操作系统内存可变分区管理实验报告
操作系统实验-可变分区存储管理
作业一实验一 :可变分区存储管理(一) 实验题目编写一个C 程序,用char *malloc(unsigned size)函数向系统申请一次内存空间(如size=1000,单位为字节),模拟可变分区内存管理,实现对该内存区的分配和释放管理。
(二) 实验目的1.加深对可变分区的存储管理的理解;2.提高用C 语言编制大型系统程序的能力,特别是掌握C 语言编程的难点:指针和指针作为函数参数;3.掌握用指针实现链表和在链表上的基本操作。
(三)程序代码 #include<malloc.h> #include<stdio.h> #include<string.h>#define new(type) (type *)malloc(sizeof(type))typedef struct _map {unsigned int size; char *address; struct _map *next; struct _map *prev;(a)(b)(c)(d)图2-9释放区与前后空闲区相邻的情况} map;typedef map *pmap;typedef struct _mem{unsigned int totalSize;char* space;pmap head;pmap cMap;} mem;typedef mem *pmem;pmem createMem(unsigned int to_size) //创建内存区域{pmem newMem=new(mem);pmap newHead=new(map);newMem->totalSize=to_size;newHead->size=to_size;newHead->address=newMem->space;newHead->next=newHead;newHead->prev=newHead;newMem->head=newHead;newMem->cMap=newHead;return newMem;}void freeMem(pmem m){pmap map,cMap;pmap head=m->head;free(map->address);for(map=head;map->next!=head;){cMap=map;map=cMap->next;free(cMap);}free(m);}char* lmalloc(pmem cMem,unsigned int size) //分配函数{if(size>1000){printf("内存容量超出范围!\n"); //当需要分配的内存空间已经大于实际空间时出错}else{pmap p=cMem->cMap;char* rAddr;if(size==0)return NULL;while(p->size<size){if(p->next==cMem->cMap)return NULL;p=p->next;}rAddr=p->address;p->size-=size;p->address+=size;if(p->size==0){p->prev->next=p->next;p->next->prev=p->prev;cMem->cMap=p->next;if(cMem->head==p)cMem->head=p->next;if(p->next!=cMem->head)free(p);}else{cMem->cMap=p;}return rAddr;}}void lfree(pmem m,unsigned int size,char* addr) //释放函数{pmap nextMap,prevMap,newMap;if(addr<m->space || addr>=m->space+m->totalSize){fprintf(stderr,"地址越界\n"); //释放空间时,大小输入出错return;}nextMap=m->head;while(nextMap->address<addr){nextMap=nextMap->next;if(nextMap==m->head)break;}prevMap=nextMap->prev;if(nextMap!=m->head && prevMap->address+prevMap->size==addr) //第一种情况{prevMap->size+=size;if(addr+size==nextMap->address) //第二种情况{prevMap->size+=nextMap->size;prevMap->next=nextMap->next;prevMap->next->prev=prevMap;if(nextMap==m->cMap){m->cMap=prevMap;}free(nextMap);nextMap=NULL;}}else{if(addr+size==nextMap->address) //第三种情况{nextMap->address-=size;nextMap->size+=size;}else //第四种情况{newMap=new(map);newMap->address=addr;newMap->size=size;prevMap->next=newMap;newMap->prev=prevMap;newMap->next=nextMap;nextMap->prev=newMap;if(nextMap==m->head)m->head=newMap;}}}void printMem(pmem m) //打印函数{pmap map=m->head;printf("\空闲内存空间:\n\-----------------------\n\大小起始地址\n");do{if(map==m->cMap)printf("-> ");elseprintf(" ");printf("%10u %10u\n",map->size,map->address);map=map->next;}while(map!=m->head);printf("-----------------------\n");}void main() //主函数{printf("--------------------------------------------------------\n");printf("请选择操作:分配内存(m) or 释放内存(f) or 打印内存表(p)\n");printf("--------------------------------------------------------\n");typedef enum{cmdMalloc,cmdFree,cmdPrint,cmdHelp,cmdQuit,cmdInvalid} cmdType; pmem m=createMem(1000);char cmd[20];char *addr;unsigned int size;cmdType type;while(1){scanf("%s",cmd);if(cmd[1]=='\0'){switch(cmd[0]){case 'm':case 'M':type=cmdMalloc;break;case 'f':case 'F':type=cmdFree;break;case 'p':case 'P':type=cmdPrint;break;}}else{if(!strcmp(cmd,"malloc"))type=cmdMalloc;else if(!strcmp(cmd,"free"))type=cmdFree;else if(!strcmp(cmd,"print"))type=cmdPrint;}switch(type){case cmdMalloc:scanf("%u",&size);lmalloc(m,size);printMem(m);break;case cmdFree:scanf("%u %u",&size,&addr);lfree(m,size,addr);printMem(m);break;case cmdPrint:printMem(m);break;return;}}}(四)程序结果。
可变分区管理实验
实验三、可变分区内存管理实验环境:实验环境一:Windows平台实验时间:6小时实验目的:体会可变分区内存管理方案,掌握此方案的内存分配过程、内存回收过程和紧凑算法的实现。
实验目标:编制一个程序模拟实现可变分区内存管理。
实验时,假设系统内存容量为1000KB。
分配时使用malloc(pid, length)函数实现,作业释放内存时使用mfree(handle)函数实现,内存情况输出用mlist()函数实现。
