上海2020高三数学一模分类汇编-函数(详答版)

合集下载

上海市闵行区2023届高三一模数学试题(解析版)

上海市闵行区2023届高三一模数学试题(解析版)
【答案】 ##
【解析】
【分析】根据复数除法计算求解.
【详解】由 可得 ,
故答案为:
3.双曲线 的离心率为______.
【答案】
【解析】
【分析】由双曲线的标准方程求得 ,从而求得双曲线的离心率.
【详解】因为双曲线 ,
所以 ,则 ,
所以双曲线的离心率为 .
故答案为:
4.在 中,已知边 ,角 , ,则边 ______.
【详解】 ,令 ,
, ,
,作出函数 的图象,如图,
由图可知,以 为中心,当 变大时,若 ,函数最大值 ,最小值 ,不满足 ,若 时,函数最大值 ,所以只需要确定函数最小值,因为 ,需函数最小值为 ,所以当 时,即 时,
函数值域为 ,满足 ,当 时,函数最小值 ,此时不满足 ,综上 .
故答案为: .
12.已知平面向量 、 、 和实数 满足 , , ,则 的取值范围是______.
【答案】1
【解析】
【分析】对函数 求导得 ,令 ,求解即可.
【详解】解:因为 ,
所以 ,
又因为直线 的斜率为 ,
所以 ,
解得: ,
即切点的横坐标为:1.
故答案为:1
9.已知二次函数 的值域为 ,则函数 的值域为______.
【答案】
【解析】
【分析】由二次函数的值域为 ,分析求出参数 ,然后代入 中求出值域即可
【答案】 (只要使得 即可).
【解析】
【分析】利用线面垂直的判定定理及线面垂直的定义可得出结论.
【详解】连接 ,如下图所示:
因为 平面 , 平面 ,则 ,
若 , , 、 平面 , 平面 ,
平面 , .
故答案为: (只要使得 即可).

上海市杨浦区2020届高三一模数学试卷及详细解析(Word版)

上海市杨浦区2020届高三一模数学试卷及详细解析(Word版)

上海市杨浦区2020届高三一模数学试卷及详细解析2019. 12一、填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数2()f x x =的定义域为______2. 关于x 、y 的方程组2130x y x y -=⎧⎨+=⎩的增广矩阵为______ 3. 已知函数()f x 的反函数12()log f x x -=,则(1)f -=______4. 设a ∈R ,2(1)i a a a a --++为纯虚数(i 为虚数单位),则a =______5. 己知圆锥的底面半径为1cm ,侧面积为22cm π,则母线与底面所成角的大小为______6. 已知7(1)ax+二项展开式中3x 的系数为280,则实数a =______7. 椭圆22194x y +=焦点为1F 、2F ,P 为椭圆上一点,若PF =15,则12cos F PF ∠=______8. 已知数列{n a }的通项公式为1(2)1()32n n n n a n -≤⎧⎪=⎨≥⎪⎩(n ∈N *),n S 是数列{n a }的前n 项和.则lim n x S →∞=______ 9. 在直角坐标平面xOy 中,A (-2,0),B (0,1),动点P 在圆C :222x y +=上,则 PA PB ⋅的取值范围为______10. 已知六个函数:①21y x=;②cos y x =;③12y x =;④arcsin y x =;⑤1lg()1x y x+=-;⑥1y x =+.从中任选三个函数,则其中既有奇函数又有偶函数的选法有______种11. 已知函数1|1()|xf x =-,(0x >),若关于x 的方程[]2()()230f x mf x m +++=有三个不相等的实数解,则实数m 的取值范围为______12. 向量集合S ={(),|,,a a x y x y =∈R },对于任意α、S β∈,以及任意λ∈(0,1),都有()12S λαβ+-∈,则称S 为“C 类集”.现有四个命题:①若S 为“C 类集”,则集合M ={,|a a S R μμ∈∈}也是“C 类集”; ②若S 、T 都是“C 类集”,则集合M ={|,a b a S b T +∈∈}也是“C 类集”; ③若1A 、2A 都是“C 类集”,则12A A 也是“C 类集”;④若1A 、2A 都是“C 类集”,且交集非空,则12A A 也是“C 类集”. 其中正确的命题有______二、选择题(本大题共4题,每题5分,共20分)13. 已知实数a 、b 满足a b >,则下列不等式中恒成立的是( )A. 22a b >B. 11a b< C. |a ||b |> D. 22a b > 14. 要得到函数2sin(2)3y x π=+的图象,只要将2sin2y x =的图象( )A. 向左平移6π个单位B. 向右平移6π个单位 C. 向左平移3π个单位 D. 向右平移3π个单位 15. 设1z 、2z 为复数,则下列命题中一定成立的是( )A. 如果120z z ->,那么12z z >B. 如果12z z =,那么12z z =±,C. 如果12||1z z >,那么12z z >D. 如果22120z z +=,那么120z z == 16. 对于全集R 的子集A ,定义函数1(()0())A x f x x A A ⎧=∈⎨⎩∈R为A 的特征函数.设A 、B 为全集R 的子集,下列结论中错误的是( )A. 若A B ∈,则()()A B f x f x ≤B. ()1()A A f x f x =-RC. ()()()A A B B f x f x f x =⋅D. ()()()A A B B f x f x f x =+三、解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,四棱锥P ABCD -中,底面ABCD 为矩形,P A ⊥底面ABCD ,AB =P A =1,AD =3,E 、F 分别为棱PD 、P A 的中点.(1)求证:B 、C 、E 、F 四点共面;(2)求异面直线PB 与AE 所成的角.18. 已知函数()22x xa f x =+,其中a 为实常数. (1) (0)7f =,解关于x 的方程()5f x =;(2) 判断函数()f x 的奇偶性,并说明理由.19. 东西向的铁路上有两个道口A 、B ,铁路两侧的公路分布如图,C 位于A 的南偏西15°,且位于B 的南偏东15°方向,D 位于A 的正北方向,AC =AD =2km ,C 处一辆救护车欲通过道口前往D 处的医院送病人,发现北偏东45°方向的E 处(火车头位置)有一列火车自东向西驶来,若火车通过每个道口都需要1分钟,救护车和火车的速度均为60 km /h .(1) 判断救护车通过道口A 是否会受到火车影响,并说明理由;(2) 为了尽快将病人送到医院,救护车应选择A 、B 中的哪个道口?通过计算说明.20. 如图,在平面直角坐标系xOy 中,己知抛物线C :24y x =的焦点为F ,点A 是第一象限内抛物线C 上的一点,点D 的坐标为(,0t ),0t >,(1)若||5OA =,求点A 的坐标;(2)若△AFD 为等腰直角三角形,且FAD ∠=90o ,求点D 的坐标;(3)弦AB 经过点D ,过弦AB 上一点P 作直线x t =-的垂线,垂足为点Q ,求证:“直线QA 与抛物线相切” 的一个充要条件是“p 为弦AB 的中点”.21. 已知无穷数列{n a }的前n 项和为n S ,若对于任意的正整数n ,均有210n S -≥,20n S ≤,则称数列{n a }具有性质P .(1) 判断首项为1,公比为2-的无穷等比数列{n a }是否具有性质P ,并说明理由;(2) 已知无穷数列{n a }具有性质P ,且任意相邻四项之和都相等,求证:40S =;(3) 已知21n b n =-,n ∈N *,数列{n c }是等差数列,122n n n b n a c n +⎧⎪=⎨⎪⎩为奇数为偶数,若无穷数列{n a }具有性质P ,求2019c 的取值范围.上海市杨浦区2020届高三一模数学试卷及详细解析。

2020年上海新高一新教材数学讲义-专题14 函数(学生版)

2020年上海新高一新教材数学讲义-专题14 函数(学生版)

专题14 函数(函数的概念,函数的表示方法)知识梳理一、函数的概念1.函数定义:定义一:如果在某个变化过程中有两个变量x ,y ,对于x 在某个范围D 内的每一个确定的值按照某种对应法则f , 都有唯一的值与它对应,那么y 就是x 的函数,记作()y f x =,x 叫做自变量,x 的取值范围D 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合叫做函数的值域. 定义二:非空数集A 到非空数集B 的一个对应关系f :A B →,使A 中每一个元素在B 中都有唯一确定的元素和它对应,那么对应关系f :A B →叫做A 到B 的函数,记作()y f x =,其中x A ∈,y B ∈,x 叫做自变量,x 的取值范围A 叫做函数的定义域,和x 的值相对应的y 的值叫做函数值,函数值的集合C 叫做函数的值域.(一般有C B ⊆)注意:1、函数定义中要求对定义域中的任何一个x ,在值域中有且只有一个y 值和它对应;但并不要求对于值域中的每一个y 也只能有一个x 和它相对应,即函数的对应法则可以是1对1,也可以多对1,但不可以1对多(即定义域中一个x 对应值域中一个以上的y ). 2、定义域与值域都必须是非空数集.3、定义域的表示方法有:集合表示法、区间表示法 2.函数的三要素: 定义域 、 值域 和 对应关系 .确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

3.相等函数:如果两个函数的 定义域 和 对应关系 完全一致,则这两个函数相等,这是判断两函数相等的依据.注:若两个函数的定义域与值域相同,是否为相等函数?(不一定。

如果函数y x =和1y x =+,其定义域与值域完全相同,但不是相等函数,看两个函数是否相等,关键是看定义域和对应关系) 4.函数的表示法:表示函数的常用方法有: 解析法 、 图象法 、 列表法 .函数解析式的求法主要包含: 配凑法 、 待定系数法 、 换元法 、 赋值法(方程组法) . 5.函数的定义域、值域:在函数()y f x x A =∈,,中,x 叫做自变量,x 的取值范围A 叫做函数的 定义域 ;与x 的值相对应的y 值叫做函数值,函数值的集合{()f x |x A ∈}叫做函数的 值域 .(1)函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);①限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;①实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

2020年上海市高三数学一模分类汇编:向量与复数

2020年上海市高三数学一模分类汇编:向量与复数

向量: 2(2020徐汇一模). 向量(3,4)a =r 在向量(1,0)b =r 方向上的投影为5(2020闵行一模). 在△ABC 中,已知AB a =uu u r r ,BC b =uu u r r ,G 为△ABC 的重心,用向量a r 、b r 表示向量AG =uuu r6(2020嘉金一模). 已知向量13()2AB =uu u r ,31()2AC =uuu r ,则BAC ∠= 7(2020松江一模). 已知向量(1,2)a =r ,(,3)b m =-r ,若向量(2)a b -r r ∥b r ,则实数m =10(2020嘉金一模). 已知非零向量a r 、b r 、c r 两两不平行,且a r ∥()b c +r r ,b r ∥()a c +r r ,设c xa yb =+r r r ,,x y ∈R ,则2x y +=10(2020虹口一模). 如图所示,2角三角板拼在一起,则OD AB ⋅=uuu r uu u r10(2020闵行一模). 若O 是正六边形123456A A A A A A 的中心,{|1,2,3,4,5,6}i Q OA i ==u u u r ,,,a b c Q ∈r r r ,且a r 、b r 、c r 互不相同,要使得()0a b c +⋅=r r r ,则有序向量组(,,)a b c r r r 的个数为11(2020普陀一模). 设P 是长为22123456A A A A A A 的边上的任意一点,长度为4的线段MN 是该正六边形外接圆的一条动弦,PM PN ⋅uuu r uuu r 的取值范围为12(2020青浦一模). 已知点P 在双曲线221916x y -=上,点A 满足(1)PA t OP =-uu r uu u r (t ∈R ),且60OA OP ⋅=uu r uu u r ,(0,1)OB =uu u r ,则||OB OA ⋅uu u r uu r 的最大值为12(2020崇明一模). 正方形ABCD 的边长为4,O 是正方形ABCD 的中心,过中心O 的直线l 与边AB 交于点M ,与边CD 交于点N ,P 为平面上一点,满足2(1)OP OB OC λλ=+-uu u r uu u r uuu r ,则PM PN ⋅uuu r uuu r 的最小值为16. 设H 是ABC V 的垂心,且3450HA HB HC ++=uu u r uu u r uuu r r ,则cos BHC ∠的值为( ) A. 3010 B. 55- C. 66 D. 70 12(2020松江一模). 记边长为1的正六边形的六个顶点分别为1A 、2A 、3A 、4A 、5A 、6A ,集合{|(,1,2,3,4,5,6,)}i j M a a A A i j i j ===≠r r u u u u r ,在M 中任取两个元素m u r 、n r ,则0m n ⋅=u r r 的概率为复数:1(2020宝山一模). 若(1i)2i z +=(i 是虚数单位),则||z =2(2020虹口一模). 若复数3i 1iz -=+(i 为虚数单位),则||z = 2(2020青浦一模). 若复数i(32i)z =-(i 是虚数单位),则z 的模为 2(2020闵行一模). 复数5i 2-的共轭复数是 3(2020松江一模). 设1i 2i 1i z -=++,则||z = 4(2020杨浦一模). 设a ∈R ,2(1)i a a a a --++为纯虚数(i 为虚数单位),则a = 4(2020普陀一模). 已知i 为虚数单位,若复数1i i 1z m =++是实数,则实数m 的值为 4(2020徐汇一模). 复数1i 34i++的共轭复数为 14(2020崇明一模). 已知z ∈C ,“0z z +=”是“z 为纯虚数”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件15(2020杨浦一模). 设1z 、2z 为复数,则下列命题中一定成立的是( )A. 如果120z z ->,那么12z z >B. 如果12||||z z =,那么12z z =±C. 如果12||1z z >,那么12||||z z > D. 如果22120z z +=,那么120z z ==18(2020嘉金一模). 在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位.(1)112i z =+,234i z =-,计算12z z ⋅与12OZ OZ ⋅uuu r uuur ;(2)设1i z a b =+,2i z c d =+(,,,a b c d ∈R ),求证:2121||||OZ OZ z z ⋅≤⋅u u u r u u u r ,并指出向 量1OZ uuu r 、2OZ uuur 满足什么条件时该不等式取等号.。

