合法,故选:A.点评:本题主要考查分析法和综合法的定义,属于基础题.12.分析法是从要证的不等式出发,寻求使它成立的()A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件【答案】A【解析】本题考查的分析法和综合法的定义,根据定义分析法是从从求证的结论出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.我们易得答案.解:∵分析法是逆向逐步找这个结论成立需要具备的充分条件;∴分析法是从要证的不等式出发,寻求使它成立的充分条件故选A点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.13.证明不等式的最适合的方法是()A.综合法B.分析法C.间接证法D.合情推理法【答案】B【解析】要证原不等式成立,只要证<,即证9+2<9+2,故只要证<,即证14<18,此种证明方法是分析法.解:要证明不等式,只要证<,即证9+2<9+2,故只要证<,即证14<18.以上证明不等式所用的最适合的方法是分析法.故选B.点评:本题考查的是分析法和综合法,解答此题的关键是熟知比较大小的方法.从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件,分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法.也称为因果分析,属于中档题.14.要证明+<2,可选择的方法有以下几种,其中最合理的是()A.综合法B.分析法C.反证法D.归纳法【答案】B【解析】要证+<2,需证<,即证…,显然用分析法最合理.解:用分析法证明如下:要证明+<2,需证<,即证10+2<20,即证<5,即证21<25,显然成立,故原结论成立.综合法:∵﹣=10+2﹣20=2(﹣5)<0,故+<2.反证法:假设+≥2,通过两端平方后导出矛盾,从而肯定原结论.从以上证法中,可知最合理的是分析法.故选B.点评:本题考查分析法的应用,考查分析与判定思维能力,属于中档题.15.设()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于2【答案】C【解析】假设:中都小于2,则,但由于=≥2+2+2=6,出现矛盾,从而得出正确答案:中至少有一个不小于2.解:由于=≥2+2+2=6,∴中至少有一个不小于2,故选C.点评:分析法──通过对事物原因或结果的周密分析,从而证明论点的正确性、合理性的论证方法,也称为因果分析,从求证的不等式出发,“由果索因”,逆向逐步找这个不等式成立需要具备的充分条件;综合法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“未知”.16.已知函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,交点的横坐标的最大值为α,.则()A.A>B B.A<BC.A=B D.A与B的大小不确定【答案】C【解析】作出函数f(x)=|sinx|的图象,利用函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个交点,确定切点坐标,然后利用三角函数的关系即可得到结论.解:作出函数f(x)=|sinx|的图象与直线y=kx(k>0)的图象,如图所示,要使两个函数有且仅有三个交点,则由图象可知,直线在()内与f(x)相切.设切点为A(α,﹣sinα),当x∈()时,f(x)=|sinx|=﹣sinx,此时f'(x)=﹣cosx,x∈().∴﹣cos,即α=tanα,∴==.即A=B.故选:C.点评:本题主要考查三角函数的图象和性质,利用数形结合是解决本题的关键.17.(2014•枣庄一模)在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a∈R,a*0=a;(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).则函数f(x)=(e x)*的最小值为()A.2B.3C.6D.8【答案】B【解析】根据性质,f(x)=(e x)*=1+e x+,利用基本不等式,即可得出结论.解:根据性质,f(x)=(e x)*=1+e x+≥1+2=3,当且仅当e x=时,f(x)=(e x)*的最小值为3.故选:B.点评:本题考查新定义,考查基本不等式的运用,正确理解新定义是关键.18.(2014•泸州一模)一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是()A.1025B.1035C.1045D.1055【答案】C【解析】由已知可设这只游行队伍的最少人数是n,则n﹣1是2,3,4的公倍数,即12的倍数,且n为5和倍数,进而可得答案.解:设这只游行队伍的最少人数是n∵每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.∴n﹣1是2,3,4的公倍数,即12的倍数即n﹣1=1008+12k,k∈N则n=1009+12k,k∈N又∵n为5的倍数故当k=3时,1045是满足条件的最少人数故选C点评:本题是典型的“韩信点兵”问题,解答的关键是将问题转化为公倍数问题.19.(2014•郴州三模)设集合A⊆R,如果x∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x为集合A的一个聚点.则在下列集合中:(1)Z+∪Z﹣;(2)R+∪R﹣;(3){x|x=,n∈N*};(4){x|x=,n∈N*}.其中以0为聚点的集合有()A.1个B.2个C.3个D.4个【答案】B【解析】根据集合聚点的新定义,我们逐一分析四个集合中元素的性质,并判断是否满足集合聚点的定义,进而得到答案.解:(1)对于某个a<1,比如a=0.5,此时对任意的x∈Z+∪Z﹣,都有|x﹣0|=0或者|x﹣0|≥1,也就是说不可能0<|x﹣0|<0.5,从而0不是Z+∪Z﹣的聚点;(2)集合{x|x∈R,x≠0},对任意的a,都存在x=(实际上任意比a小得数都可以),使得0<|x|=<a,∴0是集合{x|x∈R,x≠0}的聚点;(3)集合{x|x=,n∈N*}中的元素是极限为0的数列,对于任意的a>0,存在n>,使0<|x|=<a,∴0是集合 {x|x=,n∈N*}的聚点;(4)中,集合{x|x=,n∈N*}中的元素是极限为1的数列,除了第一项0之外,其余的都至少比0大,∴在a<的时候,不存在满足得0<|x|<a的x,∴0不是集合{x|x=,n∈N*}的聚点;故选:B点评:本题的考点是函数恒成立问题,主要考查的知识点是集合元素的性质,其中正确理解新定义﹣﹣集合的聚点的含义,是解答本题的关键.20.(2014•陕西模拟)已知[x]表示不超过实数x的最大整数(x∈R),如:[﹣1.3]=﹣2,[0.8]=0,[3.4]=3.定义{x}=x﹣[x],求{}+{}+{}+…+{}=()A.1006B.1007C.1008D.2014【答案】B【解析】利用新定义,代入计算可得结论.解:,,∴指数为奇次幂时,值为,为偶次幂时,值为∴原式=1007,故选:B.点评:本题考查简单的合情推理,考查新定义,考查学生的计算能力,比较基础.。