实验步骤:1、编写主界面,界面上有三个选项:分配内存、回收内存、查看内存。
选择分配内存时,要求输入作业的进程号和作业长度,然后使用malloc函数分配内存,并报告内存分配结果。
回收内存时要求输入进程号,使用mfree函数实现回收。
查看内存时,使用mlist函数实现输出内存使用情况和空闲情况。
2、编写malloc(pid, length)函数,实现进程pid申请length KB内存,要求程序判断是否能分配,如果能分配,要把分配内存的首地址handle输出到屏幕上。
不能分配则输出字符串“NULL”。
要考虑不能简单分配时,是否符合紧凑的条件,如符合则采用紧凑技术,然后再分配。
分配时可在最佳适应算法、最差适应算法和首次适应算法中任选其一。
3、编写mfree(handle)函数,释放首地址为handle的内存块。
释放成功返回Success,否则返回Failure。
4、编写mlist()函数,要求输出内存使用情况和空闲情况。
输出的格式为:ID Address Length ProcessID 内存分区号Address 该分区的首地址Length 分区长度Process 如果使用,则为使用的进程号,否则为NULL实验结果:实验步骤2的实现过程是:实验步骤2中紧凑算法是如何实现的?实验步骤3中分别要考虑多少种情况?实验步骤3的实现过程是:实验步骤4的实现过程是:实验步骤4的结果是什么?实验报告:(1)完成实验结果中的问题。
实现内存分配实验报告(3篇)
第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。
2. 掌握动态分区分配方式中的数据结构和分配算法。
3. 通过编写程序,实现内存分配和回收功能。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。
内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。
(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。
(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。
2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。
动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。
(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。
(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。
四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。
(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。
(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。
(2)对比两种算法在内存分配效率、外部碎片等方面的差异。
五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。
操作系统存储管理实验报告
操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
操作系统实验-可变分区存储管理
实验四可变分区存储管理学时:4学时⒈实验内容主存储器空间分配实验。
⒉实验目的通过首次适应算法、最佳适应算法和最坏适应算法实现主存空间的分配,可以使读者可好地理解存储分配算法。
⒊实验题目编写一段程序来模拟可变分区管理方法。
要求能通过文件形式定义空闲区表;能随意输入作业及需要分配的空间;能分别使用首次适应算法、最佳适应算法和最坏适应算法对输入的作业进行空间分配;能显示系统空闲表和已分配空间表。
⒋实验提示⑴可变分区方式是按作业需要的主存空间大小来分区。
当装入一个作业时,首先要查看是否有足够的空闲空间来分配,若有则按指定的分配方式进行分配;否则作业不能装入。
随着作业的装入和撤离主存空间被分为若干个大大小小的不连续的区间,为了表明各区间的状态可以用一个内存分区表如表1所示来表示。
表1 内存分区表这样我们可以定义一个如下的结构表示内存分区信息。
typedef struct node{int start; //起始地址int length; //长度char tag[20]; //标志}job;⑵可变分区的三种算法就是为作业分配主存空间的方法。
●首次适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入第一个满足条件的空间中去。
●最佳适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入满足条件的空闲空间中最小的一个空间中去。
●最坏适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入满足条件的空闲空间中最大的一个空间中去。
从三种算法的说明可以看出,分配空间的过程主要可以分两步:●查询所有满足作业需求的空间块。
●按照指定的算法将作业装入空间块中。
⑶在操作的最初主存空间实际就是一个大的空闲区,不涉及到如何分配的问题。
为直接模拟运行一段时间后主存中出现了多个空闲块的状态,题目要求从一个文件读入空闲区表。
在这里我们可以设计一个空闲区表文件的结构为如表2所示:表2 空闲区表这样也可以方便地将空闲表一次读入程序中,而不必再一个个的输入。
可变分区存储管理实验报告
实验三可变分区存储管理
一、实验目的
通过编写可变分区存储模拟系统,掌握可变分区存储管理的基本原理,分区的分配与回收过程。
二、实验内容与步骤
1.打开程序,所得程序界面窗口如图3-1:
图3-1
2.首先选择算法:是否使用搬家算法,可以通过界面上的按钮或算法菜单栏进行
选择;如果不先选择算法,其他功能将被隐藏;注意:在程序执行过程中,不可以重新选择算法。
3.进行初始化:设置内存大小,可以选择默认值400KB;确定内存大小前,其他
操作将被屏蔽。
4.初始化内存大小以后,就可以进行添加进程操作。
5.添加一个进程后,撤消进程功能被激活,可以撤消一个选定的进程或所有的进
程(图3-2)
图3-2
6.查询功能:可以通过按钮或菜单栏显示内存状态图形、空闲区图表,还可以在内存状态条里闪烁显示某一在空闲区图表选中的空闲区。
7.内存不足但经过搬家算法可以分配内存空间给进程,将有如下(图3-3)提示:
图3-3
8.内存空间不足也有相应提示。
9.重置或退出。
三、实验结果
第一至四组数据测试采用搬家算法,第二至八组数据测试不采用搬家算法。
第一组测试数据:(测试内存错误输入) 选择搬家算法,内存大小:0KB/-50KB/空
第二组测试数据:(测试内存空间不够)选择搬家算法,内存大小:400KB
第三组测试数据:(测试是否采用最佳适应法)选择搬家算法,内存大小:200KB 第四组数据:(测试搬家算法)选择搬家算法,内存大小:400KB
第五组数据至第八组数据:不采用搬家算法,内存大小:分别与第一至第四组数据相同,操作过程:分别与第一至第四组数据相同。
操作系统内存管理实验报告
操作系统内存管理实验报告操作系统内存管理实验报告引言:操作系统是计算机系统中的核心软件,负责管理计算机系统的各种资源,其中内存管理是操作系统的重要功能之一。
内存管理的目标是有效地管理计算机的内存资源,提高计算机系统的性能和可靠性。
本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
一、实验背景计算机内存是计算机系统中的重要组成部分,它用于存储程序和数据。
在操作系统中,内存被划分为多个不同的区域,每个区域有不同的用途和访问权限。
内存管理的主要任务是为进程分配内存空间,并进行合理的管理和调度,以提高系统的性能和资源利用率。
二、实验目的本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
具体目标包括:1. 设计和实现一个简单的内存分配算法,实现内存的动态分配和回收;2. 实现内存的地址映射机制,实现虚拟地址到物理地址的转换;3. 实现内存保护机制,确保进程之间的内存隔离和安全性;4. 实现内存的页面置换算法,提高内存的利用率和性能。
三、实验设计与实现1. 内存分配算法为了实现内存的动态分配和回收,我们设计了一个简单的内存分配算法。