2023年上海市黄浦区高三上学期高考(等级考)一模数学试卷含详解

2023年上海市黄浦区高三上学期高考(等级考)一模数学试卷含详解

上海市黄浦区2023届高三一模数学试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数lg(2)y x 的定义域是______.2. 已知集合2,2A ,3,1,51B ,则A B ______.3. 在5(21)x 的二项展开式中,3x 的系数是________4. 已知向量,1,3a m,2,,1b n,若a b ∥,则mn 的值为______.5. 已知复数z 满足1i 42i z (i 为虚数单位),则复数z 的模等于______.6. 某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为______.7. 在平面直角坐标系xOy 中,若角 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与以点O 为圆心的单位圆交于点34,55P,则sin 22 的值为______. 8. 若一个圆锥侧面展开图是面积为的半圆面,则该圆锥的体积为 .9. 已知ABC 的三边长分别为4、5、7,记ABC 的三个内角的正切值所组成的集合为M ,则集合M 中的最大元素为______.10. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为_________.11. 已知四边形ABCD 是平行四边形,若2AD DE ,BF BE ∥u u ur u u u r ,0AF BE u u u r u u u r ,且60AF AC u u u r u u u r ,则AC 在AF上的数量投影为______.12.已知曲线1:C y与曲线2:C y ,长度为1的线段AB 的两端点A 、B 分别在曲线1C 、2C 上沿顺时针方向运动,若点A 从点1,0 开始运动,点B到达点 时停止运动,则线段AB 所扫过的区域的面积为______.二.选择题(本大题共4题,第13、14题各4分,第15、16题各5分,共18分)13. 在平面直角坐标系xOy 中,“0m ”是“方程221x my 表示的曲线是双曲线”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要14. 如图,四边形ABCD 是边长为1的正方形,MD 平面ABCD ,NB 平面ABCD ,且1MD NB ,点G 为MC 的中点.则下列结论中不.正确的是( ) 的A. MC ANB. 平面//DCM 平面ABNC. 直线GB 与AM 是异面直线D. 直线GB 与平面AMD 无公共点15. 已知 sin 06f x x,且函数 y f x 恰有两个极大值点在0,3,则 的取值范围是( ) A. 7,13B. 7,13C. 7,10D. 7,1016. 设a 、b 、c 、p 为实数,若同时满足不等式20ax bx c 、20bx cx a 与20cx ax b 的全体实数x 所组成的集合等于 , p .则关于结论:①a 、b 、c 至少有一个为0;②0p .下列判断中正确的是( ) A. ①和②都正确 B. ①和②都错误 C. ①正确,②错误D. ①错误,②正确三.解答题(本大题共5题,共14+14+14+18+18=78分)17. 已知 n a 是等差数列, n b 是等比数列,且23b ,39b ,11a b ,144a b . (1)求 n a 通项公式; (2)设*1Nnn n n c a b n ,求数列 nc 前2n 项和.18. 如图所示,四棱锥P ABCD 中,底面ABCD 为菱形,且直线PA ABCD 平面,又棱2PA AB ,E 为CD 的中点,60.ABC(Ⅰ) 求证:直线AE PAB 平面; (Ⅱ) 求直线AE 与平面PCD 的正切值.19. 某展览会有四个展馆,分别位于矩形ABCD 四个顶点A 、B 、C 、D处,现要修建如图中实线所示的步道(宽的的的度忽略不计,长度可变)把这四个展馆连在一起,其中8AB 百米,6AD 百米,且AE DE BF CF .(1)试从各段步道的长度与图中各角的弧度数中选择某一变量作为自变量x ,并求出步道的总长y (单位:百米)关于x 的函数关系式;(2)求步道的最短总长度(精确到0.01百米).20. 已知椭圆 2222:10x y C a b a b离心率为2,以其四个顶点为顶点的四边形的面积等于.动直线1l 、2l 都过点 0,01M m m ,斜率分别为k 、3k ,1l 与椭圆C 交于点A 、P ,2l 与椭圆C 交于点B 、Q ,点P 、Q 分别在第一、四象限且PQ x 轴.(1)求椭圆C 的标准方程;(2)若直线1l 与x 轴交于点N ,求证:2NP MN ;(3)求直线AB 的斜率的最小值,并求直线AB 的斜率取最小值时的直线1l 的方程.21. 已知集合A 和定义域为R 的函数 y f x ,若对任意t A ,x R ,都有 f x t f x A ,则称f x 是关于A 的同变函数.(1)当 0,A 与 0,1时,分别判断 2xf x 是否为关于A 的同变函数,并说明理由;(2)若 f x 是关于 2的同变函数,且当 0,2x 时,f x f x 在 2,22Z k k k 上的表达式,并比较 f x 与12x的大小; (3)若n 为正整数,且f x 是关于12,2n n 的同变函数,求证: f x 既是关于 2Z n m m 的同变函数,也是关于0, 的同变函数.的上海市黄浦区2023届高三一模数学试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 函数lg(2)y x 的定义域是______. 【答案】(,2)【详解】由题设有20x ,解得2x ,故函数的定义域为 ,2 ,填 ,2 . 2. 已知集合 2,2A , 3,1,51B ,则A B ______. 【答案】 3,5【分析】运用数轴法求集合的并运算. 【详解】如图所示,则(3,5)A B . 故答案为:(3,5) .3. 在5(21)x 的二项展开式中,3x 的系数是________ 【答案】80【分析】写出展开式的通项公式,利用公式即可得答案.【详解】由题意得: 5r152rr T C x ,当2r 时, 32335280T C x x∴3x 的系数是80.故答案为:804. 已知向量 ,1,3a m , 2,,1b n ,若a b ∥,则mn 的值为______.【答案】-2【分析】运用向量平行的坐标运算公式即可.【详解】∵//a b r r, ∴1321m n ,解得:6m ,13n ,∴mn 2 . 故答案为:2 .5. 已知复数z 满足 1i 42i z (i 为虚数单位),则复数z 的模等于______.【分析】利用复数的除法化简可得复数z ,利用复数的模长公式可求得z .【详解】因为 1i 42i z ,则42i 1i 42i 26i13i 1i 1i 1i 2z,z .故答案.6. 某个品种的小麦麦穗长度(单位:cm )的样本数据如下:10.2、9.7、10.8、9.1、8.9、8.6、9.8、9.6、9.9、11.2、10.6、11.7,则这组数据的第80百分位数为______. 【答案】10.8【分析】将数据从小到大排序后,运用百分位数的运算公式即可.【详解】数据从小到大排序为: 8.6、8.9、9.1、9.6、9.7、9.8、9.9、10.2、10.6、10.8、11.2、11.7,共有12个, 所以1280%=9.6 ,所以这组数据的第80百分位数是第10个数即:10.8. 故答案为:10.87. 在平面直角坐标系xOy 中,若角 的顶点为坐标原点,始边与x 轴的非负半轴重合,终边与以点O 为圆心的单位圆交于点34,55P ,则sin 22的值为______. 【答案】725##0.28. 【分析】运用三角函数的定义、诱导公式及二倍角公式计算即可. 【详解】由题意知,3cos 5, 所以222π37sin(2)cos 2(2cos 1)12cos 12()2525. 故答案为:725. 8. 若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 .【答案】【详解】由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.所以该圆锥的体积为3.9. 已知ABC 的三边长分别为4、5、7,记ABC 的三个内角的正切值所组成的集合为M ,则集合M 中的最大元素为______.【答案】5【分析】设ABC 的三边长分别为4,5,7a b c ,根据余弦定理确定三角形最大角角C 为钝角,利用大边对大角及正确函数性质,可知三个内角的正切值最大为tan B ,再利用余弦定理及同角三角关系即可求得tan B 得值. 【详解】不妨设ABC 的三边长分别为4,5,7a b c ,则由大边对大角可得A B C , 所以最大角为C ,由余弦定理得:2221625491cos 22455a b c C ab +-+-===-创,又 0,πC ,故角C 为钝角, 为所以π0π2A B C, 又函数tan y x 在π0,2上递增,此时tan 0x ,在π,π2上递增,此时tan 0x ,所以三个内角的正切值最大为tan B ,由余弦定理得:2221649255cos 22477a c b B ac ,则sin 7B ==,所以sin tan cos 5B B B.故答案为:5. 10. 现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为_________. 【答案】【详解】试题分析:由题活动恰好在第4人抽完后结束,包含的情况有;(不中)中中中,中(不中)中中,中中(不中)中.则概率为;232132213221111354325432543210101010P考点:相互独立事件及互斥事件概率算法.11. 已知四边形ABCD 是平行四边形,若2AD DE,BF BE ∥u u u r u u u r ,0AF BE u u u r u u u r ,且60AF AC u u u r u u u r,则AC在AF上的数量投影为______.【答案】10【分析】运用向量共线、向量垂直画图,运用平行线性质及直角三角形性质可得5||||3AC AM、||cos ||AM AF,再运用数量积运算及几何意义即可求得结果.【详解】因为2AD DE,所以A 、D 、E 三点共线,且||2||AD DE ,又因为//AD BC ,所以||||2||||3BC MC AE AM ,所以5||||3AC AM , 因为//BF BE,所以B 、E 、F 三点共线,又因为0AF BE u u u r u u u r ,所以AF BE ⊥,如图所示,设FAC ,则||cos ||AM AF,所以255||||cos ||||cos ||6033AF AC AF AC AM AF AF,解得:||6AF ,所以AC 在AF 上的数量投影为60||cos 106||AC AF AC AF. 故答案为:10.12.已知曲线1:C y与曲线2:C y,长度为1的线段AB 的两端点A 、B 分别在曲线1C 、2C 上沿顺时针方向运动,若点A 从点 1,0 开始运动,点B到达点时停止运动,则线段AB 所扫过的区域的面积为______. 【答案】3π8##3π8【分析】根据已知条件知,曲线1C 与曲线2C 是两个半圆,分别求出起点、终点处时A 、B 的坐标,可得线段AB 扫过的面积,进而通过三角形面积公式及扇形面积公式计算可得结果.【详解】设1A 、1B 分别为A 、B 点的起点,2A 、2B 分别为A 、B 点运动的终点,则图中阴影部分即为线段AB 扫过的面积.如图所示,则1(1,0)A,2B ,设111(,)B x y ,222(,)A x y , ∵曲线1C方程:221(0)y x y y , 曲线2C方程:222(0)y x y y,2211111((1))111y x x y y,即:1(1,1)B ,2222222(122x y x y y,即:2)22A , 记1C S 为圆221x y 的面积,2C S 为圆222x y 的面积,11A DB S 为 1DB 与1A D 、11A B 围成的面积,22A B F S 为 2A F 与2B F 、22A B 围成的面积,1S 为上半圆环的面积,S 为线段AB 扫过的面积.则211111()(2ππ)π222C C S S S, 因为111A B ,11OA,1OB,所以2221111A B OA OB ,所以111OA A B ,所以1145A OB ,所以11112111π1118242A DB OA BC ODB S S S S △,又因为221A B ,21OA,2 OB ,所以222OA A B ,所以2245A OB ,所以 222212111π112828A B F OA B C A OF S S S S△, 所以112211π11π3ππ242288A DB A B F S S S S. 故答案为:3π8. 二.选择题(本大题共4题,第13、14题各4分,第15、16题各5分,共18分)13. 在平面直角坐标系xOy 中,“0m ”是“方程221x my 表示的曲线是双曲线”的( )条件 A. 充分不必要 B. 必要不充分C. 充要D. 既不充分也不必要【答案】C【分析】由双曲线方程的特征计算得m 的范围,再由集合的包含关系可得结果. 【详解】∵221x my 表示双曲线, ∴0m .∴0m 是221x my 表示双曲线的充要条件. 故选:C.14. 如图,四边形ABCD 是边长为1的正方形,MD 平面ABCD ,NB 平面ABCD ,且1MD NB ,点G 为MC 的中点.则下列结论中不.正确的是( )A. MC ANB. 平面//DCM 平面ABNC. 直线GB 与AM 是异面直线D. 直线GB 与平面AMD 无公共点【答案】D【分析】根据给定条件,证明//AN DG 判断A ;利用线面、面面平行的判定推理判断B ;取DM 中点O ,证得四边形ABGO 是梯形判断CD 作答.