6-6第六节 直接证明与间接证明练习题(2015年高考总复习)

6-6第六节 直接证明与间接证明练习题(2015年高考总复习)

第六节 直接证明与间接证明时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数解析 “至少有一个”的否定为“都不是”.故选B.答案 B2.要证a 2+b 2-1-a 2b 2≤0,只要证明( )A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0 解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.答案 D3.(2014·临沂模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系( )A .P >QB .P =QC .P <QD .由a 取值决定解析 假设P <Q ,∵要证P <Q ,只要证P 2<Q 2,只要证:2a +7+2a (a +7)<2a +7+2(a +3)(a +4), 只要证:a 2+7a <a 2+7a +12,只要证:0<12,∵0<12成立,∴P <Q 成立.答案 C4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A .恒为负值B .恒等于零C .恒为正值D .无法确定正负解析 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的单调递减函数,由x 1+x 2>0,可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0,故选A.答案 A5.不相等的三个正数a ,b ,c 成等差数列,并且x 是a ,b 的等比中项,y 是b ,c 的等比中项,则x 2,b 2,y 2三数( )A .成等比数列而非等差数列B .成等差数列而非等比数列C .既成等差数列又成等比数列D .既非等差数列又非等比数列解析 由已知条件,可得⎩⎪⎨⎪⎧ a +c =2b , ①x 2=ab , ②y 2=bc , ③由②③得⎩⎪⎨⎪⎧ a =x 2b ,c =y 2b ,代入①,得x 2b +y 2b =2b ,即x 2+y 2=2b 2.故x 2,b 2,y 2成等差数列,故选B.答案 B6.(2014·济南模拟)设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y ( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2解析 假设这三个数都小于2,则三个数之和小于6,又y x +y z +z x+z y +x z +x y =⎝ ⎛⎭⎪⎫y x +x y +⎝ ⎛⎭⎪⎫y z +z y +⎝ ⎛⎭⎪⎫z x +x z ≥2+2+2=6,与假设矛盾,故这三个数至少有一个不小于2.另取x =y =z =1,可排除A 、B.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.已知三个不等式①ab >0;②c a >d b ;③bc >ad .以其中两个作条件,余下一个作结论,则可组成________个正确命题.解析 ①②⇒③,①③⇒②;②③⇒①.答案 38.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5和b 5的大小关系为________.解析 方法1:设公比为q ,公差为d ,则a 3=a 1q 2,b 3=b 1+2d =a 1+2d ,故由a 3=b 3,得2d =a 1(q 2-1).又∵a 1≠a 3,∴q 2≠1.∴a 5-b 5=a 1q 4-(a 1+4d )=a 1q 4-[a 1+2a 1(q 2-1)]=a 1(q 2-1)2>0.∴a 5>b 5.方法2:∵在等比数列{a n }中,a 1≠a 3,∴公比不为1.∴a 1≠a 5.又∵a 1=b 1,a 3=b 3,a 5=a 3q 2>0(q 为公比),∴b 3=b 1+b 52=a 3=a 1a 5<a 1+a 52=b 1+a 52.∴a 5>b 5.答案 a 5>b 59.已知点A n (n ,a n )为函数y =x 2+1的图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为__________.解析 a n =n 2+1,b n =n .方法1:c n =n 2+1-n =1n 2+1+n 随n 的增大而减小,为减函数,∴c n +1<c n .方法2:c n +1=(n +1)2+1-(n +1),c n =n 2+1-n ,∴c n c n +1=n 2+1-n (n +1)2+1-(n +1)=(n +1)2+1+n +1n 2+1+n>1. ∴c n >c n +1.答案 c n >c n +1 三、解答题(本大题共3小题,每小题10分,共30分) 10.已知a >0,求证:a 2+1a 2-2≥a +1a -2. 证明 要证a 2+1a 2-2≥a +1a -2. 只要证a 2+1a 2+2≥a +1a + 2.∵a >0,故只要证⎝⎛⎭⎪⎫ a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a +22,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2, 从而只要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a 2≥2, 而上述不等式显然成立,故原不等式成立.11.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a >c .证明 (1)∵f (x )图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2.∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根,即1a 是函数f (x )的一个零点.(2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a ≥c , 又∵1a ≠c ,∴1a >c .12.(1)求证:当a >1时,不等式a 3+1a 3>a 2+1a 2成立; (2)要使上述不等式成立,能否将条件“a >1”适当放宽?若能,请放宽条件,并简述理由;若不能,请说明理由;(3)请你根据(1)(2)的结果,写出一个更为一般的结论,且予以证明.解 (1)证明:a 3+1a 3-a 2-1a 2=1a 3(a -1)(a 5-1),∵a >1,∴1a 3(a -1)(a 5-1)>0,故原不等式成立.(2)能将条件“a >1”适当放宽.理由如下:当a ≠1时,(a -1)与(a 5-1)同符号,所以(a -1)(a 5-1)>0,只需a >0且a ≠1就能使1a 3(a -1)(a 5-1)>0,故条件可以放宽为a >0且a ≠1.(3)根据(1)(2)的结果,可推知:若a >0且a ≠1,m >n >0,则有a m+1a m >a n +1a n . 证明如下:a m -a n +1a m -1a n =a n (a m -n -1)-1a m (a m -n -1)=1a m (a m -n -1)(a m +n -1),若a >1,则由m >n >0得a m -n -1>0,a m +n -1>0,知不等式成立, 若0<a <1,则由m >n >0得a m +n -1<0,a m +n -1<0知不等式成立.。