该算法根据进程的内存需求和剩余内存空间的大小,选择合适的内存块进行分配。
当进程结束或释放内存时,将已使用的内存块标记为空闲状态,以便下次分配。
2. 地址映射机制为了实现虚拟地址到物理地址的转换,我们设计了一个地址映射机制。
该机制使用页表来记录虚拟地址与物理地址的映射关系。
当进程访问内存时,操作系统根据页表将虚拟地址转换为物理地址,并进行内存访问。
3. 内存保护机制为了确保进程之间的内存隔离和安全性,我们实现了一个简单的内存保护机制。
该机制通过设置每个进程的访问权限,限制进程对内存的读写操作。
只有获得相应权限的进程才能访问内存,确保进程之间的数据安全和隔离。
操作系统实验之内存管理实验报告
操作系统实验之内存管理实验报告一、实验目的内存管理是操作系统的核心功能之一,本次实验的主要目的是深入理解操作系统中内存管理的基本原理和机制,通过实际编程和模拟操作,掌握内存分配、回收、地址转换等关键技术,提高对操作系统内存管理的认识和实践能力。
二、实验环境本次实验在 Windows 操作系统下进行,使用 Visual Studio 作为编程环境,编程语言为 C++。
三、实验原理1、内存分配算法常见的内存分配算法有首次适应算法、最佳适应算法和最坏适应算法等。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲分区进行分配;最佳适应算法则选择大小最接近需求的空闲分区;最坏适应算法选择最大的空闲分区进行分配。
2、内存回收算法当进程结束释放内存时,需要将其占用的内存区域回收至空闲分区链表。
回收过程中需要考虑相邻空闲分区的合并,以减少内存碎片。
3、地址转换在虚拟内存环境下,需要通过页表将逻辑地址转换为物理地址,以实现进程对内存的正确访问。
四、实验内容1、实现简单的内存分配和回收功能设计一个内存管理模块,能够根据指定的分配算法为进程分配内存,并在进程结束时回收内存。
通过模拟多个进程的内存请求和释放,观察内存的使用情况和变化。
2、实现地址转换功能构建一个简单的页式存储管理模型,模拟页表的建立和地址转换过程。
给定逻辑地址,能够正确计算出对应的物理地址。
五、实验步骤1、内存分配和回收功能实现定义内存分区的数据结构,包括起始地址、大小、使用状态等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
创建空闲分区链表,初始化为整个内存空间。
模拟进程的内存请求,调用相应的分配算法进行内存分配,并更新空闲分区链表。
模拟进程结束,回收内存,处理相邻空闲分区的合并。
2、地址转换功能实现定义页表的数据结构,包括页号、页框号等信息。
给定页面大小和逻辑地址,计算页号和页内偏移。
通过页表查找页框号,结合页内偏移计算出物理地址。
实验报告三 可变分区内存管理
实验三可变分区内存管理班级:网络工程081 学号:0813072013 姓名:刘国画实验日期:2010.11.18实验内容可变分区内存管理。
实验目的(1)体会可变分区内存管理方案。
(2)掌握此方案的内存分配过程、内存回收过程和紧凑算法的实现的实现。
实验目标:编制一个程序模拟实现可变分区内存管理。
实验时,假设系统内存容量为100KB。
分配时使用my_malloc(i, j)函数实现,作业释放内存时使用my_free(handle)函数实现,内存情况输出用my_memlist( )实现。
实验步骤:1.编写主界面,界面上有三个选项:分配内存、回收内存、查看内存。
选择分配内存时,要求输入作业的进程号和作业长度,然后使用my_malloc分配内存,报告内存分配结果。
回收内存时要求输入进程号,使用my_free实现回收。
查看内存时,使用my_memlist实现输出内存使用情况和空闲情况。
2.编写my_malloc(i, j)函数,实现进程i申请j KB内存,要求程序判断是否能分配,如果能分配,要把分配的首地址handle输出到屏幕上。
不能分配输出字符串“NULL”。
要考虑不能简单分配时,是否符合紧凑的条件,如符合则采用紧凑技术。
然后再分配。
分配时可采用最佳适应算法。
3.编写my_free(handle)函数,释放首地址为handle的内存块。
释放成功返回Success,否则返回Failure。
4.编写my_memlist( )函数,要求输出内存使用情况和空闲情况。
5.内存情况输出的格式为:ID Address Len Process其中:ID:内存分区号Address:该分区的首地址Len:分区长度Process:如果使用,则为使用的进程号,否则为NULL实验设计数据结构设计:可变分区管理方式预先不将内存划分为几个区域,而是将内存除操作系统占用区域外的空间看做一个大的空闲区。
实现可变内存的分配和回收主要考虑:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。
可变分区存储管理实验报告
沈阳工程学院学生实验报告实验室名称:信息工程系信息安全实验室实验课程名称:操作系统实验项目名称:可变分区存储管理班级:计专本121 姓名:郑永凯学号:2012461127 实验日期:2013 年5 月27日实验台编号:F608指导教师:张楠批阅教师(签字):成绩:#include<stdio.h> #include<stdlib.h> #define NULL 0#define getjcb(type) (type*)malloc(sizeof(type))#define getsub(type) (type*)malloc(sizeof(type))int num,num2; //要调度的作业数和要回收的区域数int m=0; //已分配作业数int flag; //分配成功标志intisup,isdown; //回收区域存在上邻和下邻的标志int is=0;structjcb{char name[10];char state;intntime; //所需时间int size; //所需空间大小intaddr; //所分配分区的首地址structjcb *link;} *ready =NULL, *p,*q,*as=NULL;//作业队列ready,已分配作业队列as typedefstructjcb JCB;struct subarea{ //分区块char name[10];intaddr; //分区首地址int size; //分区大小char state;struct subarea *link;} *sub=NULL,*r,*s,*cur; //空闲分区队列sub,当前分区指针cur typedefstruct subarea SUB;void sort() /* 建立对作业按到达时间进行排列的函数,直接插在队列之尾*/ {JCB *first;if(ready==NULL) ready=p;else{first=ready;while(first->link!=NULL)first=first->link;first->link=p;p->link=NULL;}}void sort3() /*建立对已分配作业队列的排列函数,直接插在队列之尾*/ {JCB *fir;if(as==NULL) as=q;else{fir=as;while(fir->link!=NULL)fir=fir->link;fir->link=q;q->link=NULL;}m++;}void input() /* 建立作业控制块函数*/{int i;printf("\n请输入要调度的总作业数:");scanf("%d",&num);for(i=0;i<num;i++){printf("\n作业号No.%d:\n",i);p=getjcb(JCB);printf("\n输入作业名:");scanf("%s",&p->name);printf("\n输入作业的大小:");scanf("%d",&p->size);printf("\n输入作业所需运行时间:");scanf("%d",&p->ntime);p->state='w';p->link=NULL;sort(); /* 调用sort函数*/}printf("\n 按任一键继续......\n");getch();}void input2() /*建立要回收区域的函数*/{JCB *k;int has;q=getjcb(JCB);printf("\n输入区域名(作业名):");scanf("%s",&q->name);p=as;while(p!=NULL){if(strcmp(p->name,q->name)==0) /*在已分配作业队列中寻找*/{q->addr=p->addr;q->size=p->size;has=1; /*输入作业名存在标志位*/if(p==as) as=p->link; /*在已分配作业队列中删除该作业*/ else{k=as;while(k->link!