【详解】因为MD 平面ABCD ,NB 平面ABCD ,则//MD NB ,取,,AB CD AN 中点,,F E H ,连接,,,EF EG FH GH ,如图,点G 为MC 的中点,的则//////EG MD NB FH ,且1122EG MD NB FH,于是四边形EFHG 是平行四边形, //,GH EF GH EF ,在正方形ABCD 中,//,EF AD EF AD ,则//,GH AD GH AD ,因此四边形ADGH 为平行四边形,//AN DG ,而1MD CD ,点G 为MC 的中点, 有DG MC ,所以MC AN ,A 正确;因为//MD NB ,MD 平面DCM ,NB 平面DCM ,则//NB 平面DCM , 又//AB CD ,CD 平面DCM ,AB 平面DCM ,则//AB 平面DCM , 而,,NB AB B NB AB 平面ABN ,所以平面//DCM 平面ABN ,B 正确; 取DM 中点O ,连接,GO AO ,则有11////,22GO CD AB GO CD AB,即四边形ABGO 为梯形, 因此直线,AO BG 必相交,而AO 平面AMD ,于是直线GB 与平面AMD 有公共点,D 错误;显然点A 平面ABGO ,点M 平面ABGO ,直线BG 平面ABGO ,点A 直线BG ,所以直线GB 与AM 是异面直线,C 正确. 故选:D【点睛】结论点睛:经过平面内一点和外一点的直线,与平面内不经过该点的直线是异面直线. 15. 已知 sin 06f x x,且函数 y f x 恰有两个极大值点在0,3,则 的取值范围是( ) A. 7,13 B. 7,13 C. 7,10 D. 7,10【答案】B【分析】运用整体思想法,求得π6x 的范围,再运用正弦函数图象分析即可. 【详解】∵π03x,0 , ∴ππππ6636x , 又∵()f x 在π[0,]3恰有2个极大值点,∴由正弦函数图象可知,5πππ9π2362,解得:713 . 故选:B.16. 设a 、b 、c 、p 为实数,若同时满足不等式20ax bx c 、20bx cx a 与20cx ax b 的全体实数x 所组成的集合等于 , p .则关于结论:①a 、b 、c 至少有一个为0;②0p .下列判断中正确的是( ) A. ①和②都正确 B. ①和②都错误 C. ①正确,②错误 D. ①错误,②正确【答案】D【分析】分类讨论研究一元二次不等式的解集即可.【详解】对于①假设0a 、0b 、0c =,则三个不等式解集为 ,不符合题意,所以“a 、b 、c 至少有一个为0”是错误的.对于②,由题意知,a 、b 、c 三个都不小于0,当0a ,0b ,0c 时,20ax bx c 解集为R ,20bx cx a 解集为(0,) ,20cx ax b 解集为(,0)(0,) ,所以三个集合交集为(0,) ;当0a ,0b ,0c =时,20ax bx c 解集为(0,) ,20bx cx a 解集为(,0)(0,) ,20cx ax b 解集为R ,所以三个集合交集为(0,) ;当0a ,0b ,0c 时,20ax bx c 解集为(,)c b ,20bx cx a 解集为(,)(0,)c b,20cx ax b 解集为R ,所以三个集合交集为(0,) ;同理可得:当0a ,0b ,0c =时,当0a ,0b ,0c 时,当0a ,0b ,0c =时,三个集合交集也是(0,) ;当0a ,0b ,0c 时,若20ax bx c 有两个不同的根,设20ax bx c 的两根为1x 、2x ,则120b x x a,120cx x a ,所以10x 且20x ,所以20ax bx c 解集为 1|x x x 或2}x x ,20bx cx a 只有一个根时,20bx cx a 解集为(,)(,)22c cb b, 20cx ax b 无根时,20cx ax b 解集为R ,所以集合的交集为(,)(,)m n ,与题意不符,综述: a 、b 、c 中有一个为0且另外两个大于0或a 、b 、c 中有两个为0且另外一个大于0,0p . 故选:D.三.解答题(本大题共5题,共14+14+14+18+18=78分)17. 已知 n a 是等差数列, n b 是等比数列,且23b ,39b ,11a b ,144a b . (1)求 n a 的通项公式; (2)设*1N nn n n c a b n ,求数列 nc 的前2n 项和.【答案】(1)21n a n(2)291444n n【分析】(1)运用等比数列、等差数列通项公式计算即可. (2)运用分组求和及等差数列、等比数列求和公式计算即可. 【小问1详解】设等差数列 n a 的公差为d ,等比数列 n b 的公比为q , 则323b q b,2111ba b q,144327a b b q , 又1411311327a a d d ,可得2d , 所以 1112121n a a n d n n . 【小问2详解】由(1)可得13n n b ,故113n n n b ,以它为通项的数列是以-1为首项、公比为-3的等比数列,所以1(21)(3)n n c n ,所以数列 n c 的前2n 项和为:21122133n n a a aL L221(3)214191421344nn n n n.即: 数列 n c 的前2n 项和为291444n n .18. 如图所示,四棱锥P ABCD 中,底面ABCD 为菱形,且直线PA ABCD 平面,又棱2PA AB ,E 为CD 的中点,60.ABC(Ⅰ) 求证:直线AE PAB 平面; (Ⅱ) 求直线AE 与平面PCD 的正切值.【答案】(1)见解析(2)3【分析】试题分析:(1)由线面垂直的判定定理证明,EA ⊥,AB EA ⊥P A ,得EA ⊥平面P AB ∠;(2)AEP为直线AE 与平面PCD所成角,所以tan 3PA AEP AE. 试题解析:解:(1)证明:∵∠ADE =∠ABC =60°,ED =1,AD =2,∴△AED 是以∠AED 为直角△Rt ,又∵AB ∥CD ∴, EA ⊥,AB 又P A ⊥平面ABCD ∴,EA ⊥P A ,∴EA ⊥平面P AB ;⊥(2)如图所示,连结PE ,过A 点作AH PE 于H 点.∵CD ⊥EA , CD ⊥,P A ∴CD ⊥平面P AE ,∵⊂∴又AH 平面PAE ,AH ⊥CD ,又AH ⊥⊂⊂平面平面PE,PE∩CD=E,PE PCD,CD PCD,∴AH ⊥平面PCD,∴∠AEP 为直线AE 与平面PCD 所成角.在△Rt P AE 中,∵P A =2,AE∴tan 3PA AEP AE. 【详解】19. 某展览会有四个展馆,分别位于矩形ABCD 的四个顶点A 、B 、C 、D 处,现要修建如图中实线所示的步道(宽度忽略不计,长度可变)把这四个展馆连在一起,其中8AB 百米,6AD 百米,且AE DE BF CF .(1)试从各段步道的长度与图中各角的弧度数中选择某一变量作为自变量x ,并求出步道的总长y (单位:百米)关于x 的函数关系式;(2)求步道的最短总长度(精确到0.01百米). 【答案】(1)答案见解析的(2)18.39百米【分析】(1)若设AE x 百米,运用勾股定理表示FN 、ME ,进而写出y 与x 的关系式; 若设MAE x ,运用三角函数表示AE 、FN 、ME ,进而写出y 与x 的关系式; (2)运用导数研究函数的最值即可. 【小问1详解】设直线EF 与AD ,BC 分别交于点M ,N ,若设AE x百米,则FN ME8EF MN FN ME又因为20003090AE x x FN x,所以 4835y x x . 若设MAE x ,则3cos AE x,3tan FN ME x , 86tan EF MN FN ME x ,则86tan 0x ,解得4tan 3x ,又因为π0,2x, 所以40arctan 3x , 所以12486tan 0arctan cos 3y x x x). 【小问2详解】设4835)f x x x ,435f x x ,令 0f x,可得x当3x40f x,当5x 时,()0f x ¢>,所以 fx上单调递减,在上单调递增,故当x 时, f x取得极小值(最小值)818.39f (百米). 所以步道的最短总长度约为18.39百米. 设 12486tan 0arctan cos 3f x x x x),在212sin 640arctan cos 3x f x x x,令 0f x ,可得π6x , 当π0,6x时, 0f x ,当π4,arctan 63x 时,()0f x ¢>, 所以 f x 在(0,6π上单调递减,在π4,arctan 63 上单调递增,故当π6x时, f x 取得极小值(最小值)π818.396f(百米), 所以步道的最短总长度约为18.39百米.20. 已知椭圆 2222:10x y C a b a b 的离心率为2,以其四个顶点为顶点的四边形的面积等于.动直线1l 、2l 都过点 0,01M m m ,斜率分别为k 、3k ,1l 与椭圆C 交于点A 、P ,2l 与椭圆C 交于点B 、Q ,点P 、Q 分别在第一、四象限且PQ x 轴.(1)求椭圆C 的标准方程;(2)若直线1l 与x 轴交于点N ,求证:2NP MN ;(3)求直线AB 的斜率的最小值,并求直线AB 的斜率取最小值时的直线1l 的方程. 【答案】(1)22184x y(2)证明见解析 (3)6,67y x【分析】(1)根据已知条件,分别求出a 、b 、c 的值即可.(2)根据两个斜率的关系式求得02y m ,由两点间距离公式求得NP 、NM 即可.(3)联立直线与椭圆方程解得1x 、2x ,代入直线AB 的斜率公式再应用基本不等式可求得结果. 【小问1详解】设椭圆C 的焦距为2c ,则由2c a,222a b c 且2ab ,可得2b c ,a C 的方程为22184x y.【小问2详解】设00,P x y , 00,Q x y ,则00y mk x,003y m k x ,可得00003y m y mx x ,解得02y m ,又NP m,NM ,所以2NP NM . 【小问3详解】设 11,A x y , 22,B x y ,直线1l ,2l 的方程分别为y kx m ,3y kx m , 由(2)知02y m ,所以0mk x,又m ,0x 均大于0,可知0k , 由22,28,y kx m x y 可得222(12)4280k x kmx m , 所以20122812m x x k,即212012812m x x k ,同理可得 2222200128128118123m m x x x k k , 直线AB 的斜率为2222001212221212220028328121183282812118k m k m k x k x kx m kx m y y m m x x x x k x k x224241161642k k k k k(当且仅当6k 时取等号).当6k时,0x,此时,2P m 在椭圆C 上,所以2264184m m ,又01m,可得7m, 所以直线AB的斜率的最小值为6,且当直线AB 的斜率取最小值时的直线1l的方程为67y x. 21. 已知集合A 和定义域为R 的函数 y f x ,若对任意t A ,x R ,都有 f x t f x A ,则称f x 是关于A 的同变函数.(1)当 0,A 与 0,1时,分别判断 2xf x 是否为关于A 的同变函数,并说明理由;(2)若 f x 是关于 2的同变函数,且当 0,2x 时,f x f x 在 2,22Z k k k 上的表达式,并比较 f x 与12x的大小; (3)若n 为正整数,且 f x 是关于12,2nn的同变函数,求证: f x 既是关于 2Z nm m 的同变函数,也是关于 0, 的同变函数.【答案】(1)当 0,A 时, 2xf x 是关于 0, 的同变函数;当 0,1A 时, f x 不是关于0,1的同变函数,理由见解析. (2)2f x k,当 12Z 2x k k时, 12f x x ;当 12Z 2x k k 时, 12f x x(3)证明见解析.【分析】(1)当 0,A 时,运用定义证明即可;当 0,1A 时,举反例说明即可.(2)由定义推导出 y f x x 是以2为周期的周期函数,进而可得()f x 在 2,22Z k k k 解析式,再运用作差法后使用换元法研究函数的最值来比较()f x 与12x的大小. (3)运用定义推导出 f x x 是以2n 为周期的周期函数,再用定义分别证明 2Z nt m m 与0,t 两种情况即可. 【小问1详解】当 0,A 时,对任意的t A ,x R , 221xtf x t f x ,由21t ,可得210t ,又20x ,所以 f x t f x A , 故 2xf x 是关于 0, 的同变函数;当 0,1A 时,存在12A ,2R ,使得2211f x t f x ,即 f x t f x A ,所以f x 不是关于 0,1的同变函数.【小问2详解】由 f x 是关于 2的同变函数,可知 22f x f x 恒成立,所以 22f x x f x x 恒成立,故 y f x x 是以2为周期的周期函数. 当 2,22Z x k k k 时, 20,2x k ,由 22f x x f x k x k , 可知222f x f x k k k.(提示: 22f x f x k k 也可通过分类讨论与累加法予以证明,下面的*式也同理可证) 对任意的x R ,都存在 k Z ,使得 2,22x k k ,故2f x k .所以11222f x x k xt ,则222t x k ,可得 0,2t ,所以 22111102222t f x x t t(当且仅当1t ,即122x k 时取等号)..所以当 12Z 2x k k 时, 12f x x ;当12Z 2x k k时, 12f x x . 【小问3详解】 因为 f x 是关于12,2nn的同变函数,所以对任意的12,2nnt ,x R ,都有 12,2n nf x t f x ,故 22nnf x f x ,用2n x 代换x ,可得1222nnnf x f x ,所以112222nnnnf x f x f x f x ,即1122nnf x f x ,又1122nnf x f x ,故1122nnf x f x ,且22nnf x f x .所以 22nnf x x f x x ,故 f x x 是以2n为周期的周期函数.对任意的 2Z nt m m ,x R ,由 22n n f x m x m f x x ,可得22nnf x m f x m ,(*) 所以 f x 是关于 2Z nm m 的同变函数.对任意的 0,t ,存在非负整数m ,使 2,12n nt m m ,所以 1122,2nn nt m ,对任意的x R , f x t f x12121212n n n n f x t m m f x f x t m m f x 21220n n n m m ,即 0,f x t f x ,所以 f x 是关于 0, 的同变函数. 故f x 既是关于2Z nm m 的同变函数,也是关于 0, 的同变函数.。