高考数学复习直接证明与间接证明专项检测(附答案)

高考数学复习直接证明与间接证明专项检测(附答案)

2019-2019高考数学复习直接证明与间接证明专项检测(附答案)直接证明是相对于间接证明说的, 综合法和分析法是两种常见的直接证明, 以下是直接证明与间接证明专项检测, 请考生及时练习。

一、选择题1.所有9的倍数都是3的倍数, 某奇数是9的倍数, 故该奇数是3的倍数.上述推理()A 小前提错B 结论错C 正确D 大前提错2.对于平面和共面的直线m, n, 下列命题中真命题是().A.若m, mn, 则nB.若m, n, 则mnC.若m, n, 则mnD.若m, n与所成的角相等, 则mn解析对于平面和共面的直线m, n, 真命题是若m, n, 则mn. 答案 C3.要证: a2+b2-1-a2b20, 只要证明().A.2ab-1-a2b20B.a2+b2-1-0C.-1-a2b20D.(a2-1)(b2-1)0解析因为a2+b2-1-a2b20(a2-1)(b2-1)0, 故选D.答案 D4.命题如果数列{an}的前n项和Sn=2n2-3n, 那么数列{an}一定是等差数列是否成立().A.不成立B.成立C.不能断定D.能断定解析 Sn=2n2-3n,Sn-1=2(n-1)2-3(n-1)(n2),an=Sn-Sn-1=4n-5(n=1时, a1=S1=-1符合上式).又an+1-an=4(n1),{an}是等差数列.答案 B5.设a, b, c均为正实数, 则三个数a+, b+, c+().A.都大于2B.都小于2C.至少有一个不大于2D.至少有一个不小于2解析 a0, b0, c0,6, 当且仅当a=b=c时, =成立, 故三者不能都小于2, 即至少有一个不小于2.答案 D6.定义一种运算*: 对于自然数n满足以下运算性质:(n+1)*1=n*1+1n*1= ().A.nB.n+1C.n-1D.n2解析由(n+1)*1=n*1+1, 得n*1=(n-1)*1+1=(n-2)*1+2==答案 A二、填空题7.要证明2可选择的方法有以下几种, 其中最合理的是________(填序号).反证法, 分析法, 综合法.答案8.设a0, m=-, n=, 则m, n的大小关系是________. 解析取a=2, b=1, 得m0, 显然成立.答案 mb与a。

第2讲直接证明与间接证明练习含答案

第2讲直接证明与间接证明练习含答案

第2讲直接证明与间接证明一、选择题1.设a ,b ∈R ,则“a +b =1”是“4ab ≤1”的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 若“a +b =1”,则4ab =4a (1-a )=-4⎝ ⎛⎭⎪⎫a -122+1≤1;若“4ab ≤1”,取a =-4,b =1,a +b =-3,即“a +b =1”不成立;则“a +b =1”是“4ab ≤1”的充分不必要条件. 答案 A2.对于平面α和共面的直线m ,n ,下列命题中真命题是( ).A .若m ⊥α,m ⊥n ,则n ∥αB .若m ∥α,n ∥α,则m ∥nC .若m ⊂α,n ∥α,则m ∥nD .若m ,n 与α所成的角相等,则m ∥n解析 对于平面α和共面的直线m ,n ,真命题是“若m ⊂α,n ∥α,则m ∥n ”. 答案 C3.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ).A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0解析 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,故选D. 答案 D4.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1. 其中能推出:“a ,b 中至少有一个大于1”的条件是( ).A .②③B .①②③C .③D .③④⑤解析 若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出; 若a =b =1,则a +b =2,故②推不出; 若a =-2,b =-3,则a 2+b 2>2,故④推不出; 若a =-2,b =-3,则ab >1,故⑤推不出; 对于③,即a +b >2,则a ,b 中至少有一个大于1, 反证法:假设a ≤1且b ≤1, 则a +b ≤2,与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1. 答案 C5.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( ). A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2解析 ∵a >0,b >0,c >0,∴⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b + ⎝ ⎛⎭⎪⎫c +1c ≥6,当且仅当a =b =c 时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D6.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ).A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.不妨令⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为π相矛盾. 所以假设不成立,所以△A 2B 2C 2是钝角三角形. 答案 D 二、填空题7.用反证法证明命题“a ,b ∈N ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是________________________.解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.答案 a ,b 中没有一个能被5整除8.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是________. 解析 取a =2,b =1,得m <n .再用分析法证明:a -b <a -b ⇐a <b +a -b ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立. 答案 m <n9.已知a ,b ,μ∈(0,+∞)且1a +9b =1,则使得a +b ≥μ恒成立的μ的取值范围是________.解析 ∵a ,b ∈(0,+∞)且1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫9a b +b a ≥10+29=16,∴a +b 的最小值为16.∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案 (0,16]10.已知下表中的对数值有且只有一个是错误的.解析 由2a -b =lg 3,得lg 9=2lg 3=2(2a -b )从而lg 3和lg 9正确,假设lg 5=a +c -1错误,则由⎩⎨⎧ 1+a -b -c =lg 6=lg 2+lg 3,3(1-a -c )=lg 8=3lg 2,得⎩⎨⎧lg 2=1-a -c ,lg 3=2a -b , 所以lg 5=1-lg 2=a +c .因此lg 5=a +c -1错误,正确结论是lg 5=a +c . 答案 lg 5=a +c 三、解答题11.若a ,b ,c 是不全相等的正数,求证: lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞),∴a +b 2≥ab >0,b +c 2≥bc >0,a +c2≥ac >0. 又a ,b ,c 是不全相等的正数,故上述三个不等式中等号不能同时成立. ∴a +b 2·b +c 2·c +a2>abc 成立. 上式两边同时取常用对数, 得lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc ),∴lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .12.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?(1)证明 假设数列{S n }是等比数列,则S 22=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2),因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.(2)解当q=1时,S n=na1,故{S n}是等差数列;当q≠1时,{S n}不是等差数列,否则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.13.已知f(x)=x2+ax+b.(1)求:f(1)+f(3)-2f(2);(2)求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于1 2.(1)解∵f(1)=a+b+1,f(2)=2a+b+4,f(3)=3a+b+9,∴f(1)+f(3)-2f(2)=2.(2)证明假设|f(1)|,|f(2)|,|f(3)|都小于1 2.则-12<f(1)<12,-12<f(2)<12,-12<f(3)<12,∴-1<-2f(2)<1,-1<f(1)+f(3)<1.∴-2<f(1)+f(3)-2f(2)<2,这与f(1)+f(3)-2f(2)=2矛盾.∴假设错误,即所证结论成立.14.对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,求f(0)的值;(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明.解(1)取x1=x2=0可得f(0)≥f(0)+f(0),∴f(0)≤0,又由条件①得f(0)≥0,故f(0)=0.(2)显然g(x)=2x-1在[0,1]上满足条件①g(x)≥0;也满足条件②g(1)=1.若x1≥0,x2≥0,x1+x2≤1,则g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即满足条件③,故g(x)是理想函数.。