=p) k=k->link;k->link=k->link->link; /*删除*/}printf("输出该作业首地址:%d\n",q->addr);printf("输出该作业大小:%d\n\n",q->size);q->link=NULL;break;}else{p=p->link; has=0;} /*输入作业名不存在标志*/}if(has==0){printf("\n输入作业名错误!请重新输入!\n");input2();}}void print(){printf("\n\n\n\n");printf("\t\t**************************************\n");printf("\t\t\t三.存储管理实验演示\n");printf("\t\t**************************************\n\n\n");printf("\t\t\t\t123456\n");printf("\t\t\t\t信自学院\n");printf("\t\t\t\t计专本121\n");printf("\t\t\t\t2012461119\n");printf("\t\t\t\t2013年5月\n");printf("\n\n\n");printf("\t\t\t按任意键进入演示");getch();system("cls");}void init_sub() /*初始化空闲分区表*/{r=getsub(SUB);strcpy(r->name,"0"); r->addr=5; r->size=10; r->state='F';sub=r;s=getsub(SUB);strcpy(s->name,"1"); s->addr=20; s->size=120; s->state='F';sub->link=s;r=s;s=getsub(SUB);strcpy(s->name,"2"); s->addr=160; s->size=40; s->state='F';r->link=s;r=s;s=getsub(SUB);strcpy(s->name,"3"); s->addr=220; s->size=10; s->state='F';r->link=s;r=s;s=getsub(SUB);strcpy(s->name,"4"); s->addr=250; s->size=20; s->state='F';r->link=s;r=s;s=getsub(SUB);strcpy(s->name,"5"); s->addr=300; s->size=80; s->state='F';r->link=s;s->link=0;}//--------------------------------------------------------------------------void disp() /*空闲分区表的显示函数*/{printf("\n\n");printf("\t\t 分区首地址长度状态\n");r=sub;while(r!=NULL){printf("\t\t %s\t\t%d\t\t%d\t\t%c\n",r->name,r->addr,r->size,r->state);r=r->link;}printf("\n");}void disp2() /*显示已分配内存的作业表函数*/{printf("\n\n");printf("\t\t 作业名首地址长度状态\n");p=as;while(p!=NULL){printf("\t\t %s\t\t%d\t\t%d\t\t%c\n",p->name,p->addr,p->size,p->state);p=p->link;}printf("\n\n");}void assign2(JCB *pr) /*首次适应作业分区*/{SUB *k;r=sub; /*从空闲表头开始寻找*/while(r!=NULL){if(((r->size)>(pr->size))&&(r->state=='F')) /*有空闲分区大于作业大小的情况*/ {pr->addr=r->addr;r->size-=pr->size;r->addr+=pr->size;flag=1; /*分配成功标志位置1*/q=pr;q->state='r';sort3(); /*插入已分配作业队列*/printf("作业%s的分区为[%s],首地址为%d.\n",p->name,r->name,pr->addr);break;}else if(((r->size)==(pr->size))&&(r->state=='F')) /*有空闲分区等于作业大小的情况*/ {pr->addr=r->addr;flag=1; /*分配成功标志位置1*/q=pr;sort3(); /*插入已分配作业队列*/s=sub; /*空闲分区已完成分配,应删除*/while(s->link!=r) s=s->link;s->link=s->link->link; /*删除空闲分区*/printf("作业%s的分区为[%s],首地址为%d.\n",p->name,r->name,pr->addr);break;}else{r=r->link; flag=0;}}if(flag==0) /*作业过大的情况*/{printf("作业%s长度过大,内存不足,分区分配出错!\n",p->name);is=1;}}void reclaim2(JCB *pr) /*首次适应与循环首次适应区域回收*/{SUB *k;r=sub;while(r!=NULL){if(r->addr==((pr->addr)+(pr->size))) /*回收区域有下邻*/{pr->size+=r->size;s=sub;isdown=1; /*下邻标志位置1*/while(s!=NULL){if(((s->addr)+(s->size))==(pr->addr)) /*有下邻又有上邻*/{s->size+=pr->size;k=sub;while(k->link!=r) k=k->link;k->link=k->link->link;isup=1; /*上邻标志位置1*/break;}else{s=s->link; isup=0;} /*上邻标志位置0*/}if(isup==0) /*有下邻无上邻*/{r->addr=pr->addr;r->size=pr->size;}break;}else{r=r->link; isdown=0;} /*下邻标志位置0*/}if(isdown==0) /*区域无下邻*/{s=sub;while(s!=NULL){if(((s->addr)+(s->size))==(pr->addr)) /*无下邻但有上邻*/{s->size+=pr->size;isup=1; /*上邻标志位置1*/break;}else{ s=s->link; isup=0;} /*上邻标志位置0*/}if(isup==0) /*无下邻且无上邻*/{k=getsub(SUB); /*重新生成一个新的分区结点*/strcpy(k->name,pr->name);k->addr=pr->addr;k->size=pr->size;k->state='n';r=sub;while(r!=NULL){if((r->addr)>(k->addr)) /*按分区首地址排列,回收区域插在合适的位置*/{if(r==sub) /*第一个空闲分区首址大于回收区域的情况*/ { k->link=r; sub->link=k; }else{s=sub;while(s->link!=r) s=s->link;k->link=r;s->link=k;}break;}else r=r->link;}if(r==NULL) /*所有空闲分区的首址都大于回收区域首址的情况*/ {s=sub;while(s->link!=NULL) s=s->link;s->link=k;k->link=NULL;}}}printf("\n区域%s己回收.",pr->name);}menu(){printf("\n\n\n\t\t**************************************\n");printf("\t\t\t存储管理实验演示\n");printf("\t\t**************************************\n\n\n");printf("\t\t\t 1. 显示空闲分区\n");printf("\t\t\t 2. 