上海2024年高三数学 一模试卷 分类汇编 导数

上海2024年高三数学 一模试卷 分类汇编 导数

上海2024年高三数学一模试卷分类汇编:导数一、客观题:1、闵行已知函数()y f x =的导函数为()y x x f '=∈R ,,且()y x f ='在R 上为严格增函数,关于下列两个命题的判断,说法正确的是()①“12x x >”是“1212(1)()()(1)f x f x f x f x ++>++”的充要条件;②“对任意0x <,都有()(0)f x f <”是“()y f x =在R 上为严格增函数”的充要条件.(A )①真命题;②假命题(B )①假命题;②真命题(C )①真命题;②真命题(D )①假命题;②假命题2、普陀设函数()2e 2xf x a x =-,若对任意()00,1x ∈,皆有()()000lim 0x x f x f x x x x x →--+>-成立,则实数a 的取值范围是______.3、松江函数()y f x =的图像如图所示,()'y f x =为函数()y f x =的导函数,则不等式()'0f x x<的解集为()A .()3,1--B .(0,1)C .()()3,10,1--⋃D .()(),31,-∞-⋃+∞二、解答题:1、宝山已知函数()e x f x x =-,()e x g x x -=+,其中e 为自然对数的底数.(1)求函数()y f x =的图像在点()()1,1f 处的切线方程;(2)设函数()()()F x af x g x =-,①若e a =,求函数()y F x =的单调区间,并写出函数()y F x m =-有三个零点时实数m 的取值范围;②当01a <<时,12x x 、分别为函数()y F x =的极大值点和极小值点,且不等式()()120F x tF x +>对任意()0,1a ∈恒成立,求实数t 的取值范围.2、崇明已知()sin (R 0)f x mx x m m =+∈≠且.(1)若函数()y f x =是实数集R 上的严格增函数,求实数m 的取值范围;(2)已知数列{}n a 是等差数列(公差0d ≠),()n n b f a =.是否存在数列{}n a 使得数列{}n b 是等差数列?若存在,请写出一个满足条件的数列{}n a ,并证明此时的数列{}n b 是等差数列;若不存在,请说明理由;(3)若1m =,是否存在直线y kx b =+满足:①对任意的x ∈R 都有()f x kx b +≥成立,②存在0x ∈R 使得00()f x kx b =+?若存在,请求出满足条件的直线方程;若不存在,请说明理由.3、虹口已知()y f x =与()y g x =都是定义在()0+∞,上的函数,若对任意()12,0x x ∈+∞,,当12x x <时,都有121212()()()()f x f xg x g x x x -≤≤-,则称()y g x =是()y f x =的一个“控制函数”.(1)判断2y x =是否为函数()20y x x =>的一个控制函数,并说明理由;(2)设()ln f x x =的导数为()'f x ,0a b <<,求证:关于x 的方程()()()'f b f a f x b a-=-在区间(),a b 上有实数解;(3)设()ln f x x x =,函数()y f x =是否存在控制函数?若存在,请求出()y f x =的所有控制函数;若不存在,请说明理由.4、黄浦设函数()f x 与()g x 的定义域均为D ,若存在0x D ∈,满足()()00f x g x =且()()00''f x g x =,则称函数()f x 与()g x “局部趋同”.(1)判断函数()151f x x =+与()322f x x x =+是否“局部趋同”,并说明理由;(2)已知函数()()()()2120,0xg x x ax x g x bex =-+>=>,求证:对任意的正数a ,都存在正数b ,使得函数()1g x 与()2g x “局部趋同”;(3)对于给定的实数m ,若存在实数n ,使得函数()()10nh x mx x x=+>与()2ln h x x =“局部趋同”,求实数m 的取值范围.5、金山设函数()y f x =的定义域为D ,给定区间[,]a b D ⊆,若存在0(,)x a b ∈,使得0()()()f b f a f x b a-=-,则称函数()y f x =为区间[,]a b 上的“均值函数”,0x 为函数()y f x =的“均值点”.(1)试判断函数2y x =是否为区间[1,2]上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;(2)已知函数2112212x x y m --=-+⋅-是区间[1,3]上的“均值函数”,求实数m 的取值范围;(3)若函数222(22)x a y x x +=-+(常数a ∈R )是区间[2,2]-上的“均值函数”,且23为其“均值点”.将区间[2,0]-任意划分成1m +(m ∈N )份,设分点的横坐标从小到大依次为12,,,m t t t ,记02t =-,10m t +=,10|()()|mi i i G f t f t +==-∑.再将区间[0,2]等分成21n +(n ∈N )份,设等分点的横坐标从小到大依次为122,,,n x x x ,记21()ni i H f x ==∑.求使得2023H G ⋅>的最小整数n 的值.6、闵行已知a ∈R ,32()(2)5(1)ln f x a x x x a x =--++-.(1)若1为函数()y f x =的驻点,求实数a 的值;(2)若0a =,试问曲线()y f x =是否存在切线与直线10x y --=互相垂直?说明理由;(3)若2a =,是否存在等差数列123123,,(0)x x x x x x <<<,使得曲线()y f x =在点22(,())x f x 处的切线与过两点11(,())x f x 、33(,())x f x 的直线互相平行?若存在,求出所有满足条件的等差数列;若不存在,说明理由.7、浦东设()y f x =是定义在R 上的函数,若存在区间[],a b 和0(,)x a b ∈,使得()y f x =在0[,]a x 上严格减,在0[,]x b 上严格增,则称()y f x =为“含谷函数”,0x 为“谷点”,[],a b 称为()y f x =的一个“含谷区间”.(1)判断下列函数中,哪些是含谷函数?若是,请指出谷点;若不是,请说明理由:①2y x =,②cos y x x =+;(2)已知实数0m >,()22ln 1y x x m x =---是含谷函数,且[]2,4是它的一个含谷区间,求m 的取值范围;(3)设,R p q ∈,()()432432h x x px qx p q x =-+++--.设函数()y h x =是含谷函数,[],a b 是它的一个含谷区间,并记b a -的最大值为(),L p q .若()()12h h ≤,且()10h ≤,求(),L p q 的最小值.8、普陀(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设函数()y f x =的表达式为()e exxf x a -=+.(1)求证:“1a =”是“函数()y f x =为偶函数”的充要条件;(2)若1a =,且()()223f m f m +≤-,求实数m 的取值范围.9、松江已知函数()y f x =,记()sin ,f x x x x D =+∈.(1)若[]0,2D π=,判断函数的单调性;(2)若0,2D π⎛⎤= ⎥⎝⎦,不等式()f x kx >对任意x D ∈恒成立,求实数k 的取值范围;(3)若D =R ,则曲线()y f x =上是否存在三个不同的点A 、B 、C ,使则曲线()y f x =在A 、B 、C 三点处的切线互相重合?若存在,求出所有符合要求的切线的方程;若不存在,请说明理由.10、徐汇若函数(),y f x x =∈R 的导函数(),y f x x '=∈R 是以(0)T T ≠为周期的函数,则称函数(),y f x x =∈R 具有“T 性质”.(1)试判断函数2y x =和sin y x =是否具有“2π性质”,并说明理由;(2)已知函数()y h x =,其中2()2sin (03)=++<<h x ax bx bx b 具有“π性质”,求函数()y h x =在[0,]π上的极小值点;(3)若函数(),y f x x =∈R 具有“T 性质”,且存在实数0M >使得对任意x ∈R 都有|()|f x M <成立,求证:(),y f x x =∈R 为周期函数.(可用结论:若函数(),y f x x =∈R 的导函数满足()=0,f x x '∈R ,则()()常数=f x C .)11、杨浦设函数()e ,x f x x =∈R .(1)求方程()2()()2f x f x =+的实数解;(2)若不等式()x b f x +≤对于一切x ∈R 都成立,求实数b 的取值范围.12、长宁若函数()y f x =与()y g x =满足:对任意12,R x x ∈,都有()()()()1212f x f x g x g x -≥-,则称函数()y f x =是函数()y g x =的“约束函数”.已知函数()y f x =是函数()y g x =的“约束函数”.(1)若()2f x x =,判断函数()y g x =的奇偶性,并说明理由;(2)若()()30f x ax x a =+>,()sin g x x =,求实数a 的取值范围;(3)若()y g x =为严格减函数,()()01f f <,且函数()y f x =的图像是连续曲线,求证:()y f x =是()0,1上的严格增函数.13、嘉定已知ln (),()e xx xf xg x x==.(1)求函数()()y f x y g x ==、的单调区间和极值;(2)请严格证明曲线()()y f x y g x ==、有唯一交点;(3)对于常数10,e a ⎛⎫∈ ⎪⎝⎭,若直线y a =和曲线()()y f x y g x ==、共有三个不同交点()()()123,,,x a x a x a 、、,其中123x x x <<,求证:123x x x 、、成等比数列.。

上海市闵行区2020届高三一模数学试卷及详细解析(Word版)

上海市闵行区2020届高三一模数学试卷及详细解析(Word版)