直接证明与间接证明练习卷

直接证明与间接证明练习卷

直接证明与间接证明练习卷一、填空题1.A .将结论与条件同时否认,推出矛盾;B .肯定条件,否认结论,推出矛盾;C .将被否认的结论当条件,经过推理得出结论只与原题条件矛盾,才是反证支的正确运用D .将被否认的结论当条件,原题的条件不能当条件2.用反证法证明“如果a b >,那么33a b >〞假设的内容是______________。

3.αβ,是两个平面,直线l 不在平面α内,l 也不在平面β内,设①l α⊥;②l β∥;③αβ⊥4.求证:一个三角形中,至少有一个内角不小于60,用反证法证明时的假设为“三角形的 〞.5.当00a b >>,时,①11()4a b a b ⎛⎫++⎪⎝⎭≥;②22222a b a b +++≥;④2ab a b+.以上4个不等式恒成立的是 .〔填序号〕61>1>,即证75111+>+>3511>,∴原不等式成立.以上证明应用了________(A .分析法B .综合法C .分析法与综合法配合使用D .间接证法)7.假设关于x 的不等式22133(2)(2)22x x k k k k --+<-+的解集为1(,)2+∞,那么k 的范围是____ .8. b a ,是不相等的正数,x y ==,那么,x y 的大小关系是_________. 9. 假设,,a b c R ∈,那么222a b c ++ ab bc ac ++.10..将a 千克的白糖加水配制成b 千克的糖水(0)b a >>,那么其浓度为 ;假设再参加m 千克的白糖(0)m >,糖水更甜了,根据这一生活常识提炼出一个常见的不等式: .二、解答题11.,,a b c R +∈, 1a b c ++=,求证:1119a b c++≥12.求证:对于任意角θ,44cos sin cos 2θθθ-=13.(01)a b c ∈,,,,求证:(1)(1)(1)a b b c c a ---,,不能同时大于14.14.求证:以过抛物线22(0)y px p =>焦点的弦为直径的圆必与2p x =-相切〔用分析法证〕15. ,0x y >,且2x y +>.试证:11,x y y x ++中至少有一个小于2.。