分配和回收作业\n");printf("\t\t\t 0. 退出\n");printf("\t\t\t请选择你要的操作:");switch(getchar()){case '1':system("cls");disp();getch();system("cls");menu();break;case '2':system("cls");printf("\n首次适应算法");input();printf("\n");while(num!=0){p=ready;ready=p->link;p->link=NULL;assign2(p);num--;}printf("\n显示回收后的空闲分区表和已分配作业表...");getch();printf("\n\t\t 完成分配后的空闲分区表\n"); disp();printf("\n\t\t 已分配作业表\n"); disp2();if(is==0)printf("\n 全部作业已经被分配内存.");else printf("\n 作业没有全部被分配内存.\n");printf("\n\n按任意键进行区域回收.");printf("\n");while(as!=NULL){getch();input2();printf("按任意键继续...");getch();printf("\n");reclaim2(q);printf("\n显示回收后的空闲分区表和已分配作业表...");getch();printf("\n\t\t 回收后的空闲分区表\n"); disp();printf("\n\t\t 已分配作业表\n"); disp2();printf("\n继续回收...(Enter)");}printf("\n所有已分配作业已完成!");printf("\nPress any key to return...");getch();system("cls");menu();break;case '0':system("cls");break;default:system("cls");menu();}}void main() /*主函数*/{init_sub();print();menu();}。
操作系统实验 内存管理
操作系统实验报告计算机学院(院、系)网络工程专业082 班组课学号20 姓名区德智实验日期教师评定实验四内存管理一、实验目的通过实验使学生了解可变式分区管理使用的主要数据结构,分配、回收的主要技术,了解最优分配、最坏分配、最先分配等分配算法。
基本能达到下列具体的目标:1、掌握初步进程在内存中的映像所需要的内存需求。
2、内存的最先分配算法首先实现,再逐步完成最优和最坏的分配算法。
二、实验内容1、在进程管理的基础上实现内存分配。
2、运用java实现整体的布局与分配内存时的动态图画显示。
三、实验步骤1.构建一个Process的对象类,每分配一次内存就实例化一个对象。
这对象包含分配内存的名字,内存大小(byte),绘画的起点像素,绘画的终点像素。
主要代码:public class Process {private String name;private int size;private int beginPx;private int endPx;public int getBeginPx() {return beginPx;}public void setBeginPx(int beginPx) {this.beginPx = beginPx;}public int getEndPx() {return endPx;}public void setEndPx(int endPx) {this.endPx = endPx;}public String getName() {return name;}public void setName(String name) { = name;}public int getSize() {return size;}public void setSize(int size) {this.size = size;}}2.根据用户输入而分配内存的大小,若输入的大小大于目前可分配内存的大小则拒绝分配操作,否则增加一个新进程入链表中,并在已分配表中增加进程的名字,更新剩余内存大小。
可变分区存储管理+实验报告+程序+设计思路和感悟概要
//已分分区表初始化
for(i=0;i<n;i++)
used_table[i].flag=0;
while(1)
{
cout<<"选择功能项(0-推出,1-分配内存,2-回收内存,3-显示内存)"<<endl;
cout<<"选择功项(0~3):";
cin>>a;
switch(a)
{
case 0: exit(0); //a=0程序结束
}
//修改分配区表
i=0;
while(used_table[i].flag!=0&&i<n) //寻找空表目
{
i++;
if(i>=n)
{
cout<<"无表目填写已分分区,错误"<<endl;
//修正空闲区表
if(free_table[k].flag==0) //前面找到的是整个空闲区
free_table[k].flag=1;
}used_table[n]; //已分分区表
struct
{
float address; //空闲区起始地址
float length; //空闲区长度,单位为字节
int flag; //空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配
内存管理实验报告-可变分区
沈阳工程学院
学生实验报告
实验室名称:计算机实验室实验课程名称:操作系统
实验项目名称:存储管理(1)实验日期:2016年月日
班级:姓名:学号:
指导教师:曲乐声批阅教师:成绩:
一.实验目的
通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。
二.实验设备
PC机一台,WIN-TC软件。
三.实验项目
编写程序实现采用可变分区方法管理内存。
1、在该实验中,采用可变分区方式完成对存储空间的管理(即存储空间的分配与回收工作)。
2、设计用来记录主存使用情况的数据结构:已分区表和空闲分区表或链表。
3、在设计好的数据结构上设计一个主存分配算法。
4、在设计好的数据结构上设计一个主存回收算法。
其中,若回收的分区有上邻空闲分区和(或)下邻空闲分区,要求合并为一个空闲分区登记在空闲分区表的一个表项里。
5、(附加)若需要可以实现程序的浮动,对内存空间进行紧凑。
四.实验代码(附页)
五.实验结果
成绩评定
程序正确性 2.5 2 1.5 1 0.5 0
结果正确性 2.5 2 1.5 1 0.5 0
分析正确性 5 4 3 2 1 0
成绩
·1·。
《操作系统》实验报告2 可变分区存储管理方式的内存分配回收
scanf("%d",&a);
switch(a)
{case0;exit(0);
case1;
printf ("输º?入¨?作Á¡Â业°¦Ì名?J和¨ª作Á¡Â业°¦Ì所¨´需¨¨长¡è度¨¨xk:êo");
scanf("%*c%c%f",&J,&xk);
实验项目
名称
可变分区存储管理方式的内存分配回收
实验
目的及要求
1、深入了解采用可变分区存储管理方式的内存分配回收的实现
实验
内容
编写程序完成可变分区存储管理方式的内存分配回收
实验步骤
1、确定内存空间分配表
2、采用最优适应算法完成内存空间的分配和回收
3、编写主函数对所做工作进行测试
实验环境
Windows XP、visualstudio 2005
}
i++;
}
if(k!=-1)
if(j!=1)
{free_table[k].length=free_table[j].length+free_table[k].length+L;
free_table[j].flag=0;
}
else
free_table[k].length=free_table[k].length+L;
L=used_table[s].length;
j==1;k=-1;i=0;
while(i<m&&(j==-1||k==-1))
{
if(free_table[i].glag==0)
可变分区存储管理方式的内存分配和回收实验报告
可变分区存储管理方式的内存分配和回收实验报告【实验报告】一、实验目的了解可变分区存储管理方式的内存分配和回收过程,了解最优算法的原理和实现方法,掌握最优算法在可变分区存储管理方式下的内存分配和回收操作。
二、实验原理最优算法的分配过程如下:1.初始化内存分区表,将整个内存分为一个未分配的分区。
2.当有新的进程请求内存时,遍历内存分区表,选择满足分配条件且剩余空间最小的分区进行分配。