上海市闵行区2020届高三一模数学试卷及详解2019.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合A ={-3,-1,0,1,2},B ={x ||x |>1},则A ∩B =______ 2. 复数52i -的共轭复数是______ 3. 计算23lim 13(21)x n n →∞+++-L =______4. 已知0<x <1,使得()1x x -取到最大值时,x =______5. 在△ABC 中,已知AB a =u u u r r ,BC b =u u u r r ,G 为△ABC 的重心,用向量a r 、b r表示向量AG u u u r=______6. 设函数()f x =22log (1)1log 1x x --,则方程()f x =1的解为______7. 已知()22416012881x a a x a x a x -=+++⋯+则3a =______ (结果用数字表示)8. 若首项为正数的等比数列{n a },公比q =lg x ,且100a <99a <101a ,则实数x 的取值范围是______9. 如图,在三棱锥D -AEF 中,A 1、B 1、C 1 分别是DA 、DE 、DF 的中点,B 、C 分别是 AE 、AF 的中点,设三棱柱ABC - A 1B 1C 1的 体积为V 1,三棱锥D -AEF 的体积为V 2, 则V 1:V 2=______10. 若O 是正六边形123456A A A A A A 的中心,Q ={i OA u u u r|i =1,2,3,4,5,6},,,a b c r r r ∈Q,且a r 、b r 、c r 互不相同,要使得()·0b c a +=r r r ,则有序向量组),(,a c b r r r的个数为______11. 若()f x =3x a x a -⋅-,且x ∈(0,1)上的值域为[0,f (1)],则实数a 的取值范围是______12. 设函数()f x =sin(x )6A πω-(ω>0,A >0),x ∈[0,2π],若()f x 恰有4个零点,则下述结论中:①若0()()f x f x ≥恒成立,则x 的值有且仅有2个;②()f x 在[0,819π]上单调递增;③存在ω和1x ,使得11()()()2f x f x f x π≤≤+对任意x ∈[0,2π]恒成立;④“A ≥1”是“方程()f x =12-在[0,2π]内恰有五个解”的必要条件;所有正确结论的编号是______二. 选择题(本大题共4题,每题5分,共20分)13. 已知直线l 的斜率为2,则直线l 的法向量为( )A. (1,2)B. (2,1)C. (1,-2)D. (2,-1) 14. 命题“若x a >,则10x x->”是真命题,实数a 的取值范围是( ) A. (0,+∞) B. (-∞,1] C. [1,+∞) D. (-∞,0] 15. 在正四面体A -BCD 中,点P 为△BCD 所在平面上的动点,若AP 与AB 所成角为定值θ,θ∈(0,2π),则动点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 16. 已知各项为正数的非常数数列{a n }满足11n a n a a +=,有以下两个结论:①若32a a >,则数列{a n }是递增数列;②数列{a n }奇数项是递增数列;则( )A. ①对②错B. ①错②对C. ①②均错误D. ①②均正确三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在一个圆锥内作一个内接圆柱(圆柱的下底面在圆锥的底面上,上底面的圆在圆锥的侧面上),圆锥的母线长为4,AB 、CD 是底面的两条直径,且AB =4,AB ⊥CD ,圆柱与圆锥的公共点F 恰好为其所在母线P A 的中点,点O 是底面的圆心.(1) 求圆柱的侧面积;(2) 求异面直线OF 和PC 所成的角的大小.18. 已知函数()f x =22x xa +. (1) 若()f x 为奇函数,求a 的值;(2) 若()f x <3在x ∈[1,3]上恒成立,求实数a 的取值范围.19. 某地实行垃圾分类后,政府决定为A 、B 、C 三个校区建造一座垃圾处理站M ,集中处理三个小区的湿垃圾,已知A 在B 的正西方向,C 在B 的北偏东30°方向,M 在B 的北偏西20°方向,且在C 的北偏西45°方向,小区A 与B 相距2 km ,B 与C 相距3 km .(1) 求垃圾处理站M 与小区C 之间的距离;(2) 假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里a 元,一辆小车的行车费用为每公里λa 元(其中λ为满足100λ是1-99内的正整数),现有两种运输湿垃圾的方案:方案1:只用一辆大车运输,从M 出发,依次经A 、B 、C 再由C 返回到M ; 方案2:先用两辆小车分别从A 、C 运送到B ,然后并各自返回到A 、C ,一辆大车从M 直接到B 再返回到M ;试比较哪种方案更合算?请说明理由. (结果精确到小数点后两位)20. 已知抛物线Γ:2y =8x 和圆Ω:2240x y x +-=,抛物线Γ的焦点为F . (1) 求Ω的圆心到Γ的准线的距离;(2) 若点T (x,y )在抛物线Γ上,且满足x ∈[1,4],过点T 作圆Ω的两条切线,记切线为A 、B ,求四边形TAFB 的面积的取值范围;(3) 如图,若直线l 与抛物线Γ和圆Ω依次交于M 、P 、Q 、N 四点,证明:“|MP |=|QN |=12|PQ |”的充要条件是“直线l 的方程为2x =”.21. 已知数列{a n }满足1a =1,2a =a (a >1),211n n n n a a a a d +++-=-+(d >0), n ∈N *.(1) 当d =a =2时,写出4a 所有可能的值;(2) 当d =1时,若221n n a a ->且221n n a a +> 对任意n ∈N *恒成立,求数列{n a }的通项公式;(3) 记数列{n a }的前n 项和为n S ,若{2n a }、{21n a }分别构成等差数列,求2n S .上海市闵行区2020届高三一模数学答案详解一.填空题1. {-3,2},将A 中元素逐个代入|x |>1,符合条件的有-3、2,即A ∩B ={-3,2};2. -2+i ,522z i i ==---,2z i ∴=-+;3. 3,1+3+...+(2n -1)2(121)2n n n +-=,22233limlim 313(21)x x n n n n →∞→∞==++-L ;4.12,(1)x x +-≥12≤,当且仅当1x x =-时等号成立,12x =.或设2(1)t x x x x =-=-+,01x <<,转化为二次函数最值问题;5. 211111121,(),333333333a b BG BA BC b a AG AB BG a b a a b+=+=-=+=+-=+u u ur u u u r u u u r u u u r u u u r u u u r r r r r r r r r r ;6. ()()()222222log 1log log 1,2(2)1x f x x x x x x x x x ==-+=-=-===-,,或舍;7. ()()5652638335615656a x C x x a -=-=-=-,,;8. 221999999991(0,),0,0,11,1,,10a q a a a a q q q q <>∴><∴<>∴<-Q 由且1lg 1,010x x <-∴<<即;9.3:8,1,ABC S S A ABC h =令,点到平面的距离为121218,4S 2,:3:833V Sh V h Sh V V ∴==⋅⋅==;10. 48,①如左图,这样的a r 、b r 有6对,且a r 、b r 可交换,此时c r有2种情况,∴个数为62224⨯⨯=个;②如右图,这样的a r 、b r 有3对,且a r 、b r可交换,此时c r有4种情况,∴个数为32424⨯⨯=3x 2x 4=24个.综上所述,总数为24+24=48个;11. [0,14],()()()()()230030min f x x a x a a f x f a =--<==>,当,,不符题意;()()[]()()()2200320,101max a f a f a a x f x f f ≥=≥=∈=Q 当,,结合图像,当,或,()()()21101313[0,4)]4(1f f f a a a a a ∴--≥≥∴≤∈Q 值域为[0,(1)],,即,,综上,;12. ①③④,()()254324.61219[)12f x f x A πππωπω∴≤-<∈=Q 恰有个零点,,,①即有两个交点,正确;②结合右图,当2512ω=时,f (x )在[0,825π]递增,∴②错误;③192512121212]]12122192521925T ππωππππω∈∴∈∈∴Q Q [,],=(,,(,,存在1()f x 为最小值,1(x )2f π+为最大值,正确;④结合右图,若方程(x)f =12-在[0,2π]内恰有五个解,需满足1(0)2f ≤-,即A ≥1,同时结合左图,当A ≥1,不一定有五个解,正确.二.选择题13.选D ,斜率为2,方向向量可以为(1,2),∴法向量可以是(2,-1); 14.选C ,“x >a ”⇒“x >1或x <0”,Q 范围小的推出范围大的,∴a ≥1;15.选B ,以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.当截面与圆锥母线垂直时,轨迹为抛物线,当截面与轴线垂直时,轨迹为圆,由题意可知,AB 不可能垂直于平面BCD ,即轨迹不可能为圆,可进一步计算AB 与平面BCD 所成角为,即θ=arctan 时,轨迹为抛物线,0<θ<arctan 时,轨迹为椭圆,<θ<2π时,轨迹为双曲线一支,Q θ∈(0,4π),故选B ; 16.选D ,Q {n a }为各项为正数的非常数数列,10a ∴>且10a ≠;(1)当11a >时,显然{n a }为递增数列,①②均正确;(2)当0<1a <1时,3212113111(,1),(,)a a a a a a a a a a =∈=∈,不满足①的前提32a a >,又由,332142411132511134(,)(,),(,)(,)a a a a a a a a a a a a a a a a a a =∈==∈=,依此可得,2212221212(,),(,)k k k k k k a a a a a a --+-∈∈,即偶数项递减,奇数项递增;综上,选D.三.解答题17. (1)设圆柱上底面的圆心为O ',在△P AO 中,F 是P A 的中点,FO '//AO ,OA =2,∴FO '=1,OO '=2S rh π==圆柱侧.(2)F 、O 分别是P A 、AB 的中点,∴FO //PB ,∴异面直线OF 和PC 所成的角等于PB 和PC 的夹角∠BPC ,PB =PC =4,BC =,161683cos BPC 2444+-∠==⨯⨯,∴异面直线OF 和PC 所成的角为3arccos418. (1)解法1:Q x ∈R ,(x)f 为奇函数,∴(0)0f =,即1+a =0,∴a =-1, 当a =-1,1()22x x f x =-,11()22()22x xx x f x f x ---=-=-=-,满足奇函数的条件,∴a =-1. 解法2:()22x x af x =+,x ∈R ,Q ()f x 为奇函数,∴()()f x f x -=- 1()2222x x x x a f x a ---=+=+⋅,()22x x af x -=--,∴2(a 1)(21)0x ++=恒成立,∴a =-1.(2)Q x ∈[1,3],()f x <3恒成立,∴由232x x a+<得2322x x a <⋅-恒成立,而2239322(2)24x x x y =⋅-=--+,又2x ∈[2,8],min 40y ∴=-,40a ∴<-19. (1)在△MBC 中,∠MBC =50°,∠MCB =105°,BC =3,∠BMC =25°,由正弦定理得:3sin 50sin 25MC =o o,3sin 50 5.44sin 25MC ∴=≈oo 答:垃圾处理站M 与小区C 间的距离为5.44公里.(2)在△MBC 中,由3sin105sin 25MB =o o得:3sin105 6.857sin 25MB =≈oo ,在△MAB 中,∠MBA =70°,AB =2,222270MA AB MB AB MB cos =⋅∴+-⋅o , 6.452MA ∴≈,方案一费用:()()1 6.45223 5.43816.890y a MA AB BC CM a a =+++=+++=; 方案二费用:()()22213.71310|y a MB a AB BC a λλ=++=+, 当12y y >时,方案二合算,此时00.32λ<<; 当12y y <时,方案一合算,此时0.320λ<<;∴当00.32λ<<时,方案二合算;当0.320λ<<时,方案一合算.20. (1)由2240x y x +-=可得:()2224x y -+=,∴Ω的圆心与Γ的焦点F 重合,∴Ω的圆心到Γ的准线的距离为4.(2)四边形TAFB 的面积为:222S =⋅⋅===,∴当x ∈[1,4]时,四边形TAFB 的面积的取值范围为[(2)证明(充分性):若直线l 的方程为x =2,将x =2分别代入28y x =,2240x y x +-=得:M (2,4)、P (2,2)、Q (2,-2)、N (2,-4),2N MP Q ∴==,122PQ ⋅=,12MP QN PQ ∴==⋅;(必要性):若12MP QN PQ ==,则线段MN 与线段PQ 的中点重合, 设l 的方程为x =ty +m ,M (11,x y )、N (22,x y )、P (33,x y )、Q (44,x y ), 则12y y +=34y y +,将x =ty +m 代入28y x =得:2880y ty m --=,12y y +=8t ,△=26432t m +>0,220t m +>,同理可得:()342221m y y t -+=+,()22281m t t -=+即t =0或()22281m t -=+, 即t =0或242m t =--而当242m t =--时,将其代入220t m +>得:2220t -->不可能成立;当t =0时,由280y m -=得:1y =,2y =-;将x =m 代入2240x y x +-=得:3y =4y =12MP PQ =Q ,12=⋅即= 220m m ∴-=,m =2或m =0(舍),∴直线l 的方程为x =2,∴“12MP QN PQ ==”的充要条件是“直线l 的方程为x =2”.21.(1)当d =a =2时,2112n n n n a a a a +++-=-+,即{1n n a a +-}是以1为首项、2为公差的等差数列,121n n a a n +∴-=- 可得:323a a -=±,435a a -=±,35,1a ∴=,435a a =±410a =或40a =或44a =或46a =-.(2)当d =1时,2111n n n n a a a a +++-=-+,即{1n n a a +-}是首项为a -1、公差为1的等差数列,1112n n a a a n a n +-=-+-=-+21222n n a a a n +-=-+∴,22132n n a a a n --=-+221n n a a ->Q 且221n n a a +>,22122n n a a a n +∴-=-+,22132n n a a a n --=-+21211n n a a +-∴-=-,212n a n -∴=-,221321n n a a n a a n -∴=-++=-+3212n n n a n n a -⎧⎪⎪∴=⎨⎪+-⎪⎩为奇数为偶数(或21n k n a k k n k a -⎧=⎨+-⎩=2-1=2) (3)由己知得:11(1)n n a a a n d +-=-+-(*n N ∈) 若{2n a }、{21n a -}分别构成等差数列,则()221)2(122n n a a a n d n --=±-+⎤⎣⎦≥⎡-②()21212(1)1n n a a a n d n +-=±-+-⎤⎦≥⎡⎣,()2221()121n n a a a nd n ++-=±-+≥,由②+③得:()()2121122(12)12n n a a a n d a n d n +-⎡⎤⎡⎤⎣⎦⎣⎦-=±-+-±-+-≥, Q {21n a -}是等差数列,2121n n a a +--必为定值,()()2121121122n n a a a n d a n d +-⎡⎤⎡⎤⎣∴-=-+---+-⎦⎣⎦, 或()()2121121122n n a a a n d a n d +--=--+-+-+-⎡⎤⎡⎤⎣⎦⎣⎦, 即2121n n a a d +--=(n 2)>或2121n n a a d +--=-(n 2)> 而由①知321a a a d -=-+,即32(1)a a a d -=±-+ ()3111a a a a d -=-±-+∴,即31a a d -=-或312(a 1)a a d -=-+(舍), 2121n n a a d +-∴-=-(n ∈N *),211(n 1)n a d -∴=--(n ∈N *) 同理,由③+④得:[]()22212121n n a a a nd a n d +-=±-++-+-⎡⎤⎣⎦(1)n ≥, 222n n a a d +-=∴或222n n a a d +-=-,由上面的分析可知:()32112a a a d a d -=-+-±-+∴, 而()4312a a a d -=±-+,()42112a a a d a d -=-+-±-+, 即42a d a -=或42222a a a d -=-+-(舍),222n n a a d +-=∴, ()21n a a n d ∴=+-,从而21221221k k k k a a a a a -+++=+=+(k ∈N *),()()()()21221...11...11n n n aS a a a a a a n a +∴=+++=++++++=+1444442444443个.。

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案 考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【答案分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【答案分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【答案分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答. 【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【答案分析】由题意结合函数的答案解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【答案分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【答案分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【答案分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【答案分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( ) A .b c a >> B .b a c >> C .c b a >> D .c a b >>【答案】A【答案分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,41102⎛-=> ⎝⎭,即1122->-由二次函数性质知g g <,4112⎛-= ⎝⎭,而22481682)0-=+-=-=-<,112<-,所以(2g g >,综上,(2g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【答案分析】利用指数型复合函数单调性,判断列式计算作答.【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【答案分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【答案分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【答案分析】根据函数的答案解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x -==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的答案解析式研究函数的性质,属于基础题.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【答案分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误; 对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【答案分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【答案分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xaxx f x =-是偶函数,则=a ( ) A .2- B .1- C .1 D .2【答案】D【答案分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【答案分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可.【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【答案分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【答案分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【答案分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【答案分析】分别求出选项的函数答案解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【答案分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【答案分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【答案分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【答案分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【答案分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数答案解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【答案分析】A 选项,先答案分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行答案分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【答案分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]: 因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数, 所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭, 所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【答案分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x ,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【答案分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【答案详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x x π≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本答案分析判断能力,属中档题.。

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)