第6课时直接证明与间接证明习题和答案详解

第6课时直接证明与间接证明习题和答案详解

1.分析法又称执果索因法,若用分析法证明:“设a>b>c ,且a +b +c =0,求证:b 2-ac <3a ”“索”的“因”应是( ) A .a -b>0 B .a -c>0 C .(a -b)(a -c)>0 D .(a -b)(a -c)<0答案 C 解析b 2-ac<3a ⇔b 2-ac<3a 2⇔(a +c)2-ac<3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c)(2a +c)>0⇔(a -c)(a -b)>0. 2.要证a 2+b 2-1-a 2b 2≤0只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0答案 D3.下列不等式不成立的是( ) A.12<ln2 B.3+1>2 2 C .233<322 D .sin1>cos1答案 B4.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P>Q B .P =QC .P<QD .由a 的取值确定 答案 C解析 要比较P ,Q 的大小关系,只要比较P 2,Q 2的大小关系,只要比较2a +7+2a (a +7)与2a +7+2(a +3)(a +4)的大小,只要比较a (a +7)与(a +3)(a +4)的大小, 即比较a 2+7a 与a 2+7a +12的大小, 只要比较0与12的大小,∵0<12,∴P<Q.5.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( ) A .假设至少有一个钝角 B .假设至少有两个钝角 C .假设没有一个钝角D .假设没有一个钝角或至少有两个钝角 答案 B解析 注意到:“至多有一个”的否定应为“至少有两个”知需选B. 6.若a>0,b>0,a +b =1,则下列不等式不成立的是( )A .a 2+b 2≥12B .ab ≤14C.1a +1b ≥4 D.a +b ≤1答案 D解析 a 2+b 2=(a +b)2-2ab =1-2ab ≥1-2·(a +b 2)2=12,∴A 成立;ab ≤(a +b 2)2=14,∴B 成立;1a +1b =a +b ab =1ab ≥1(a +b 2)2=4,∴C 成立; (a +b)2=a +b +2ab =1+2ab>1,∴a +b>1,故D 不成立.7.(2019·东北四校联考)设x ,y ,z ∈R +,a =x +1y ,b =y +1z ,c =z +1x ,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2答案 C解析 假设a ,b ,c 三个数都小于2. 则6>a +b +c =x +1y +y +1z +z +1x≥2x·1x+2y·1y+2z·1z=6,即6>6,矛盾. 所以a ,b ,c 三个数中至少有一个不小于2.8.设a>0,b>0,求证:lg(1+ab)≤12[lg(1+a)+lg(1+b)].答案 略证明 要证lg(1+ab)≤12[lg(1+a)+lg(1+b)],只需证1+ab ≤(1+a )(1+b ), 即证(1+ab)2≤(1+a)(1+b), 即证2ab ≤a +b , 而2ab ≤a +b 成立,∴lg(1+ab)≤12[lg(1+a)+lg(1+b)].9.(2019·江苏盐城一模)已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 32x 2+x 12x 3≥1. 答案 略解析 ∵x 22x 1+x 1+x 32x 2+x 2+x 12x 3+x 3≥2x 22+2x 32+2x 12=2(x 1+x 2+x 3)=2,∴x 22x 1+x 32x 2+x 12x 3≥1. 10.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3.(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值. 答案 (1)略 (2)成立,证明略解析 (1)证明:x 是正实数,由均值不等式,得 x +1≥2x ,x 2+1≥2x ,x 3+1≥2x 3.故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x>0时,不等式成立; 当x ≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立.11.(2019·湖北武汉调研)已知等差数列{a n }的前n 项和为S n ,a 3=5,S 8=64. (1)求数列{a n }的通项公式;(2)求证:1S n -1+1S n +1>2S n (n ≥2,n ∈N *).答案 (1)a n =2n -1 (2)略解析 (1)设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 3=a 1+2d =5,S 8=8a 1+28d =64,解得⎩⎪⎨⎪⎧a 1=1,d =2. 故所求的通项公式为a n =2n -1. (2)证明:由(1)可知S n =n 2, 要证原不等式成立,只需证1(n -1)2+1(n +1)2>2n 2,只需证[(n +1)2+(n -1)2]n 2>2(n 2-1)2. 只需证(n 2+1)n 2>(n 2-1)2. 只需证3n 2>1.而3n 2>1在n ≥1时恒成立,从而不等式1S n -1+1S n +1>2S n (n ≥2,n ∈N *)恒成立.12.设数列{a n }满足a 1=0且11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,记S n =∑n k =1b k ,证明:S n <1. 答案 (1)a n =1-1n(2)略解析 (1)由题设11-a n +1-11-a n =1,得{11-a n }是公差为1的等差数列. 又11-a 1=1,故11-a n=n.所以a n =1-1n .(2)由(1)得b n =1-a n +1n =n +1-n n +1·n =1n -1n +1,∴S n =∑nk =1b k =∑nk =1(1k -1k +1)=1-1n +1<1. 13.(2015·湖南,理)设a>0,b>0,且a +b =1a +1b .证明:(1)a +b ≥2;(2)a 2+a<2与b 2+b<2不可能同时成立. 答案 (1)略 (2)略解析 (1)由a +b =1a +1b =a +bab ,a>0,b>0,得ab =1.由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理,0<b<1,从而ab<1,这与ab =1矛盾.故a 2+a<2与b 2+b<2不可能同时成立.14.已知函数f(x)=lnx -ax +b x ,对任意的x ∈(0,+∞),满足f(x)+f(1x )=0,其中a ,b 为常数.(1)若f(x)的图像在x =1处的切线经过点(0,-5),求a 的值; (2)已知0<a<1,求证:f(a 22)>0.答案 (1)-2 (2)略解析 (1)在f(x)+f(1x )=0中,取x =1,得f(1)=0,又f(1)=ln1-a +b =-a +b ,所以b =a. 从而f(x)=lnx -ax +ax,f ′(x)=1x -a(1+1x 2),f ′(1)=1-2a.又f′(1)=-5-f (1)0-1=5,所以1-2a =5,a =-2.(2)证明:f(a 22)=ln a 22-a 32+2a =2lna +2a -a 32-ln2.令g(x)=2lnx +2x -x 32-ln2,则g′(x)=2x -2x 2-3x 22=-3x 4+4(x -1)2x 2.所以,x ∈(0,1)时,g ′(x)<0,g(x)单调递减, 故x ∈(0,1)时,g(x)>g(1)=2-12-ln2>1-lne =0.所以,0<a<1时,f(a 22)>0.。

高考数学7.4直接证明与间接证明练习

高考数学7.4直接证明与间接证明练习

【师说 高中全程温习构思】(新课标) 高考数学 直接证明与间接证明练习 一、选择题 1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是逆推法;⑤反证法是间接证法.其中正确的有( ) A .2个 B .3个C .4个D .5个答案:D2.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”的进程应用了( )A .分析法B .综合法C .综合法、分析法综合利用D .间接证明法答案:B3.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( )A .ac2<bc2B .a2>ab >2C <1b >a b答案:B4.若P =a +a +7,Q =a +3+a +4(a≥0),则P 、Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值肯定答案:C5.已知a ,b ,c ∈R ,那么下列命题中正确的是( )A .若a >b ,则ac2>bc2B .若a c >b c,则a >b C .若a3>b3且ab <0,则1a >1bD .若a2>b2且ab >0,则1a <1b答案:C6.函数y =f(x)在(0,2)上是增函数,函数y =f(x +2)是偶函数,则f(1),f ,f 的大小关系是( )A .f <f(1)<fB .f >f(1)>fC .f >f >f(1)D .f(1)>f >f答案:B二、填空题7.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系是__________. 解析:假设P <Q ,∵要证P <Q ,只要证P2<Q2,只要证:2a +7+2a a +7<2a +7+2a +3a +4,只要证:a2+7a <a2+7a +12,只要证:0<12,∵0<12成立,∴P <Q 成立.答案:P <Q8.若是a a +b b >a b +b a ,则a 、b 应知足的条件是__________.答案:a ≥0,b≥0且a≠b9.在不等边三角形中,a 为最大边,要想取得∠A 为钝角的结论,三边a ,b ,c 应知足__________.答案:a2>b2+c2三、解答题10.已知a >b >c ,且a +b +c =0,求证:b2-ac <3a.证明:∵a >b >c 且a +b +c =0,∴a >0且c <0,∴b2-ac >0.要证b2-ac <3a ,只需证b2-ac <3a2,∵a +b +c =0,∴只需证b2+a(a +b)<3a2,即证2a2-ab -b2>0,即证(a -b)(2a +b)>0,即证(a -b)(a -c)>0.因为a >b >c ,所以a -b >0,a -c >0,所以(a -b)(a -c)>0,显然成立,故原不等式成立.11.在锐角三角形中,求证:sinA +sinB +sinC >cosA +cosB +cosC.证明:∵在锐角三角形中,A +B >π2, ∴A >π2-B.∴0<π2-B <A <π2. 又∵在⎝⎛⎭⎪⎫0,π2内正弦函数是单调递增函数, ∴sinA >sin ⎝ ⎛⎭⎪⎫π2-B =cos B. 即sinA >cosB ,同理sinB >cosC ,sinC >cosA.∴sinA +sinB +sinC >cosA +cosB +cosC.12.已知a ,b ,c 均为正数,证明:a2+b2+c2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并肯定a ,b ,c 为何值时,等号成立.解析:因为a ,b ,c 均为正数,由大体不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,所以a2+b2+c2≥ab+bc +ac ,①同理1a2+1b2+1c2≥1ab +1bc +1ac,② 故a2+b2+c2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥ab+bc +ac +31ab +31bc +31ac ≥6 3.③ 所以原不等式成立当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a =b =c =314时,原式等号成立.。