3.更新分区表中相应分区的空闲空间,并将分配出去的空间标记为已分配。
最优算法的回收过程如下:1.当一些进程结束或释放内存时,遍历分区表,找到对应的已分配分区。
2.将该分区标记为空闲,并进行合并操作,合并相邻的空闲分区。
3.更新分区表。
三、实验步骤1.初始化内存分区表,将整个内存设为一个未分配的分区。
2.依次输入若干个进程的大小。
3.按照最优算法进行内存分配和回收。
4.输出每个进程分配的内存空间和内存分区表的状态。
四、实验结果与分析输入进程大小为:{100KB,200KB,50KB,150KB}初始内存分区表:{未分配,800KB}进程1申请100KB,满足分配条件的最小剩余空间为300KB,分配给进程1后,更新分区表:分配给进程1的内存:{100KB}更新后的内存分区表:{已分配,未分配,700KB}进程2申请200KB,满足分配条件的最小剩余空间为300KB,分配给进程2后,更新分区表:分配给进程2的内存:{200KB}更新后的内存分区表:{已分配,已分配,未分配,500KB}进程3申请50KB,满足分配条件的最小剩余空间为150KB,分配给进程3后,更新分区表:分配给进程3的内存:{50KB}更新后的内存分区表:{已分配,已分配,已分配,未分配,450KB}进程4申请150KB,满足分配条件的最小剩余空间为150KB,分配给进程4后,更新分区表:分配给进程4的内存:{150KB}更新后的内存分区表:{已分配,已分配,已分配,已分配,未分配,300KB}进程2结束,释放内存,回收进程2占用的空间,更新分区表:释放进程2的内存:{200KB}合并空闲分区后的内存分区表:{已分配,已分配,未分配,300KB}进程3结束,释放内存,回收进程3占用的空间,更新分区表:释放进程3的内存:{50KB}合并空闲分区后的内存分区表:{已分配,未分配,300KB}进程1结束,释放内存,回收进程1占用的空间,更新分区表:释放进程1的内存:{100KB}合并空闲分区后的内存分区表:{未分配,400KB}进程4结束,释放内存,回收进程4占用的空间,更新分区表:释放进程4的内存:{150KB}合并空闲分区后的内存分区表:{未分配,550KB}五、实验总结通过本次实验,我对可变分区存储管理方式的内存分配和回收过程有了更深入的了解。
操作系统实验报告可变分区存储管理方式的内存分配回收
操作系统实验报告可变分区存储管理方式的内存分配回收集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-实验三可变分区存储管理方式的内存分配回收一.实验目的(1)深入了解可变分区存储管理方式的内存分配回收的实现。
二.实验内容编写程序完成可变分区存储管理方式的内存分配回收,要求有内存空间分配表,并采用最优适应算法完成内存的分配与回收。
三.实验原理在可变分区模式下,在系统初启且用户作业尚未装入主存储器之前,整个用户区是一个大空闲分区,随着作业的装入和撤离,主存空间被分成许多分区,有的分区被占用,而有的分区时空闲的。
为了方便主存空间的分配和去配,用于管理的数据结构可由两张表组成:“已分配区表”和“未分配区表”。
在“未分配表中”将空闲区按长度递增顺序排列,当装入新作业时,从未分配区表中挑选一个能满足用户进程要求的最小分区进行分配。
这时从已分配表中找出一个空栏目登记新作业的起始地址和占用长度,同时修改未分配区表中空闲区的长度和起始地址。
当作业撤离时已分配区表中的相应状态变为“空”,而将收回的分区登记到未分配区表中,若有相邻空闲区再将其连接后登记。
可变分区的回收算法较为复杂,当一个作业撤离时,可分为4种情况:其临近都有作业(A和B),其一边有作业(A或B),其两边均为空闲区。
尤其重要的是,在程序中利用“new类型T(初值列表)”申请分配用于存放T类型数据的内存空间,利用“delete指针名”释放指针所指向的内存空间。
四.实验部分源程序#include<iostream>usingnamespacestd;typedefstructSNode{//SpaceNodeintstart,end;//起始,结束intlength;//长度大小structSNode*next;//指向下一结点的指针}*SP;SPHead=(SP)malloc(sizeof(SNode));//全局变量,内存空间头结voidDispSpace(){//显示内存空间分配情况SPp=Head->next;cout<<"\n空闲区说明表\n"<<"---地址--长度---\n";while(p){cout<<""<<p->start<<""<<p->length<<endl;p=p->next;}cout<<"----------------\n";}voidInitial(){//初始化说明表SPp,q;p=(SP)malloc(sizeof(SNode));q=(SP)malloc(sizeof(SNode));p->start=14;p->length=12;p->end=26;q->start=32;q->length=96;q->end=128;//指导书上的作业分配Head->next=p;//与头结点连接p->next=q;q->next=NULL;DispSpace();}voidAllocation(intlen){//分配内存给新作业SPp=Head->next,q;while(p){if(p->length<len)p=p->next;elseif(p->length>len){p->start=p->start+len;p->length=p->length-len;cout<<"分配成功!\n";DispSpace();return;}else{//当两者长度相等q=p->next;p->next=q->next;cout<<"分配成功!\n";DispSpace();return;}}cout<<"分配失败!\n";DispSpace();return;}voidCallBack(intsta,intlen){//回收内存SPp=Head,q=p->next,r;//开始地址和长度p->end=0;inten=sta+len;while(q){if(sta==0){//初始地址为0if(en==q->start){//正好回收q->start=0;q->length=q->end;return;}else{r=(SP)malloc(sizeof(SNode));r->start=sta;r->length=len;r->end=en; p->next=r;r->next=q;return;}}elseif((p->end<sta)&&(q->start>en)){//上邻区r=(SP)malloc(sizeof(SNode));r->start=sta;r->length=len;r->end=en;p->next=r;r->next=q;return;}elseif((p->end<sta)&&(q->start==en)){//邻区相接q->start=sta;q->length=q->end-sta;return;}elseif((p->end==sta)&&(q->start<en)){//下邻区p->end=en;p->length=en-p->start;return;}elseif(p->end==sta&&q->start==en){//邻区相接p->end=q->end;p->length=p->end-p->start;p->next=q->next;return;}else{p=p->next;q=q->next;}}}voidmain(){Initial();cout<<"现在分配大小为6K的作业4申请装入主存:"; Allocation(6);//分配时参数只有长度//--------指导书测试数据演示----------cout<<"现回收作业3(起址10,长度4)\n";CallBack(10,4);DispSpace();cout<<"现回收作业2(起址26,长度6)\n";CallBack(26,6);DispSpace();//---------------演示结束-------------system("pause");}五.实验结果与体会我的体会:。
操作系统实验报告可变分区存储管理方式的内存分配回收
操作系统实验报告可变分区存储管理方式的内存分配回收可变分区存储管理方式是一种常见的内存分配和回收策略,通过将内存分成若干大小不等的分区,分配给不同大小的进程使用。
本文将对可变分区存储管理方式的内存分配和回收进行详细介绍。
首先,可变分区存储管理方式需要对内存进行划分,将内存分成若干个大小不等的分区。