专题02三角函数一、填空题高三校考期中)函数的最小正周期为【答案】由题意可得:函数的最小正周期.故答案为:.高三同济大学第一附属中学校考期中)已知函数,则函数的【答案】因为,所以的最小正周期为.故答案为:.高三上海市回民中学校考期中)函数的定义域为【答案】【分析】定义域满足.【解析】的定义域满足,即.故答案为:.高一校考期中)是由解析式得的定义域为,关于原点对称,且,故为奇函数,高一格致中学校考期中)函数的一个对称中心是(....【分析】求解出对称中心为,对赋值则可判断令,解得,所以函数图象的对称中心是,令,得函数图像的一个对称中心是,高一闵行中学校考期中)函数的值域是【答案】【解析】,因为所以函数的值域为.故答案为:.若,则的取值范围是【答案】【分析】通过讨论的取值范围,即可得出,进而求出的取值范围由题意,,而,则,当时,解得或;当时,解得,综上:.故答案为:.高一上海市进才中学校考期中)函数的严格增区间是【答案】【分析】根据正切型函数的图象与性质,得到,即可求解由题意,函数,令,解得,即函数的递增区间为.故答案为:.高一上海市大同中学校考期中)函数(,)的,最小正周期是,初相是【答案】【分析】根据函数的性质求出,即得函数的解析式因为函数(,)的振幅是因为函数的最小正周期是,所以.,所以.所以函数的解析式为.故答案为高一华东政法大学附属中学校考期中)函数,的最小正周期为,则实数【答案】/0.5【分析】由周期公式求出的值由题可知,,∴.故答案为:.高一上海市青浦高级中学校考期中)已知函数是偶函数,则的取值是【答案】【分析】根据余弦函数的性质求得的值令,则,所以的值为.故答案为:.高一上海市嘉定区第一中学校考期中)已知函数的最,则正整数的取值是解:因为函数的最小正周期不小于所以(),得,所以正整数的取值为高一上海市进才中学校考期中)若函数的图像关于直线对称,则【分析】根据三角函数的对称性,得到,即可求出结果因为函数的图像关于直线对称,所以,即.故答案为:.高一校考期中)若函数的最小正周期是,则【答案】【分析】根据三角函数的最小正周期公式列方程,解方程求得的值由于,依题意可知.故答案为:高一校考期中)若函数的最大值为,则的值为【答案】【分析】由三角函数辅助角公式可得,由三角函数的有界性可得函数的最大值为,再结合已知条件运算即可得解解:因为,即函数的最大值为,由已知有,即,故答案为.高一校考期中)函数(其中)为奇函数,则【答案】/函数是奇函数,则,而,所以.故答案为:高三校考期中)若将函数向右平移个单位后其图像关于轴对称,则【答案】易知函数向右平移个单位后得函数,此时函数关于轴对称,则,又,所以时,.故答案为:.函数图像上一个最高点为,相邻的一个最低点为,则【答案】【分析】由题知,,即,从而利用周期公式求出.由三角函数的图象与性质可知,,则,又,所以,.故答案为:.高三上海市建平中学校考期中)关于的不等式对任意恒成立,则实数的最大值为【答案】/令,,将不等式转化成关于的一元二次不等式,因为,所以,即,令,,有令,,要使不等式对于任意恒成立,只需满足,,函数在上单调递减,在上单调递增,所以时,即,得或,有最小值,,得,所以实数的最大值为.故答案为:.高一校考期中)若、是函数两个不同的零点,则的最【答案】【解析】、是函数的零点满足,所以,由于所以的最小值为.故答案为:.的部分图像,【答案】【分析】由图象,首先得出的值,然后根据的值运用周期公式求出值,再将最高点的坐标代入函数式中求解的值即可得出表达式【解析】由图象可知,,,,,将,又故答案为:.图像如图,则函数的解析式为【答案】【分析】根据函数图象得到,根据周期求出,再根据函数过点,代入求出,即可得解;【解析】解:由图可知,,所以,解得,所以,又函数过点,所以,所以,,解得,,又,所以,所以;故答案为:23.(2023下·上海长宁·高一上海市第三女子中学校考期中)函数的部分图像如图所示,则的单调减区间为(A.B.【答案】B【分析】由图象得出函数的周期,从而可得减区间.【解析】由题意周期是,,,所以减区间是,故选:B.24.(2023下·上海黄浦·高一上海市大同中学校考期中)设是某地区平均气温(摄氏度)关于时间(月份)的函数.下图显示的是该地区1月份至12月份的平均气温数据,函数近似满足.下列函数中,最能近似表示图中曲线的函数是()A.B.【答案】A【分析】结合题意和函数图象,结合三角函数的性质求解即可.【解析】由题意,,即.由图可知,,解得,,此时,将点代入解析式,可得,即,所以,,即,取,,所以.故选:A.25.(2021下·上海浦东新·高一华师大二附中校考期中)函数的部分图象如图,轴,当时,若不等式恒成立,则m的取值范围是()A.B.C.D.【答案】A【分析】利用函数的图象,求出对称轴方程,从而求出函数的周期,由此求得的值,再利用特殊点求出的值,得到函数的解析式,然后利用参变量分离以及正弦函数的性质,即可求出的取值范围.因为轴,所以图象的一条对称轴方程为,所以,则,所以,又,,且,所以,故,因为当时,不等式恒成立,所以,令,因为,则,所以所以的最小值为,所以,即.故选:.把函数按进行平移,得到函数,且满足,则使得最小时,【答案】【分析】根据三角函数的变换规则得到的解析式,依题意为奇函数,解得的取值,再求出的最小值,即可得解;解:把函数按进行平移得到,即,又,即为奇函数,所以,解得,又,要使最小,即取得最小,所以;故答案为:高一上海市南洋模范中学校考期中)函数的最小,则实数的最小值为【答案】由题意利用正弦函数的周期性,结合题意即可求得实数的最小值.解:函数的最小正周期不大于所有,,则实数的最小值为,故答案为:.高三校考期中)若函数在上单调递增,则的最大值【答案】【分析】由正弦函数的性质,令可得函数的单调增区间,结合题设给定递增区间求由正弦函数的性质知:在上递增,在上递减,对于,有,可得;有,可得,所以题设函数在上递增,在上递减,要使其在上单调递增,则,故的最大值为.故答案为:.已知函数,,则的最小值是【答案】的最小值等于,进而可以求出结果因为,所以,,所以,故答案为:.高三上海市七宝中学校考期中)已知函数(其中为常数,且)有且仅有个零点,则的最小值为【解析】由得,,设,则作出与的图象如图则,得,即的最小值是,故答案为:.高三校考期中)记函数的最小正周期,若,为的零点,则的最小值为【答案】【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:高一上海市七宝中学校考期中)对于函数,有以下函数的图象是中心对称图形;任取,恒成立;函数的图象与轴有无穷多个交点,且任意两相邻交点的距离相等;函数与直线的图象有无穷多个交点,且任意两相邻交点间的距离相等:因为,:因为,所以,因此不成立,所以本结论不正确;:令,即,或,当,显然成立,当时,,显然函数的图象与轴有无穷多个交点,且任意两相邻交点④:,或,当,显然成立,当时,,,,显然任意两相邻交点间的距离相等不正确,因此本结论不正确;故答案为:①③二、解答题已知向量,,函数.求函数的单调递增区间;若,求函数的值域(1);(2).)由向量数量积的坐标表示及倍角正余弦公式、辅助角公式得,)由题设,令,则,所以函数的单调递增区间为.)由,则,故,可得,所以的值域为.34.(2023上·上海静安·高三上海市回民中学校考期中)已知函数.(1)求函数的最小正周期及最大值;(2)令,①判断函数的奇偶性,并说明理由;②若,求函数的严格增区间.【答案】(1),最大值为(2)①偶函数,理由见解析;②【分析】(1)根据二倍角公式化简的表达式,即可根据三角函数的性质求解,(2)利用奇偶性的定义即可判定奇偶性,根据整体法即可求解单调区间.【解析】(1),,当时,即时,(2),是偶函数,理由如下:由于的定义域为,关于原点对称,且,所以是偶函数;令,所以,取,则单调递增区间为,当,则单调递增区间为,由于,所以单调递增区间为的严格增区间为35.(2023上·上海黄浦·高三上海市向明中学校考期中)已知函数.(1)求函数的最小正周期和单调区间;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.【答案】(1)最小正周期;单调递增区间为;单调递减区间为.(2)【分析】(1)利用降幂公式和辅助角公式化简函数解析式,用周期公式求周期,整体代入法求函数单调区间;(2)由区间内函数的单调性和函数值的变化范围求解实数的取值范围.【解析】(1),则函数的最小正周期;令,解得,可得函数的单调递增区间为·令,解得,可得因数的单调递减区间为;(2)由(1)可知,时,在上单调递增,在上单调递减,当,,由增大到1,当,,由1减小到,若关于的方程在上有两个不同的实数解,则实数的取值范围为36.(2023下·上海青浦·高一上海市青浦高级中学校考期中)已知函数.(1)求的单调递增区间;(2)若对任意都有,求实数t的取值范围.【答案】(1)单增区间为(2)【分析】(1)利用倍角正余弦公式、辅助角公式化简函数式,由整体法求增区间;(2)由题设知,结合给定闭区间列不等式求参数范围.【解析】(1)由,令,则,所以的单调递增区间为.(2)由,则,故,又,则,所以,即.37.(2023下·上海闵行·高一校考期中)已知函数(1)当时,求函数的最大值,并求出取得最大值时所有的值;(2)若为偶函数,设,若不等式在上恒成立,求实数m 的取值范围;(3)若过点,设,若对任意的,,都有,求实数a 的取值范围.【答案】(1)1,(2)(3)【分析】(1)由题意可得,由正弦函数的性质求解即可;(2)由题意可得,,将问题转化为,且在上恒成立,结合正弦函数的性质即可求解;(3)由题意可得将问题转化为结合正弦函数的性质及二次函数性质求解.【解析】(1)当时,,所以当,即时,所以,此时;(2)因为为偶函数,所以,所以,所以,又因为在上恒成立,即在上恒成立,所以在上恒成立,所以,且在上恒成立,因为,所以,所以,解得所以m的取值范围为;(3)因为过点,所以所以,又因为,所以,所以,又因为对任意的,,都有成立,所以,因为,所以,设,则有图像是开口向下,对称轴为的抛物线,当时,在上单调递增,所以,所以,解得所以;当时,在上单调递减,所以,所以,解得所以;当时,,所以,解得所以,综上所述:所以实数a 的取值范围为【点睛】关键点点睛:关键点是把恒成立转化为结合正弦函数的性质及二次函数性质求解即可.一、填空题由上图可知:两个图象交点个数为4个,即函数()()lg 1,1sin ,0x x f x x x ⎧->⎪=⎨≤⎪⎩,则y =故答案为:4.2.(2023上·上海浦东新·高三上海市洋泾中学校考期中)已知关于6.(2023下·上海闵行·高一上海市文来中学校考期中)已知()[)[)π4sin ,0,4428,4,8x x f x x x ⎧∈⎪=⎨⎪-∈⎩,若函数(g 实数a 的取值范围为.因为[2()()()1g x f x af x a =+--=故()0g x =时,即()1f x =或()f x 则()g x 在[8,8]x ∈-上恰有八个不同的零点,即等价于同的交点,由图象可知,1y =和()f x 的图象有则(1)y a =-+和()f x 的图象需有2故95a -<<-,则实数a 的取值范围为(9,5)--,故答案为:(9,5)--【点睛】方法点睛:根据函数的周期以及解析式,可作出函数的图象,将零点问题转化为函数图象的交点问题,数形结合,列出不等式,即可求解二、单选题7.(2023上·上海松江·高三校考期中)已知函数的是()A .()f x 的最大值为2B .()f x 在[]0,π上有4个零点。

上海2021届高三数学·一模试卷 分类汇编(三角函数)

上海2021届高三数学·一模试卷 分类汇编(三角函数)

2021届上海高三数学·一模分类汇编(三角函数)一、填空题: 1、行列式ααααααcos sin cos cos sin sin +-的值等于2、已知),(πα0∈,且有αα2cos 2sin 21=-,则=αcos ________ 3、已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边经过点)4,3(P ,则=+)2πtan(α4、若函数)42sin(π+=x y ,则它的最小正周期T =5、若矩阵sin cos m A n θθ⎛⎫=⎪⎝⎭,sin cos mB n θθ⎛⎫= ⎪⎝⎭,且A B =,则22m n += 6、在ABC △中,若2AB =,512B π∠=,4C π∠=,则BC =_______ 7、若παπ<<2且31cos -=α,则=αtan 8、若1sin 3α=,则cos(2)πα-=9、在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c 2201c a B+=,则角A =10、函数πsin(2)6y x =-的最小正周期为11、方程cos2x -sin x =0在区间[0,π]上的所有解的和为 .12、已知函数)22)(3sin()(πϕπϕ<<-+=x x f 的图像关于直线4π=x 对称,则=ϕ______13、若tan()34πα+=-,则tan α=_____14、函数arccos y x =,[]1,0x ∈-的反函数是()1f x -=________15、已知sin ,522⎛⎫=-∈- ⎪⎝⎭ππαα ,则sin 2⎛⎫+= ⎪⎝⎭πα二、选择题:1、已知函数)0,0(,)sin()(>>+=ωϕωA x A x f 的图像与直线)0(A b b y <<=的三个相邻交点的横坐标依次是1,2,4,下列区间是函数)(x f 单调递增区间的是( )..A []3,0 .B ⎥⎦⎤⎢⎣⎡3,23 .C []6,3 .D ⎥⎦⎤⎢⎣⎡29,3 2、方程8cos log x x =的实数解的个数是( )A.4B.3C.2D.1 3、已知函数x x x f ωπωcos )6sin()(++=在上的值域为,则实数ω的取值范围为( )A .B .C .D .4、“函数f (x )=sin(ωx )(x ,ω∈R ,且ω≠0)的最小正周期为2”是“ω=π”的 ( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分又非必要条件 5、已知顶点在原点的锐角α绕原点逆时针转过π6后,终边交单位圆于1(,)3P y -,则s in α的值为( ). (A 223- (B 223+ (C 261- (D 261+三、解答题:1、设函数f (x )=sin(ωx +φ)(ω>0,-π2<φ<π2)最小正周期为2π,且f (x )的图象过坐标原点.(1)求ω、φ的值;(2)在△ABC 中,若2f 2(B )+3f 2(C )=2 f (A )▪f (B )▪f (C )+f 2(A ),且三边a 、b 、c 所对的角依次为A 、B 、C .试求b ·f (B +C )c 的值.2、如图所示,,A B 两处各有一个垃圾中转站,B 在A 的正东方向16km 处,AB 的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB 的北面P 处建一个发电厂,利用垃圾发电.要求发电厂到两个垃圾中转站的距离(单位:km )与它们每天集中的生活垃圾量(单位:吨)成反比,现估测得,A B 两处中转站每天集中的生活垃圾量分别约为30吨和50吨.(1)当15AP km =时,求APB ∠的值;(2)发电厂尽量远离居民区,要求PAB ∆的面积最大.问此时发电厂与两个垃圾中转站的距离各为多少?3、已知函数2()cos cos 1f x x x x =++.(1)求()f x 的最小正周期和值域;(2)若对任意的x R ∈,2()()20f x k f x -⋅-≤恒成立,求实数k 的取值范围.4、在①3=ac ;②3sin =A c ;③三边成等比数列.这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求解此三角形的边长和角的大小;若问题中的三角形不存在,请说明理由. 问题:是否存在ABC ∆,它的内角A 、B 、C 的对边分别为a 、b 、c ,且B A sin 3sin =,6π=C , .注:如果选择多个条件分别解答,按第一个解答计分.居民生活区北5、设常数k ∈R, 2()cos cos f x k x x x =, x ∈R . (1)若()f x 是奇函数, 求实数k 的值;(2)设1k =, ABC △中, 内角C B A ,,的对边分别为c b a ,,. 若()1f A =, a , 3b =, 求ABC △的面积S .6、已知函数2()cos 222x x xf x =+ (1)求函数在区间[]0,π上的值域;(2)若方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,求ω的取值范围.7、如图,矩形ABCD 是某个历史文物展览厅的俯视图,点E 在AB 上,在梯形DEBC 区域内部展示文物,DE 是玻璃幕墙,游客只能在△ADE 区域内参观.在AE 上点P 处安装一可旋转的监控摄像头,MPN ∠为监控角,其中M 、N 在线段DE (含端点)上,且点M 在点N 的右下方.经测量得知:6AD =米,6AE =米,2AP =米,4MPN π∠=.记EPM θ∠=(弧度),监控摄像头的可视区域△PMN 的面积为S 平方米.(1)分别求线段PM 、PN 关于θ的函数关系式,并写出θ的取值范围; (2)求S 的最小值.()fx8、进博会期间,有一个边长80m 的正方形展厅OABC , 由于疫情,展厅被分割成如图所示的相互封闭的几个部分,已划出以O 为圆心,60m 为半径的扇形ODE 作为展厅,现要在余下的地块中划出一块矩形的产品说明会场地PGBF ,矩形有两条边分别落在边AB 和BC 上,设∠POA=α51212ππα⎛⎫≤≤⎪⎝⎭. (1)用α表示矩形PGBF 的面积,并求出当矩形PGBF 为正方形时的面积(精确到21m ); (2)当α取何值时,矩形PGBF 的面积S PGBF 最大?并求出最大面积(精确到21m ).9、设a 为常数,函数1)22cos(2sin )(+-+=x x a x f π(R ∈x ) (1)设3=a ,求函数)(x f y =的单调递增区间及频率f ;(2)若函数)(x f y =为偶函数,求此函数的值域.10、已知函数)(cos )(x x f ω= (0>ω)的最小正周期为π.(1)求ω的值及函数)()4π(3)(x f x f x g --=,⎥⎦⎤⎢⎣⎡∈2π,0x 的值域;(2)在ABC △中,内角A 、B 、C 所对边的长分别为a 、b 、c ,若⎪⎭⎫⎝⎛∈2π,0A ,21)(-=A f ,ABC △的面积为33,2=-c b ,求a 的值.11、某公共场所计划用固定高度的板材将一块如图所示的四边形区域ABCD 沿边界围成一个封闭的留观区. 经测量,边界AB 与AD 的长度都是20米,60BAD ∠=︒,120BCD ∠=︒. (1)若105ADC ∠=︒,求BC 的长(结果精确到米);(2)求围成该区域至多需要多少米长度的板材(不计损耗,结果精确到米).12、已知函数21()sin 22f x x x =.(1)求函数()y f x =的最小正周期;(2)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若锐角A 满足()f A =,6C π=,2c =, 求ABC △的面积.13、已知函数()sin()6f x x πω=+(0)ω>的最小正周期为π.(1)求ω与()f x 的单调递增区间;(2)在ABC ∆中,若()12A f =,求sin sinBC +的取值范围.14、已知a 、b 、c 是ABC △中A ∠、B ∠、C ∠的对边,34=a ,6=b ,31cos -=A . (1) 求c ;(2) 求B 2cos 的值.。