考点规范练36 直接证明与间接证明

考点规范练36 直接证明与间接证明

考点规范练36 直接证明与间接证明考点规范练B 册第22页基础巩固1.要证a 2+b 2-1-a 2b 2≤0,只需证明( ) A.2ab-1-a 2b 2≤0 B.a 2+b 2-1-a 4+b 42≤0C .(a+b )22-1-a 2b 2≤0 D.(a 2-1)(b 2-1)≥0答案:D解析:在各选项中,只有(a 2-1)(b 2-1)≥0⇒a 2+b 2-1-a 2b 2≤0,故选D .2.分析法又称执果索因法,若用分析法证明“设a>b>c ,且a+b+c=0,求证:√b 2-ac <√3a ”索的因应是( ) A.a-b>0 B.a-c>0 C.(a-b )(a-c )>0 D.(a-b )(a-c )<0 答案:C解析:√b 2-ac <√3a ⇔b 2-ac<3a 2⇔(a+c )2-ac<3a 2⇔a 2+2ac+c 2-ac-3a 2<0⇔-2a 2+ac+c 2<0⇔2a 2-ac-c 2>0⇔(a-c )(2a+c )>0⇔(a-c )(a-b )>0.故选C . 3.利用反证法证明“若x 2+y 2=0,则x=y=0”时,应假设( ) A.x ,y 都不为0 B.x ≠y ,且x ,y 都不为0 C.x ≠y ,且x ,y 不都为0 D.x ,y 不都为0 答案:D解析:原命题的结论是x ,y 都为零,利用反证法时,应假设x ,y 不都为零.4.设a ,b 是两个实数,下列条件中,能推出“a ,b 中至少有一个大于1”的是( ) A.a+b>1 B.a+b>2 C.a 2+b 2>2 D.ab>1 答案:B解析:若a=12,b=23,则a+b>1,但a<1,b<1,故A 推不出; 若a=-2,b=-3,则a 2+b 2>2,故C 推不出; 若a=-2,b=-3,则ab>1,故D 推不出;对于B,若a+b>2,则a ,b 中至少有一个大于1,反证法:假设a ≤1,且b ≤1,则a+b ≤2与a+b>2矛盾, 因此假设不成立,故a ,b 中至少有一个大于1. 5.设a ,b ,c 均为正实数,则三个数a+1b ,b+1c ,c+1a ( ) A.都大于2 B.都小于2C.至少有一个不大于2D.至少有一个不小于2答案:D解析:∵a>0,b>0,c>0,∴(a +1b )+(b +1c )+(c +1a )=(a +1a )+(b +1b )+(c +1c )≥6,当且仅当a=b=c=1时等号成立,故三者不能都小于2,即至少有一个不小于2.6.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减.若x 1+x 2>0,则f (x 1)+f (x 2)的值( )A.恒为负值B.恒等于零C.恒为正值D.无法确定正负 答案:A解析:由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,可知f (x )是R 上的减函数.由x 1+x 2>0,可知x 1>-x 2,即f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0,故选A. 7.设a>b>0,m=√a −√b ,n=√a -b ,则m ,n 的大小关系是 . 答案:m<n解析:(方法一:取特殊值法)取a=2,b=1,得m<n.(方法二:分析法)因为a>b>0,所以要得出m 与n 的大小关系,只需判断mn =√a -√b√a -b与1的大小关系,只需判断a+b -2√aba -b与1的大小关系,只需判断a+b-2√ab -(a-b )与0的大小关系,只需判断2b-2√ab 与0的大小关系,只需判断√b −√a 与0的大小关系.由a>b>0,可知√b −√a <0,即mn <1,即可判断m<n.8.√6+√7与2√2+√5的大小关系为 . 答案:√6+√7>2√2+√5解析:要比较√6+√7与2√2+√5的大小,只需比较(√6+√7)2与(2√2+√5)2的大小,只需比较6+7+2√42与8+5+4√10的大小,只需比较√42与2√10的大小,只需比较42与40的大小,∵42>40,∴√6+√7>2√2+√5. 9.设函数f (x )=1x+2,a ,b ∈(0,+∞). (1)用分析法证明:f (a b )+f (b a )≤23;(2)设a+b>4,求证:af (b ),bf (a )中至少有一个大于12. 答案:证明(1)要证明f (a b )+f (b a )≤23, 只需证明1ab+2+1ba+2≤23,只需证明ba+2b +ab+2a ≤23,即证b 2+4ab+a 22a 2+5ab+2b 2≤23,即证(a-b )2≥0,这显然成立,所以f (a b )+f (b a )≤23. (2)假设af (b ),bf (a )都小于或等于12, 即ab+2≤12,ba+2≤12,所以2a ≤b+2,2b ≤a+2,两式相加得a+b ≤4, 这与a+b>4矛盾,所以af (b ),bf (a )中至少有一个大于12.能力提升10.若△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形 答案:D解析:由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,且△A 2B 2C 2不可能是直角三角形.假设△A 2B 2C 2是锐角三角形. 由{sin A 2=cos A 1=sin (π2-A 1),sin B 2=cos B 1=sin (π2-B 1),sin C 2=cos C 1=sin (π2-C 1),得{ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1, 则A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾. 因此假设不成立, 故△A 2B 2C 2是钝角三角形.11.已知a ,b ,μ∈(0,+∞),且1a +9b =1,要使得a+b ≥μ恒成立,则μ的取值范围是 . 答案:(0,16]解析:∵a ,b ∈(0,+∞),且1a +9b =1,∴a+b=(a+b )·(1a +9b )=10+(9ab +ba )≥10+2√9=16(当且仅当a=4,b=12时等号成立). ∴a+b 的最小值为16.∴要使a+b ≥μ恒成立,只需16≥μ.∴0<μ≤16. 12.已知函数f (x )=3x -2x ,求证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f (x 1+x 22).答案:证明要证f (x 1)+f (x 2)2≥f (x 1+x 22),即证(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证3x 1+3x 22≥3x 1+x 22,因此只要证3x 1+3x 22≥√3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0, 因此由基本不等式知3x 1+3x 22≥√3x 1·3x 2显然成立,故原结论成立.高考预测13.①已知p 3+q 3=2,求证p+q ≤2,用反证法证明时,应假设p+q>2;②设a 为实数,f (x )=x 2+ax+a ,求证|f (1)|与|f (2)|中至少有一个不小于12,用反证法证明时,应假设|f (1)|≥12,且|f (2)|≥12.以下说法正确的是( ) A.①与②的假设都错误 B.①与②的假设都正确C.①的假设正确,②的假设错误D.①的假设错误,②的假设正确答案:C解析:①p+q ≤2的否定应为p+q>2,故①的假设正确;②|f (1)|与|f (2)|中至少有一个不小于12的否定为|f (1)|与|f (2)|都小于12,即|f (1)|<12,|f (2)|<12,故②的假设错误.故选C .。