这些分区可以是固定大小的,也可以是可变大小的。
当进程申请内存时,系统会根据申请内存的大小来选择一个合适大小的分区进行分配。
分配时分为两种情况:首次适应和最佳适应。
首次适应算法是指从内存的起始位置开始遍历分区,找到第一个能满足进程要求的分区进行分配。
这种算法的优点是找到满足条件的分区速度较快,缺点是容易造成较大的内存碎片。
最佳适应算法是指通过遍历整个内存,找到一个大小最接近进程要求的分区进行分配。
这种算法的优点是能够减小内存碎片的产生,但是分配速度较慢。
当进程结束时,需要回收其占用的内存。
对于可变分区存储管理方式,在回收内存时出现了两种情况:内部碎片和外部碎片。
内部碎片是指分配给进程的分区中,有一部分空闲内存无法被其他进程利用。
这是因为当一些进程需要分配内存时,分配的大小可能大于其实际需要的大小,导致分区中留下了空余空间。
解决内部碎片的方法是动态地调整分区的大小,使其能够更好地适应进程的大小需求。
外部碎片是指存储空闲的分区之间的一些不可利用的内存。
当进程需要分配内存时,可能没有一个分区能满足其大小需求,导致无法分配内存。
解决外部碎片的方法是内存紧缩和分区合并。
内存紧缩是指将内存中的进程向一端移动,使剩余的空闲内存空间连在一起。
这样可以使得所有的空闲内存空间都可以被利用,减少外部碎片的产生。
分区合并是指将不连续的空闲分区进行合并,形成更大的连续空闲分区。
这样可以提供给大型进程使用,减少外部碎片的产生。
综上所述,可变分区存储管理方式的内存分配和回收是一个动态的过程,需要根据进程的需求进行灵活地管理。
它可以通过首次适应或最佳适应算法选择合适的分区进行内存分配,通过动态调整分区大小解决内部碎片问题,并通过内存紧缩和分区合并减少外部碎片的产生。
可分区管理实验报告
一、实验目的1. 理解可分区管理的基本原理和方法。
2. 掌握可变分区分配算法(首次适应算法、循环首次适应算法、最佳适应算法)的原理和实现。
3. 通过实验,加深对存储管理方案的理解,提高编程能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 开发工具:Visual Studio三、实验原理可分区管理是一种常见的存储管理方法,它将物理内存划分为若干个大小可变的区域,每个区域称为一个分区。
系统在分配内存时,根据进程的需求从分区中选择一个合适的分区进行分配。
可分区管理主要分为以下三种算法:1. 首次适应算法:按照分区表的顺序,从第一个分区开始查找,找到第一个满足需求的分区进行分配。
2. 循环首次适应算法:与首次适应算法类似,但每次查找都是从上次查找的下一个分区开始,直到找到合适的分区为止。
3. 最佳适应算法:在整个内存中寻找一个大小最接近需求且能满足需求的分区进行分配。
四、实验步骤1. 定义分区表结构体,包含分区起始地址、分区大小、分区状态等信息。
2. 实现可变分区分配函数,根据选择的分配算法进行内存分配。
3. 实现内存回收函数,将释放的分区状态设置为空闲。
4. 编写主函数,模拟进程的创建、分配和回收过程。
五、实验代码```c#include <stdio.h>#include <stdlib.h>#define MAX_PARTITIONS 100typedef struct {int startAddress;int size;int state; // 0: 空闲,1: 已分配} Partition;Partition partitions[MAX_PARTITIONS];int partitionCount = 0;void initializePartition() {for (int i = 0; i < MAX_PARTITIONS; i++) {partitions[i].startAddress = 0;partitions[i].size = 0;partitions[i].state = 0;}partitionCount = 0;}int allocateMemory(int size, int algorithm) {for (int i = 0; i < partitionCount; i++) {if (partitions[i].state == 0 && partitions[i].size >= size) { switch (algorithm) {case 1: // 首次适应算法partitions[i].state = 1;return partitions[i].startAddress;case 2: // 循环首次适应算法if (i == partitionCount - 1) {i = 0;}break;case 3: // 最佳适应算法if (i == partitionCount - 1) {i = 0;}break;}}}return -1; // 分配失败}void freeMemory(int startAddress) {for (int i = 0; i < partitionCount; i++) {if (partitions[i].startAddress == startAddress) { partitions[i].state = 0;return;}}}int main() {initializePartition();// 创建进程并分配内存int process1 = allocateMemory(100, 1);printf("Process 1 allocated at %d\n", process1);int process2 = allocateMemory(200, 2);printf("Process 2 allocated at %d\n", process2);int process3 = allocateMemory(300, 3);printf("Process 3 allocated at %d\n", process3);// 回收内存freeMemory(process1);printf("Process 1 memory freed\n");int process4 = allocateMemory(150, 1);printf("Process 4 allocated at %d\n", process4);return 0;}```六、实验结果与分析通过实验,我们可以观察到以下结果:1. 当采用首次适应算法时,内存分配的速度较快,但可能导致内存碎片化。
操作系统 可变分区存储管理
实验二、可变分区存储管理一、实验目的熟悉主存的分配与回收。
理解在不同的存储管理方式下,如何实现主存空间的分配与回收。
掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。
二、实验内容和要求主存的分配和回收的实现是与主存储器的管理方式有关的。
所谓分配,就是解决多道作业或多进程如何共享主存空间的问题。
所谓回收,就是当作业运行完成时将作业或进程所占的主存空间归还给系统。
可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并且分区个数是可以调整的。
当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。
随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。
实验要求使用可变分区存储管理方式,分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行,分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。
同时,要求设计一个实用友好的用户界面,并显示分配与回收的过程。
同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。
三、实验主要仪器设备和材料实验环境硬件环境:IBM-PC或兼容机软件环境:VC++ 6.0四、实验原理及设计分析某系统采用可变分区存储管理,在系统运行当然开始,假设初始状态下,可用的内存空间为640KB,存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。
(作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放60KB 、作业4 申请200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB)当作业1进入内存后,分给作业1(130KB),随着作业1、2、3的进入,分别分配60KB、100KB,经过一段时间的运行后,作业2运行完毕,释放所占内存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