历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(函数)汇编【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A. (,2]-∞-B. [2,0)-C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x -=++为偶函数,则a =( ) A. 1-B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x '的定义域为R ,记()().g x f x ='若3(2)2f x -,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g -=C. (1)(4)f f -=D. (1)(2)g g -=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a << B. b a c << C. a c b << D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( )A. 102f ⎛⎫-= ⎪⎝⎭B. (1)0f -=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -…的x 的取值范围是( ) A. [1,1][3,)-⋃+∞ B. [3,1][0,1]--⋃ C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D. [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logni i i H X p p ==-∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +-(1,2,j = ,)m ,则()H X ()H Y参考答案1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a …,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =-,1(1)ln(1)ln 33a a ∴+=-+,0a ∴=,故选.B 3.(2023·新课标I 卷 第10题)(多选) 解:1211200220lg20lg 20lg 0p p p L L p p p -=⨯-⨯=⨯> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p -=⨯ …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =⨯= ,30100pp ∴=,所以C 正确; 112220lg 905040p L L p -=⨯-= …,12lg 2p p ∴…,12100pp ∴…,所以D 正确. 故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确;选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x -为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称,结合()()g x f x =',根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称, 根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称,综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f -=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f -=,所以C 正确.13()()022g g -==,(1)(1)g g -=,所以B 正确;又(1)(2)0g g +=,所以(1)(2)0g g -+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++-=⋅=⇒+=-- 故(2)(1)()f x f x f x +=+-,(3)(2)(1)f x f x f x +=+-+, 消去(2)f x +和(1)f x +得到(3)()f x f x +=-,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =-=-=-, (3)(2)(1)112f f f =-=--=-, (4)(3)(2)2(1)1f f f =-=---=-, (5)(4)(3)1(2)1f f f =-=---=, (6)(5)(4)1(1)2f f f =-=--=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+-+-+-=-即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a -=⋅-是偶函数;33()(22)=()()(22)x x x x f x x a f x x a --∴=⋅--=-⋅-, 化简可得3(2222)0x x x x x a a --⋅-+⋅-=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:5881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数为奇函数,则()()1221f x f x -=-+,所以()()11f x f x -=-+, 所以,(3)(1)f x f x +=-+,即(4)(2)()f x f x f x +=-+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②, ()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x x n N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R r T--===,(2)f x +(21)f x +()f x ()0f x '>由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x -…可化为()010x f x ≥⎧⎨-≥⎩ 或()010x f x ≤⎧⎨-≤⎩, 由奇函数性质得(2)-(2)0f f -==,()f x 在(0,)+∞上单调递减,所以或,解得13x 剟或10.x -剟 满足(1)0xf x -…的x 的取值范围是[1,0][1,3].x ∈-⋃ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x -->,得1x <-或 5.x > 令245t x x =--,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =-⨯=,故A 正确; B 选项中,由题意知121p p +=,且1(0,1)p ∈,121222121121()log log log (1)log (1)H X p p p p p p p p =--=----,设22()log (1)log (1)f x x x x x =----,(0,1)x ∈ ,则222111()log log (1)log (1)ln 2ln 2f x x x x '=--+-+=-,当1(,1)2x ∈时,()0f x '<,当1(0,)2x ∈时,()0f x '>,故当11(0,2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()(log H X n log n n n=⨯-=,故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j21j2j 21j j 1()()log ()mm m H Y p pp p +-+-==-++∑,2j 2j j 2j 21j 221j j 1j 1()log (log log )mmm m H X p p p p p p +-+-===-=-+∑∑,j 21jj 21j2j 21j 2j 221jj 1j 1()()log ()(log log )m m mmp p pp m m H X H Y p p p p +-+-++-+-==-=+-+∑∑j 21j j 21jj 21jj 21jj 21j j 21j j 21j 22j 1j 1j 21j j 21j()()()=log log m m m m p p pp mmm m m pp pp m m p p p p p p p p p p +-+-+-+-++-+-+-==+-+-+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +-+-=+-++>∑故D 错误. 故答案为: .AC。

高三数学汇编:2024年高三数学一模试题好题汇编三角函数(解析版)

高三数学汇编:2024年高三数学一模试题好题汇编三角函数(解析版)

