高中数学六种解题技巧与五种数学答题思路.doc
高中数学解题方法总结
高中数学解题方法总结高中数学解题方法总结高中数学是一门重要的学科,它不仅考察学生的逻辑思维能力和数学素养,还培养学生的分析问题和解决问题的能力。
在高中数学学习过程中,我们常常遇到各种各样的数学题目,如何有效地解题成为我们必须面对的问题。
本文将总结一些常见的高中数学解题方法,帮助同学们提高解题的效率和准确性。
一、代数解题方法1. 代数方程式解题法:将问题转化成代数方程式,并通过方程求解的方法来得到问题的答案。
这种方法适用于一次方程、二次方程等各种代数方程的解题。
2. 论证法:通过推理论证,根据已知条件导出结论。
这种方法适用于不等式证明、函数性质证明等问题。
3. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。
这种方法适用于矩阵、向量等代数题目的证明。
二、几何解题方法1. 直接证明法:通过已知条件直接推导出结论。
这种方法适用于几何定理的证明,如勾股定理、圆的性质等。
2. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。
这种方法适用于几何题目的证明,如等腰三角形的性质证明等。
3. 分析法:通过分析几何图形的性质和已知条件,结合相关定理进行推理和解题。
这种方法适用于几何图形的判断和计算题目。
三、概率解题方法1. 列举法:通过枚举每种可能的情况,计算每种情况发生的概率,从而求得总体概率。
这种方法适用于有限样本空间的概率计算题目。
2. 计数法:通过计算事件的样本点个数和总的样本点个数,求得事件发生的概率。
这种方法适用于有规律的样本空间和复杂的概率计算题目。
3. 条件概率法:通过已知条件和条件概率的定义,计算事件在给定条件下的概率。
这种方法适用于条件概率和贝叶斯定理相关的题目。
四、函数解题方法1. 函数图像法:通过函数图像的性质和已知条件,确定函数的变化规律和相关参数。
这种方法适用于函数的性质和变化规律的题目。
2. 函数方程法:通过已知条件和函数方程的关系,求解函数方程的解,从而得到问题的答案。
高中数学答题技巧全套
高中数学答题技巧全套
高中数学答题技巧全套如下:
1. 认真审题:在答题之前,要先仔细阅读题目,理解题目所问,弄清楚题目要求解什么、求什么,以及需要用什么方法求解。
2. 思维分区:将解答题按照知识点和难度分类,先易后难,先重
点后一般,先简单后复杂,分别归类讨论,有助于思路清晰,避免遗漏。
3. 建立模型:在解题过程中,根据题目条件建立数学模型,用数
学语言将题目条件转换成未知数、方程或函数,以便快速高效地求解。
4. 化简推导:在求解过程中,对题目中的复杂表达式进行化简、推导、整理,将冗长、复杂的表达式简化为简洁、清晰的表达式,提高解题效率。
5. 抓住关键步骤:在数学解题中,每个步骤都非常重要,要仔细
推敲、把握每个步骤的分寸,确保每个步骤都是正确的,能够完整地解决问题。
6. 规范书写:在解答题时,要严格按照题目要求书写,注意符号
的使用、单位的统一、方程式的书写、函数图像的绘制等,保证书写
规范、清晰、整齐、有条理。
7. 检查验证:在完成答题后,要仔细检查,特别是对答案进行反复核对,看是否出现漏掉、重复、错误等问题,确保答案准确无误。
8. 多练习、多总结:数学是一门需要不断练习和总结的学科,多做题目、多总结题目规律,可以提高解题能力,增强思维能力,提高答题技巧。
以上是高中数学答题技巧的一些基本要点,希望对你有所帮助。
高考数学六大解题方法数学考试答题技巧汇总
高考数学六大解题方法数学考试答题技巧汇总高考数学六大解题方法数学考试答题技巧汇总1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
3、顺推解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。
4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。
极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。
5、直接法直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。
用这种方法的学生往往数学基础比较扎实。
6、估算法就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。
高考数学答题技巧1.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;2.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;3.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;5.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;6.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;7.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;8.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;数列题解题方法注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可。
高考数学答题技巧方法大全
高考数学答题技巧方法大全数学高考答题过程中的认真审题,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。
下面是我为大家整理的高考数学答题技巧(方法),仅供参考,喜爱可以(保藏)共享一下哟!数学解题方法1、解决肯定值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含肯定值的问题转化为不含肯定值的问题。