江苏高考直接证明与间接证明专题练习(附答案)

江苏高考直接证明与间接证明专题练习(附答案)

江苏高考直接证明与间接证明专题练习(附答案)直接证明是相关于直接证明说的,综合法和剖析法是两种罕见的直接证明。

以下是直接证明与直接证明专题练习,请考生查缺补漏。

【典例1】 (2021天津高考)q和n均为给定的大于1的自然数.设集合M={0,1,2,,q-1},集合A={x|x=x1+x2q++xnqn-1,xiM,i=1,2,,n}.(1)当q=2,n=3时,用罗列法表示集合A.(2)设s,tA,s=a1+a2q++anqn-1,t=b1+b2q++bnqn-1,其中ai,biM,i=1,2,,n.证明:假定an1及a0可知0,只需证1,只需证1+a-b-ab1,只需证a-b-ab1,即-1.这是条件,所以原不等式得证.考向3 反证法(高频考点) 【典例3】 (1)(2021山东高考改编)用反证法证明命题设a,b为实数,那么方程x3+ax+b=0至少有一个实根时,要做的假定是________.(2)(2021陕西高考)设{an}是公比为q的等比数列.推导{an}的前n项和公式;设q1,证明数列{an+1}不是等比数列.[思绪点拨] (1)至少的否认是少于.(2)分q=1和q1两种状况求解.用反证法证明.[解析] (1)a,b为实数,那么方程x3+ax+b=0至少有一个实根的否认为方程x3+ax+b=0没有实根.[答案] 方程x3+ax+b=0没有实根(2)设{an}的前n项和为Sn,当q=1时,Sn=a1+a1++a1=na1;当q1时,Sn=a1+a1q+a1q2++a1qn-1,qSn=a1q+a1q2++a1qn,①-得,(1-q)Sn=a1-a1qn,Sn=,Sn=证明:假定{an+1}是等比数列,那么对恣意的kN+,(ak+1+1)2=(ak+1)(ak+2+1),a+2ak+1+1=akak+2+ak+ak+2+1,aq2k+2a1qk=a1qk-1a1qk+1+a1qk-1+a1qk+1,a10,2qk=qk-1+qk+1.q0,q2-2q+1=0,q=1,这与矛盾.直接证明与直接证明专题练习及答案就分享到这里,查字典数学网预祝考生可以考上自己理想的大学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、直接证明与间接证明三种证明方法的定义与步骤:1. 综合法 是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法。

2. 分析法 是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法。

3. 反证法 假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法.反证法法证明一个命题的一般步骤: (1) 假设命题的结论不成立; (2) 根据假设进行推理,直到推理中导出矛盾为止 (3) 断言假设不成立(4) 肯定原命题的结论成立 题型一:用综合法证明数学命题例1 :对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.(1) 若函数()f x 为理想函数,求(0)f 的值;(2)判断函数()21x g x =-(]1,0[∈x )是否为理想函数,并予以证明; 解析:(1)取021==x x 可得0)0()0()0()0(≤⇒+≥f f f f .又由条件①0)0(≥f ,故0)0(=f .(2)显然12)(-=x x g 在[0,1]满足条件①0)(≥x g ;也满足条件②1)1(=g .若01≥x ,02≥x ,121≤+x x ,则)]12()12[(12)]()([)(21212121-+---=+-++x x x x x g x g x x g0)12)(12(1222122121≥--=+--=+x x x x x x ,即满足条件③,故)(x g 理想函数.注:紧扣定义,证明函数()21x g x =-(]1,0[∈x )满足三个条件题型二:用分析法证明数学命题例2:已知:10<<a ,求证:9141≥-+a a . 证明:∵ 10<<a ∴ 要证 9141≥-+aa ,去分母后需要证:(1-a )+4a ≥9a (1—a ), 移项合并同类项,即需要证:92a —6a+1≥0,即要证;()2310a -≥ (1)而(1)式显然成立, ∴ 原不等式成立。