/* ఘ٭2 */
(bp-1)->m_size += bp->m_size;
while (bp->m_size)
{
bp++;
(bp-1)->m_addr = bp->m_addr;
(bp-1)->m_size = bp->m_size;
}
}
}
else
{
if (a+size == bp->m_addr && bp->m_size)
printf("य़ੜ:%4d ࣈ࣎:%p\n",coremap[i].m_size, coremap[i].m_addr); #ifdef AUTO
fprintf(output,"य़ੜ:%4d ࣈ࣎:%p\n",coremap[i].m_size, coremap[i].m_addr); #endif
if (bp>coremap && (bp-1)->m_addr+(bp-1)->m_size == a)
{
/* ఘ٭1,2 */
loopBp = bp-1;
loopBp->m_addr = (bp-1)->m_addr;
(bp-1)->m_size += size;
/* ఘ٭1 */
if (a+size == bp->m_addr)
coremap[i].m_addr = NULL; coremap[i].m_size = 0; } }
/* ᬌڊᤒጱٖ */ void printcoremap(FILE *output) {
/* Function body: ܦcoremapᤒӾݱᶱጱm_sizem_addr */ int i; for (i = 0; i<N; ++i) {
register char *a; register struct map *bp;
for (bp = loopBp; bp->m_size; bp++) {
if(bp->m_size >= size) {
a = bp->m_addr; bp->m_addr += size; if((bp->m_size -= size) == 0)
ݢզಋٚಧᬌڊᕮຎݸݸٚᬌکկӾ҅ਫḵಸޞጱਁٖኧᛔ૩ഩൎ҅ ᚆग़ᚆ̶ */
#include <stdio.h> #include <stdlib.h>
#define AUTO
//ᛔۖ݇හᬌف໒ୗ
//#define MANUAL
//ಋۖ݇හᬌفཛྷୗ
#define N 5
#define INPUT_FILE_PATH "/Users/LXC/Desktop/InPutFile.txt" //կᬌف᪠ஆ
#define OUTPUT_FILE_PATH "/Users/LXC/Desktop/OutPutFile.txt"
/* ᤒጱਧԎ */
struct map
{
unsigned m_size;
ሾḒེᭇଫဩҁṛӞྍ҂ addr = (char *)lmalloc(unsigned size) lfree(unsigned size,char * addr)
ཛྷUNIXਂٖ܄ړݒݢᓕቘ҅ਫሿᧆٖਂ܄ጱړᯈ᯽නᓕቘ̶
2̵ᓒဩమ༷ᥝ
ҁ1҂᭗ᬦහᕟᓕቘٖਂӾᑮᳳ܄ጱ᩸তࣈ࣎ᳩଶ҅ইຎړᯈጱᳩଶᒵԭᑮᳳ܄ጱ ᳩଶᮎԍᧆᑮᳳ܄੪ଫᧆහᕟӾڢᴻ҅ᓕቘᑮᳳ܄ጱහᕟزᔰӞེஃڹᑏۖ҅ইຎ ᯽නጱᑮᳵᑮᳳ܄ፘᮝ੪ᬰᤈݳଚ̶ሾḒེᭇଫᓒဩጱ໐ஞమԅݱӻᑮᳳ܄ ጱړᯈ᷇ሲፘ҅ݶಅզ౯ֵአӞӻᶉாᰒݒᰁֵٌݻහᕟӾᤩړᯈጱݸᶎጱᮎࣘ ᑮᳳ̶܄ ҁ2҂ڠୌԧӞӻአԭᬌ݇فහጱկ,ᧆկӾӞᤈ੪ฎӞԀਠෆጱեեಅᵱ ᥝጱහഝ҅ྲইғIᧆᤈ݇හጱᒫӞӻ݇හԅಗᤈጱ֢҅ᒫԫӻ݇හԅय़ੜ҅ᒫ ӣӻ݇හԅٖਂࣈ̶࣎ྯེሾ᮷ᧆկӾڊݐӞᤈፗکկٖጱහഝق᮱ݐਠ ླ̶ ҁ3҂ڠୌԧӷӻਡਧԎAUTOMANUAL҅ݢզࣁಋۖᬌ݇فහկಢ॒ቘᬌ݇ف හԏᳵᅎၚڔഘ̶
case 'p': printcoremap(); break;
case 'q': exit(0); break;
default: break;
} } while ((command=='m'||command=='f'||command=='p'||command=='q')||printf(" եᬌفᲙѺ᧗᯿ෛᬌ\فn")); #endif
/* ᤒጱਧԎ */ struct map {
unsigned m_size; char *m_addr; }; struct map coremap[N];
//կᬌڊ᪠ஆ
static struct map *loopBp = coremapݻ୮ڹᑮᳳ܄ጱӥӞᑮᳳྯֵ҅܄ӻᑮᳳ܄ጱ ᦢᳯ᷇ሲፘᒵ
4̵զӥԅᑕଧრᎱ
//
// main.c // MemoryManage // // Created by מ౮ on 16/3/13. // Copyright © 2016ଙ מ౮. All rights reserved. // /* ইӧտֵአկᬌف/ᬌ҅ڊԞӧտֵአI/Oݻ؉ᬌفᬌڊᕮຎկ҅
{
/* ఘ٭3 */
bp->m_addr -= size;
bp->m_size += size;
loopBp = bp;
loopBp->m_addr = bp->m_a) {
loopBp = bp; loopBp->m_addr = a; do {
t = bp->m_addr; bp->m_addr = a; a = t; tt = bp->m_size; bp->m_size = size; bp++;
do {
bp++; (bp-1)->m_addr = bp->m_addr; } while((bp-1)->m_size = bp->m_size);
loopBp = bp; if((loopBp+1)->m_size != 0) {
++loopBp; } else {
loopBp = coremap; } return(a); } } return(0); }
3̵݇හ᧔ก
#define AUTO ᛔۖ݇හᬌف໒ୗ
//#define MANUAL #define N 5
//ಋۖ݇හᬌفཛྷୗ //ᑮᳳ܄ᳩଶ
#define INPUT_FILE_PATH "/Users/LXC/Desktop/InPutFile.txt" //կᬌف᪠ஆ
#define OUTPUT_FILE_PATH "/Users/LXC/Desktop/OutPutFile.txt"
printf("ᭌೠե:%c\n",command); fprintf(output, "ᭌೠե:%c\n",command); switch (command) {
case 'm': printf("ᬌړفᯈٖਂጱय़ੜ:%d\n",size);
fprintf(output, "ᬌړفᯈٖਂጱय़ੜ:%d\n",size); lmalloc(size); break; case 'f': printf("ᬌف᯽නٖਂጱय़ੜ:%d\n",size); fprintf(output, "ᬌړفᯈٖਂጱय़ੜ:%d\n",size); printf("ᬌف᯽නٖਂጱࣈ࣎:%d\n",addr); fprintf(output, "ᬌف᯽නٖਂጱࣈ࣎:%d\n",addr); lfree(size, memory+addr); break; case 'p': printcoremap(output); break; case 'q': fclose(input); fclose(output); exit(0); break; default: break; } } while (fscanf(input, "%c,%d,%d\n",&command, &size, &addr)!=EOF); #endif }
1̵᷌ፓ
ᖫٟӞӻCᑕଧ҅አchar *malloc(unsigned size)ڍහݻᔮᕹኩ᧗Ӟེٖਂᑮᳵҁই size=1000֖҅ܔԅਁᜓ҂҅አḒེᭇଫဩ
addr = (char *)fmalloc(unsigned size) ffree(unsigned size,char * addr)ҁचᥝ҂
case 'f': printf("ᬌف᯽නٖਂጱࣈ࣎:"); scanf("%d",&addr); while ((c=getchar())!='\n'&&c!=EOF ); printf("ᬌف᯽නٖਂጱय़ੜ:"); scanf("%d",&size); while ((c=getchar())!='\n'&&c!=EOF ); lfree(size, memory+addr); break;