详细转化方法有:①分类争论法:依据肯定值符号中的数或式子的正、零、负分状况去掉肯定值。
②零点分段争论法:适用于含一个字母的多个肯定值的状况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的状况。
2、因式分解依据项数选择方法和根据一般步骤是顺当进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
4、换元法解某些简单的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、简单代数等式简单代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种状况为或型②配成平方型:(----)2+(----)2=0两种状况为且型7、数学中两个最宏大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
9、观看法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)留意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
数学答题技巧整理1.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;留意归纳、猜想之后证明;猜想的方向是两种特别数列;解答的时候留意使用通项公式及前n项和公式,体会方程的思想;2.立体几何问题立体几何第一问假如是为建系服务的,肯定用传统做法完成,假如不是,可以从第一问开头就建系完成;留意向量角与线线角、线面角、面面角都不相同,娴熟把握它们之间的三角函数值的转化;锥体体积的计算留意系数1/3,而三角形面积的计算留意系数1/2 ;与球有关的题目也不得不防,留意连接“心心距”制造直角三角形解题;3.导数导数的题目常规的一般不难,但要留意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应当放弃;重视几何意义的应用,留意点是否在曲线上;4.概率概率的题目假如出解答题,应当先设大事,然后写出访用公式的理由,当然要留意步骤的多少打算解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;5.换元法遇到简单的式子可以用换元法,使用换元法必需留意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;6.二项分布留意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;7.肯定值问题肯定值问题优先选择去肯定值,去肯定值优先选择使用定义;8.平移与平移有关的,留意口诀“左加右减,上加下减”只用于函数,沿向量平移肯定要使用平移公式完成;数学解题方法1、剔除法利用题目给出的已知条件和选项供应的信息,从四个选项中选择出三个错误答案,从而达到正确答案的目的。
高考数学答题技巧与解题思路
高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。
它需要灵活运用各种技巧和解题思路来处理各类题目。
本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。
一、选择题解题思路选择题在高考数学试卷中占有重要的比重。
解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。
阅读题干和选项时要注意细节,避免因为粗心而丢分。
2. 其次,列出已知条件,找到相关的数学概念和定理。
有时候,选择题通过对已知条件的解析可以得到答案。
3. 利用排除法。
根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。
4. 适时使用近似计算法。
高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。
二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。
以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。
2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。
处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。
3. 分数计算:分数计算也是高考数学试卷中的重要考点。
在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。
4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。
例如,通过图形的面积计算来解决几何题。
三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。
以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。
在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。
2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。
高中数学解题常用的几种解题思路和技巧
高中数学解题常用的几种解题思路和技巧
高中数学解题常用的解题思路和技巧有:
一、数形结合法。
二、排除解题法。
三、方程解题法。
扩展资料
圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式。