题型三:用反证法证明数学命题或判断命题的真假 例3 :已知)1(12)(>+-+=a x x a x f x ,证明方程0)(=x f 没有负数根 解析:假设0x 是0)(=x f 的负数根,则00<x 且10-≠x 且12000+--=x x ax112010000<+--<⇒<<∴x x a x ,解得2210<<x ,这与00<x 矛盾,故方程0)(=x f 没有负数根注:(1)凡是“至少”、“唯一”或含有否定词的命题从正面突破往往比较困难,适宜用反证法。

即 “正难则反”;(2)反证法步骤:假设结论不成立→推出矛盾→假设不成立。

选择题1.用反证法证明命题:若整系数方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数,下列假设中正确的是( ). A 、假设,,a b c 都是偶数B 、假设,,a b c 都不是偶数C 、假设,,a b c 中至多有一个偶数D 、假设,,a b c 中至多有两个偶数答案;B2.若三角形能剖分为两个与自己相似的三角形,那么这个三角形一定是( )A.锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定 答案: B3.已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( B ) A.(0,11a ) B (0,12a ) C.(0,31a ) D. (0,32a ) 提示;2(1)1i a x -<⇒x ∈(0,2ia ),由1230a a a >>>⇒123222a a a <<得出结论。

填空题 4.若244)(+=xxx f ,则)10011000()10012()10011(f f f +++ =____________. 答案:5005. 如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF 的方程: ( )011=⎪⎪⎭⎫⎝⎛-+y a p x 。

答案:11c b-6.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15………………y按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为答案:222n n -+。

解答题7. 若0>>>>d c b a 且c b d a +=+,求证:c b a d +<+ [解析]要证c b a d +<+,只需证22)()(c b a d +<+ 即bc c b ad d a 22++<++,因c b d a +=+,只需证bc ad < 即bc ad <,设t c b d a =+=+,则0))(()()(<-+-=---=-t d c d c c c t d d t bc adbc ad <∴成立,从而c b a d +<+成立8.在锐角三角形ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++ [解析]ABC ∆ 为锐角三角形,B A B A ->∴>+∴22ππ,x y sin = 在)2,0(π上是增函数,B B A cos )2sin(sin =->∴π同理可得C B cos sin >,A C cos sin >C B A C B A cos cos cos sin sin sin ++>++∴9. 设b a ,为非零向量,且b a ,不平行,求证b a +,ba -不平行[解析]假设b a +)(b a -=λ,则0)1()1(=++-b a λλ,ba , 不平行,⎩⎨⎧=+=-∴0101λλ,因方程组无解,故假设不成立,即原命题成立10. 已知a 、b 、c 成等差数列且公差0≠d ,求证:a 1、b 1、c1不可能成等差数列[解析] a 、b 、c 成等差数列,c a b +=∴2假设a 1、b 1、c 1成等差数列,则0)(4)(11222=-⇒=+⇒+=c a ac c a ca b ,ca =∴从而0=d 与0≠d 矛盾,a 1∴、b 1、c1不可能成等差数列11. 已知xx f ln )(=证明: )1()1(->≤+x x x f[解析] 即证:0)1ln(≤-+x x设1111)(,)1ln()(+-=-+='-+=x x x x k x x x k 则. 当x ∈(-1,0)时,k ′(x )>0,∴k (x )为单调递增函数; 当x ∈(0,∞)时,k ′(x )<0,∴k (x )为单调递减函数; ∴x =0为k(x )的极大值点, ∴k(x )≤k(0)=0.即0)1ln(≤-+x x )1()1(->≤+∴x x x f12. 已知函数||1y x =+,y =,11()2ty x x-=+(0)x > 的最小值恰好是方程320x ax bx c +++=的三个根,其中01t <<.求证:223a b =+;[解析] 三个函数的最小值依次为1,由(1)0f =,得1c a b =---∴ 3232()(1)f x x ax bx c x ax bx a b =+++=++-++2(1)[(1)(1)]x x a x a b =-+++++,故方程2(1)(1)0x a x a b +++++=(1)a =-+1a b =++. 22(1)a =+,即222(1)(1)a b a +++=+ ∴ 223a b =+.改变后直接证明与间接证明1.用反证法证明命题:若整系数方程20(0)ax bx c a ++=≠有有理根,那么,,a b c 中至少有一个是偶数,下列假设中正确的是( ). A 、假设,,a b c 都是偶数B 、假设,,a b c 都不是偶数C 、假设,,a b c 中至多有一个偶数D 、假设,,a b c 中至多有两个偶数2.若三角形能剖分为两个与自己相似的三角形,那么这个三角形一定是( ) A.锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定3.若244)(+=x x x f ,则)10011000()10012()10011(f f f +++ =____________.4 . 若0>>>>d c b a 且c b d a +=+,求证:c b a d +<+5.在锐角三角形ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++6. 设b a ,为非零向量,且b a ,不平行,求证b a +,b a -不平行7. 已知a 、b 、c 成等差数列且公差0≠d ,求证:a 1、b 1、c1不可能成等差数列8.对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.(1) 若函数()f x 为理想函数,求(0)f 的值;(2)判断函数()21x g x =-(]1,0[∈x )是否为理想函数,并予以证明;。

相关文档
最新文档