选择题中如果有算锥体体积和表面积的'话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案。
三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。
高考数学答题技巧与套路精选
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
高中数学常考题型答题技巧与方法超全整合版
高中数学常考题型答题技巧与方法超全整合版高中数学常考题型答题技巧与方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学6个技巧+5大思路
高中数学6个技巧+5大思路高中数学不仅需要很强的逻辑思维能力,还要有较强的计划能力,这让很多童鞋都望而却步,有的甚至把数学当做高考中的拦路虎。
其实高中数学在掌握基础知识的基础上,把握好解题思路和技巧,你就会发现原来数学考个130+也可以这么简单~下面的这些解题技巧和思路希望可以助你一臂之力哦~六大解题技巧NO.1三角函数注意归一公式、诱导公式的正确性{转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!}。
NO.2数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
)利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
NO.3立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
NO.4概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
高中数学解题思路和技巧
高中数学解题思路和技巧以下是 6 条关于高中数学解题思路和技巧的内容:1. 嘿,你知道不,很多时候我们得学会从不同角度看问题呀!就像解方程,那一元二次方程,有时候直接求解很费劲,但要是我们用韦达定理去看呢?举个例子啊,求方程$x^2+3x-4=0$的两根之和与两根之积,用韦达定理一下就出来啦,多简单呀!是不是很神奇?我们要多去挖掘这种巧妙的方法呀!2. 哇塞,当遇到复杂问题的时候,千万不要慌!要像个探险家一样去寻找线索!比如说三角函数那一块儿,给定好多条件让求角或者值的时候,咱就得把那些条件都串起来呀!就比如知道 sinA 和 cosA 的值,去求 tanA,这不就跟串珠子似的把线索连起来了嘛!这多有意思呀,对吧?3. 嘿呀,有时候遇到难题不要怕,咱要学会分解它呀!就像把一个大怪物拆成小怪物逐个击破!比如说几何证明题,一下子可能看不出什么来,但我们把图形分解开,看看各个部分的特点和关系,是不是就能找到突破点啦?像证明两个三角形全等,不就是一点点找条件嘛,这多有成就感呀!4. 哎呀,做题要细心呀!可别像个小马虎似的丢三落四。
比如算个概率题,要是漏算一种情况,那可就全错啦!这多可惜呀!就像搭积木,少一块儿都不完整呀!所以一定得认真仔细,别让到手的分数飞啦!5. 哇哦,解题思路要灵活呀!不要死脑筋哦!数学就像个大宝藏,有好多路可以通往答案呢!比如用换元法解一些式子,把复杂的东西换成简单的,这多棒呀!就好比我们走迷宫,找到一条快捷通道,那感觉爽不爽?绝对爽呀!6. 嘿,大家要记住呀,多做题才能熟练掌握技巧呢!就跟练武一样,只有不断练习才能成为高手。
每次做题都是一次挑战和进步的机会!比如说数列的求和,做的多了各种方法都烂熟于心啦,遇见题目就迎刃而解啦!这就是积累的力量呀!我的观点结论就是:高中数学解题思路和技巧太重要啦,掌握了它们就能在数学的海洋里畅游无阻呀!。
高中数学各类题型解题技巧
一、选择填空题选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一:三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二:解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
《教材帮》帮你全面总结知识点,再也不用担心公式知识点记不住了!专题三:数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
高中数学解题技巧有哪些
高中数学解题技巧有哪些高中数学解题技巧有哪些1高中数学解题技巧归纳与总结①背例题:首先背例题的主要原因就是能够在考场上遗忘了一些重要公式的时候,可以用题来套公式,这样可以更好的帮助你理解试题,更好的解决试题中遇到的问题。
②课前预习:很多人可能觉着课前预习对于巧妙解题并没有什么影响,实则不然,课前预习主要是让你了解课内出现的一些知识,自然就会有更多的方法来解答自己不会的题目啦。
③背基础:基础知识永远是解题过程中遇到的最多的,所以背诵基础知识能够帮助你更好的理解试题。
④综合理解逐一突破:简单来讲就是由简到难,很多试题都是用简单的公式来变换,这也要求学生们能够举一反三,这样才能更好的解决问题。
高中数学解题技巧主要有以下几种方法1、配方法:把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
3、换元法:所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数。
高考语文阅读题答题技巧1、*开头一段的某一句话在*中的作用,中间某段或句的作用,最后一段某句的作用。
对于这种题型我们可以从两个方面来回答:对于第一段的问题,从结构上来说,是落笔点题,点明*的中心,开门见山,总领全文,或起到引起下文的作用;从内容上来说,是为下文作铺垫和衬托,为后面某某内容的描写打下伏笔。
中间某段的问题,在结构上是起到承上启下、过渡的作用。
最后一段或某句的作用是总结全文,点明*主旨,让人回味无穷,并与题目相照应。
2、*表达了作者什么样的思想感情?这需要根据*的具体内容来回答,常见的有歌颂、赞美、热爱、喜爱、感动、高兴、渴望、震撼、眷念、惆怅、淡淡的忧愁、惋惜、思念(怀念)故乡和亲人、或者是厌倦、憎恶、痛苦、惭愧、内疚、痛恨、伤心、悲痛、遗憾等。
高中数学答题掌握五大思路
高中数学答题掌握五大思路高中数学在解题时,掌握解题思路是解答数学题时不可缺少的一步。
高中数学答题掌握五大思路函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
河北辅立学校成立于2012年,占地1万平方米,是辅立教育科技研究院重点线下全日制实践基地。
以学习金字塔理论、及时反馈理论为主要依据,利用数据技术(Data Technology),采取码课PAD教学及军事化封闭管理,帮助学生弯道超车,快速提升高考成绩。
高中数学答题掌握五大思路特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
高中数学各类问题答题技巧方法,整个高中都能用.doc
高中数学各类问题答题技巧方法,整个高中都能用1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学各类问题答题技巧与方法
高中数学各类问题答题技巧与方法,整个高中都能用本文适合高中数学成绩不理想,想迅速提升的同学主要讲高中数学解题方法、答题思路,平时考试都适用主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组基本思路是:把√m化成完全平方式。
即:方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高考数学的六个答题方法
高考数学的六个答题方法高考数学的六个答题方法1.调整好状态,控制好自我。
(1)保持清醒。
数学的考试时间在下午,建议同学们正午最好歇息半个小时或一个小时,此间尽量放松自己,从心理上暗示自己:只有静心歇息才能保证考试时清醒。
(2)准时到位。
今年的答题卡不再独自发放,要求答在答题卷上,但发卷时间应在开考前5-10 分钟内。
建议同学们提早15-20 分钟抵达考场。
2.通览试卷,建立自信。
刚拿到试卷,一般心情比较紧张,此时不易仓促作答,应从头到尾、通览全卷,哪些是必定会做的题要成竹在胸,先易后难,稳固情绪。
答题时,见到简单题,要仔细,莫忘乎所以。
面对偏难的题,要耐心,不可以急。
3.提升解选择题的速度、填空题的正确度。
数学选择题是知识灵巧运用,解题要求是只需结果、不要过程。
所以,逆代法、估量法、特例法、清除法、数形联合法尽显威力。
12 个选择题,若能掌握得好,简单的一分钟一题,难题也不超出五分钟。
因为选择题的特别性,由此提出解选择题要求“快、准、巧”,禁忌“小题大做”。
填空题也是只需结果、不要过程,所以要力求“完好、严实”。
4.审题要慢,做题要快,下手要准。
题目自己就是破解这道题的信息源,所以审题必定要逐字逐句看清楚,只有仔细地审题才能从题目自己获取尽可能多的信息。
找到解题方法后,书写要简洁简要,快速规范,不拖拖拉拉,切记高考评分标准是按步给分,要点步骤不可以丢,但同意合理省略非要点步骤。
答题时,尽量使用数学语言、符号,这比文字表达要节俭而谨慎。
5.保质保量拿下中低等题目。
中下题目往常占全卷的80%以上,是试题的主要部分,是考生得分的主要根源。
谁能保质保量地拿下这些题目,就已算是打了个获胜,有了成功在握的心理,对攻陷高难题会更放得开。
6.要切记分段得分的原则,规范答题。
会做的题目要特别注意表达的正确、考虑的周祥、书写的规范、语言的科学,防备被“分段扣点分”。
难题要学会:(1)缺步解答:聪慧的解题策略是,将它们分解为一系列的步骤,或许是一个个小问题,能解决多少就解决多少,能演算几步就写几步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学六种解题技巧与五种数学答题思
路
高中数学六种解题技巧与五种数学答题思路
六种解题技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范
围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方差、标准差公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意零散的的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用和或,隔开(知函数求单调
区间,不带等号;知单调性,求参数范围,带等号);
2、注意最后一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
五种数学答题思路
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分
一、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
二、数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的法宝,又是优化解题途径的良方,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
三、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在
普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
四、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果
五、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
建议同学们在分类讨论解题时,要做到标准统一,不重不漏。