三角函数题型01任意角的三角函数题型02两角和与差的三角函数题型03三角函数的图象与性质题型04解三角形题型01任意角的三角函数1(2024·辽宁沈阳·统考一模)sin x =1的一个充分不必要条件是.【答案】x =π2(答案不唯一)【分析】根据三角函数的性质结合充分不必要条件即可求解.【详解】因为x =π2时sin x =1,由sin x =1可得x =π2+2k π,k ∈Z ,故sin x =1的一个充分不必要条件是x =π2,故答案为:x =π2(答案不唯一)2(2024·重庆·统考一模)英国著名数学家布鲁克·泰勒(Taylor Brook )以微积分学中将函数展开成无穷级数的定理著称于世泰勒提出了适用于所有函数的泰勒级数,泰勒级数用无限连加式来表示一个函数,如:sin x =x -x 33!+x 55!-x 77!+⋯,其中n !=1×2×3×⋯×n .根据该展开式可知,与2-233!+255!-277!+⋯的值最接近的是()A.sin2° B.sin24.6°C.cos24.6°D.cos65.4°【答案】C【分析】观察题目将其转化为三角函数值,再将弧度制与角度制互化,结合诱导公式判断即可.【详解】原式=sin2≈sin 2×57.3° =sin 90°+24.6° =cos24.6°,故选:C .3(2024·福建厦门·统考一模)若sin α+π4 =-35,则cos α-π4 =.【答案】-35/-0.6【分析】应用诱导公式有cos α-π4 =cos α+π4 -π2=sin α+π4 ,即可求值.【详解】cos α-π4 =cos α+π4 -π2=sin α+π4 =-35.故答案为:-354(2024·山东济南·山东省实验中学校考一模)下列说法正确的是()A.cos2sin3<0B.若圆心角为π3的扇形的弧长为π,则扇形的面积为3π2C.终边落在直线y =x 上的角的集合是α α=π4+2k π,k ∈ZD.函数y =tan 2x -π6 的定义域为x x ≠π3+k π2,k ∈Z ,π为该函数的一个周期【答案】ABD【分析】根据三角函数在各象限内的符号可判断出A 正确;根据扇形弧长和面积公式可知B 正确;由终边相同的角的集合表示方法可知C 错误;根据正切型函数定义域和周期的判断方法可知D 正确.【详解】对于A ,∵2,3均为第二象限角,∴cos2<0,sin3>0,∴cos2sin3<0,A 正确;对于B ,设扇形的半径为r ,则π3r =π,解得:r =3,∴扇形的面积S =12×π3×32=3π2,B 正确;对于C ,终边落在直线y =x 上的角的集合为α α=π4+k π,k ∈Z ,C 错误;对于D ,由2x -π6≠π2+k πk ∈Z 得:x ≠π3+k π2k ∈Z ,∴y =tan 2x -π6 的定义域为x x ≠π3+k π2,k ∈Z ;又tan 2x +π -π6 =tan 2π+2x -π6 =tan 2x -π6 ,∴π是y =tan 2x -π6 的一个周期,D 正确.故选:ABD .5(2024·山东济南·山东省实验中学校考一模)已知函数f (x )=cos xx,若A ,B 是锐角△ABC 的两个内角,则下列结论一定正确的是()A.f (sin A )>f (sin B )B.f (cos A )>f (cos B )C.f (sin A )>f (cos B )D.f (cos A )>f (sin B )【答案】D【分析】由已知可得π2>A >π2-B >0,根据余弦函数的单调性,得出cos A <sin B ,由f x 的单调性即可判断选项.【详解】因为f (x )=cos x x ,所以f (x )=-x sin x -cos xx 2,当x ∈0,π2 时,sin x >0,cos x >0,所以-x sin x -cos xx2<0,即f (x )<0,所以f x 在0,π2上单调递减.因为A ,B 是锐角△ABC 的两个内角,所以A +B >π2,则π2>A >π2-B >0,因为y =cos x 在0,π2 上单调递减,所以0<cos A <cos π2-B =sin B <1<π2,故f (cos A )>f (sin B ),故D 正确.同理可得f (cos B )>f (sin A ),C 错误;而A ,B 的大小不确定,故sin A 与sin B ,cos A 与cos B 的大小关系均不确定,所以f (sin A )与f (sin B ),f (cos A )与f (cos B )的大小关系也均不确定,AB 不能判断.故选:D6(2024·河北·校联考一模)在△ABC 中,若A =nB n ∈N * ,则()A.对任意的n ≥2,都有sin A <n sin BB.对任意的n ≥2,都有tan A <n tan BC.存在n ,使sin A >n sin B 成立D.存在n ,使tan A >n tan B 成立【答案】AD【分析】根据给定条件,举例说明判断BD;构造函数,借助导数探讨单调性判断AC.【详解】在△ABC中,当A=3B时,n=3,取B=π12,则A=π4,tan A=1,tan B=tanπ3-π4=3-11+3=2-3,3tan B=3(2-3),则tan A>3tan B,B错,D对;显然0<A<π0<B<π0<C<π,即0<nB<π0<B<π0<π-B-nB<π,则0<B<πn+1,令f(x )=sin nx-n sin x,0<x<πn+1,n≥2,f (x)=n cos nx-n cos x=n(cos nx-cos x)<0,因此函数f(x)在0,πn+1上单调递减,则f(x)<f(0)=0,即sin nB<n sin B,从而sin A<n sin B,A对,C错.故选:AD【点睛】思路点睛:涉及不同变量的数式大小比较,细心挖掘问题的内在联系,构造函数,分析并运用函数的单调性求解作答.题型02两角和与差的三角函数7(2024·广西南宁·南宁三中校联考一模)若cosα+π4=35,则sin2α=()A.725B.-725C.925D.-925【答案】A【分析】根据二倍角的余弦公式和诱导公式即可.【详解】cos2α+π4=2cos2α+π4-1=2×35 2-1=-725,所以sin2α=-cos2α+π2=725,故选:A.8(2024·黑龙江齐齐哈尔·统考一模)已知cosα+π6=14,则sin2α-π6=()A.78B.-78C.38D.-38【答案】A【分析】利用换元法,结合诱导公式、二倍角公式等知识求得正确答案.【详解】设α+π6=t,则α=t-π6,cos t=14,sin2α-π6=sin2t-π6-π6=sin2t-π2=-cos2t=-2cos2t-1=-2×142-1=78.故选:A9(2024·辽宁沈阳·统考一模)已知sinπ2-θ+cosπ3-θ=1,则cos2θ-π3=()A.13B.-13C.33D.-33【答案】B【分析】根据和差角公式以及诱导公式可得32cos θ+32sin θ=1,由辅助角公式以及二倍角公式即可求解.【详解】由sin π2-θ+cos π3-θ =1得cos θ+12cos θ+32sin θ=1,进而可得32cos θ+32sin θ=1,结合辅助角公式得3cos θ-π6=1,则cos θ-π6 =33,∴cos 2θ-π3 =2cos 2θ-π6 -1=-13,故选:B .10(2024·浙江·校联考一模)已知α是第二象限角,β∈0,π2,tan α+π4 =-14,现将角α的终边逆时针旋转β后得到角γ,若tan γ=17,则tan β=.【答案】198/2.375【分析】由两角和的正切公式先得tan α=-53,进一步由两角差的正切公式即可求解.【详解】由题意tan α+π4 =tan α+11-tan α=-14,且γ=α+β,tan γ=tan α+β =17,解得tan α=-53,所以tan β=tan α+β-α =17--53 1+-53 ×17=198.故答案为:198.11(2024·安徽合肥·合肥一六八中学校考一模)已知tan α-11+tan α=2,则sin 2α+π6的值为()A.-4+3310B.-4-3310C.4+3310D.4-3310【答案】A【分析】先由已知条件求出tan α的值,再利用三角函数恒等变换公式求出sin2α,cos2α的值,然后对sin 2α+π6利用两角和的正弦公式化简计算即可【详解】由tan α-11+tan α=2,得tan α=-3,所以sin2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-610=-35,cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-910=-45,所以sin 2α+π6 =sin2αcos π6+cos2αsinπ6=-35×32+-45 ×12=-4+3310,故选:A12(2024·江西吉安·吉安一中校考一模)已知α∈0,π ,且3tan α=10cos2α,则cos α可能为()A.-1010B.-55C.1010D.55【答案】B【分析】由3tan α=10cos2α得3tan α=10×1-tan 2α1+tan 2α,化简后可求出tan α,再利用同角三角函数的关系可求出cos α.【详解】由3tan α=10cos2α,得3tan α=10(cos 2α-sin 2α),所以3tan α=10×cos 2α-sin 2αcos 2α+sin 2α,所以3tan α=10×1-tan 2α1+tan 2α,整理得3tan 3α+10tan 2α+3tan α-10=0,(tan α+2)(3tan 2α+4tan α-5)=0,所以tan α+2=0或3tan 2α+4tan α-5=0,所以tan α=-2或tan α=-2±193,①当tan α=-2时,sin αcos α=-2,α∈π2,π ,因为sin 2α+cos 2α=1,所以5cos 2α=1,所以cos α=±55,因为α∈π2,π ,所以cos α=-55,②当tan α=-2+193时,sin αcos α=-2+193,α∈0,π2,因为sin 2α+cos 2α=1,所以19-23cos α 2+cos 2α=1,由于α∈0,π2 ,所以解得cos α=932-419,③当tan α=-2-193时,sin αcos α=-2-193,α∈π2,π ,因为sin 2α+cos 2α=1,所以-19-23cos α 2+cos 2α=1,由于α∈π2,π ,所以解得cos α=-932+419,综上,cos α=-55,或cos α=932-419,或cos α=-932+419,故选:B13(2024·吉林延边·统考一模)已知函数f x =12-sin 2ωx +32sin2ωx ,ω>0 的最小正周期为4π.(1)求ω的值,并写出f x 的对称轴方程;(2)在△ABC 中角A ,B ,C 的对边分别是a ,b ,c 满足2a -c cos B =b ⋅cos C ,求函数f A 的取值范围.【答案】(1)ω=14,x =2π3+2k π,k ∈Z(2)12,1 【分析】(1)利用三角函数的恒等变换化简函数f (x )=sin 2ωx +π6,再根据周期求出ω的值,利用整体法即可求解对称轴.(2)把已知的等式变形并利用正弦定理可得cos B =12,故B =π3,故f (A )=sin 12A +π6 ,0<A <2π3,根据正弦函数的定义域和值域求出f A 的取值范围.【详解】(1)f x =12-sin 2ωx +32sin2ωx =12+32sin2ωx -sin 2ωx =12+32sin2ωx -1-cos2ωx2=32sin2ωx +12cos2ωx =sin 2ωx +π6 .∵T =2π2ω=4π,∴ω=14.故f x =sin 12x +π6 令12x +π6=π2+k π,k ∈Z ,解得x =2π3+2k π,k ∈Z ,故对称轴方程为:x =2π3+2k π,k ∈Z(2)由2a -c cos B =b ⋅cos C 得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin B cos C +cos B sin C =sin (B +C )=sin A .∵sin A ≠0,∴cos B =12,B ∈0,π ,∴B =π3.∴f (A )=sin 12A +π6 ,0<A <2π3,∴π6<A 2+π6<π2,∴12<sin A 2+π6 <1,∴f (A )∈12,1 题型03三角函数的图象与性质14(2024·福建厦门·统考一模)已知函数f (x )=2sin 2x -π3,则()A.f (x )的最小正周期为π2B.f (x )的图象关于点2π3,0 成中心对称C.f (x )在区间0,π3上单调递增D.若f (x )的图象关于直线x =x 0对称,则sin2x 0=12【答案】BC【分析】根据正弦型函数的性质,结合代入法、整体法逐一判断各项正误.【详解】由f (x )=2sin 2x -π3 ,最小正周期T =2π2=π,A 错;由f 2π3=2sin 2×2π3-π3 =0,即2π3,0 是对称中心,B 对;由x ∈0,π3 ,则2x -π3∈-π3,π3 ,显然f (x )在区间0,π3 上单调递增,C 对;由题意2x 0-π3=k π+π2⇒2x 0=k π+5π6,故sin2x 0=±12,D 错.故选:BC15(2024·吉林延边·统考一模)将函数f x =sin ωx +π6 (ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.13B.23C.43D.53【答案】B【分析】得出平移后的方程后,再根据正弦型函数的性质即可得到答案.【详解】结合题意可得f x +π2 =sin ωx +π2 +π6 =sin ωx +π2ω+π6,(ω>0),因为曲线C 关于y 轴对称,所以π2ω+π6=k π+π2,k ∈Z ,解得ω=2k +23,k ∈Z ,因为ω>0,所以当k =0时,ω有最小值23.故选:B .16(2024·黑龙江齐齐哈尔·统考一模)已知函数f x =cos2x +a cos x +2,则下列说法正确的有()A.当a =0时,f x 的最小正周期为πB.当a =1时,f x 的最小值为78C.当a =3时,f x 在区间0,2π 上有4个零点D.若f x 在0,π3 上单调递减,则a ≥2【答案】AB【分析】根据三角函数的周期性、含cos x 的二次项函数的值域、三角函数的零点、单调性等知识对选项进行分析,从而确定正确答案.【详解】当a =0时,f x =cos2x +2,所以f x 的最小正周期为π,A 选项正确;当a =0时,f x =cos2x +cos x +2=2cos 2x +cos x +1=2cos x +14 2+78≥78,所以f x 的最小值为78,B 选项正确;当a =4时,f x =cos2x +3cos x +2=2cos 2x +3cos x +1=2cos x +1 cos x +1 ,令f x =0,解得cos x =-12或cos x =-1,此时x =2π3或x =4π3或x =π,f x 在区间0,2π 上有3个零点,C 选项错误;f x =cos2x +a cos x +2=2cos 2x +a cos x +1,设t =cos x ,cos x 在0,π3 上单调递减,则t ∈12,1 ,根据复合函数的单调性,g t =2t 2+at +1在12,1 上单调递增,所以-a 4≤12,解得a ≥-2,D 选项错误.故选:AB17(2024·湖南长沙·雅礼中学校考一模)已知函数f (x )=sin ωx +3cos ωx (ω>0)满足:f π6=2,f 2π3=0,则()A.曲线y =f (x )关于直线x =7π6对称 B.函数y =f x -π3是奇函数C.函数y =f (x )在π6,7π6单调递减 D.函数y =f (x )的值域为[-2,2]【答案】ABD【分析】用辅助角公式化简f (x ),再利用f π6=2,f 2π3 =0,得出ω的取值集合,再结合三角函数性质逐项判断即可.【详解】f (x )=2sin ωx +π3,所以函数y =f (x )的值域为[-2,2],故D 正确;因为f 2π3=0,所以2π3ω+π3=k 1π,k 1∈Z ,所以ω=3k 1-12,k 1∈Z ,因为f π6 =2,所以π6ω+π3=π2+2k 2π,k 2∈Z ,所以ω=12k 2+1,k 2∈Z ,所以3k 1-12=12k 2+1,即k 1=8k 2+1,所以ω∈{1,13,25,37⋯},因为f 7π6 =2sin 12k 2+1 7π6+π3 =2sin 14k 2π+3π2=-2,所以曲线y =f (x )关于直线x =7π6对称,故A 正确;因为f x -π3 =2sin 12k 2+1 x -π3 +π3 =2sin 12k 2+1 x -4k 2π =2sin 12k 2+1 x即f x -π3 =-f -x -π3,所以函数y =f x -π3是奇函数,故B 正确;取ω=13,则最小正周期T =2πω=2π13<7π6-π6=π,故C 错误.故选:ABD 18(2024·辽宁沈阳·统考一模)如图,点A ,B ,C 是函数f x =sin ωx +φ (ω>0)的图象与直线y =32相邻的三个交点,且BC -AB =π3,f -π12=0,则()A.ω=4B.f 9π8 =12C.函数f x 在π3,π2上单调递减D.若将函数f x 的图象沿x 轴平移θ个单位,得到一个偶函数的图像,则θ 的最小值为π24【答案】ACD【分析】令f x =32求得x A ,x B ,x C 根据BC -AB =π3求得ω=4,根据f -π12=0求得f x 的解析式,再逐项验证BCD 选项.【详解】令f x =sin ωx +φ =32得,ωx +φ=π3+2k π或ωx +φ=2π3+2k π,k ∈Z ,由图可知:ωx A +φ=π3+2k π,ωx C +φ=π3+2k π+2π,ωx B +φ=2π3+2k π,所以BC =x C -x B =1ω-π3+2π ,AB =x B -x A =1ω⋅π3,所以π3=BC -AB =1ω-2π3+2π ,所以ω=4,故A 选项正确,所以f x =sin 4x +φ ,由f -π12=0得sin -π3+φ =0,所以-π3+φ=π+2k π,k ∈Z ,所以φ=4π3+2k π,k ∈Z ,所以f x =sin 4x +4π3+2k π =sin 4x +4π3 =-sin 4x +π3 ,f 9π8 =-sin 9π2+π3 =-12,故B 错误.当x ∈π3,π2 时,4x +π3∈5π3,2π+π3,因为y =-sin t 在t ∈5π3,2π+π3 为减函数,故f x 在π3,π2上单调递减,故C 正确;将函数f x 的图象沿x 轴平移θ个单位得g x =-sin 4x +4θ+π3,(θ<0时向右平移,θ>0时向左平移),g x 为偶函数得4θ+π3=π2+k π,k ∈Z ,所以θ=π24+k π4,k ∈Z ,则θ 的最小值为π24,故D 正确.故选:ACD .19(2024·重庆·统考一模)已知f x =2a sin ωx ⋅cos ωx +b cos2ωx ω>0,a >0,b >0 的部分图象如图所示,当x ∈0,3π4时,f x 的最大值为.【答案】3【分析】由图象求出函数f x 的解析式,然后利用正弦型函数的基本性质可求得函数f x 在0,3π4上的最大值.【详解】因为f x =2a sin ωx ⋅cos ωx +b cos2ωx =a sin2ωx +b cos2ωx ω>0,a >0,b >0 ,设f x =A sin 2ωx +φ A >0,ω>0 ,由图可知,函数f x 的最小正周期为T =4×π6+π12 =π,则2ω=2πT =2ππ=2,又因为A =f x max -f x min 2=2+22=2,则f x =2sin 2x +φ ,因为f -π12 =2sin φ-π6 =2,可得sin φ-π6 =1,所以,φ-π6=π2+2k πk ∈Z ,则φ=2π3+2k πk ∈Z ,则f x =2sin 2x +2π3+2k π =2sin 2x +2π3 ,当0≤x ≤3π4时,2π3≤2x +2π3≤13π6,故f x max =2sin 2π3=2×32= 3.故答案为:3.20(2024·云南曲靖·统考一模)函数f x =A sin ωx +φ (其中A >0,ω>0,φ ≤π2)的部分图象如图所示,则()A.f 0 =-1B.函数f x 的最小正周期是2πC.函数f x 的图象关于直线x =π3对称D.将函数f x 的图象向左平移π6个单位长度以后,所得的函数图象关于原点对称【答案】AC【分析】利用图象求出函数f x 的解析式,代值计算可判断A 选项;利用正弦型函数的周期性可判断B 选项;利用正弦型函数的对称性可判断C 选项;利用三角函数图象变换可判断D 选项.【详解】由图可知,A =f x max -f x min 2=2--22=2,函数f x 的最小正周期T 满足3T 4=7π12--π6 =3π4,则T =π,ω=2πT =2ππ=2,B 错;所以,f x =2sin 2x +φ ,f -π6 =2sin 2×-π6 +φ =2sin φ-π3 =-2,可得sin φ-π3 =-1,因为-π2≤φ≤π2,所以,-5π6≤φ-π3≤π6,则φ-π3=-π2,可得φ=-π6,所以,f x =2sin 2x -π6 ,则f 0 =2sin -π6=-1,A 对;f π3 =2sin 2×π3-π6 =2sin π2=2=f x max ,所以,函数f x 的图象关于直线x =π3对称,C 对;将函数f x 的图象向左平移π6个单位长度以后,得到函数y =2sin 2x +π6 -π6 =2sin 2x +π6 的图象,所得函数为非奇非偶函数,D 错.故选:AC .21(2024·浙江·校联考一模)已知函数y =2sin ωx +φ ,该图象上最高点与最低点的最近距离为5,且点1,0 是函数的一个对称点,则ω和φ的值可能是()A.ω=-π3,φ=-π3B.ω=-π3,φ=2π3C.ω=π3,φ=π3D.ω=π3,φ=2π3【答案】D【分析】由题意首先得ω=π3,进一步由ω+φ=k π,k ∈Z ,对比选项即可得解.【详解】由题意函数的周期T 满足,T 2=52-42=3=2π2ω ,所以ω=±π3,又点1,0 是函数的一个对称点,所以ω+φ=k π,k ∈Z ,所以ω=π3φ=k π-π3,k ∈Z 或ω=-π3φ=k π+π3,k ∈Z,对比选项可知,只有当ω=π3φ=2π3k =1时满足题意.故选:D .22(2024·广东深圳·校考一模)已知函数f x =cos ωx +π3+1(ω>0)的最小正周期为π,则f x 在区间0,π2上的最大值为()A.12B.1C.32D.2【答案】C【分析】由周期公式求得ω,结合换元法即可求得最大值.【详解】由题意T =2πω=π,解得ω=2,所以f x =cos 2x +π3+1,当x ∈0,π2 时,t =2x +π3∈π3,4π3,所以f x 在区间0,π2 上的最大值为cos π3+1=32,当且仅当x =0时等号成立.故选:C .23(2024·山西晋城·统考一模)若函数f (x )=cos ωx (0<ω<100)在π,5π2上至少有两个极大值点和两个零点,则ω的取值范围为.【答案】85,2 ∪125,100 【分析】先求出极大值点表达式,利用题干条件列不等式赋值求解.【详解】令ωx =2k π,k ∈Z ,得f (x )的极大值点为x =2k πω,k ∈Z ,则存在整数k ,使得ω>02k πω>π2k +1 πω<5π2,解得4(k +1)5<ω<2k (k ∈N *).因为函数y =cos x 在两个相邻的极大值点之间有两个零点,所以4(k +1)5<ω<2k (k ∈N *).当k =1时,85<ω<2.当k =2时,125<ω<4.当k ≥2时,4(k +1)5<4(k +2)5<2k .又0<ω<100,所以ω的取值范围为85,2 ∪125,4 ∪165,6 ∪⋅⋅⋅∪2045,100 =85,2 ∪125,100 .故答案为:85,2 ∪125,100【点睛】关键点点睛:本题考查三角函数的图象及其性质,求出4k +15<ω<2k k ∈N * 并赋值计算是解决问题关键.24(2024·广西南宁·南宁三中校联考一模)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.在适当的直角坐标系下,某个简谐运动可以用函数f x =A sin ωx +φ A >0,ω>0,φ <π 的部分图象如图所示,则下列结论正确的是()A.ω=2,频率为1π,初相为π6B.函数f x 的图象关于直线x =-π6对称C.函数f x 在π12,13π24上的值域为0,2 D.若把f x 图像上所有点的横坐标缩短为原来的23倍,纵坐标不变,再向左平移π12个单位,则所得函数是y =2sin 3x +π12【答案】BCD【分析】根据图象求出三角函数解析式,再根据正弦函数图象与性质以及函数平移的原则即可判断.【详解】由图象可得A =2,34T =13π12-π3=3π4,∴T =π,频率是1T =1π,ω=2ππ=2,∵f π3 =2,∴f π3 =2sin 2π3+φ =2,即sin 2π3+φ =1,∴2π3+φ=2k π+π2(k ∈Z ),∴φ=2k π-π6(k ∈Z ),∵|φ|<π,∴φ=-π6,对于A ,∴f (x )=2sin 2x -π6 ,初相是-π6,故A 错误;对于B ,f -π6 =2sin -π3-π6=-2,故B 正确;对于C ,因为x ∈π12,13π24 ,所以2x -π6∈0,11π12,∴f (x )=2sin 2x -π6在π12,13π24上的值域为[0,2],故C 正确;对于D ,把f (x )的横坐标缩短为原来的23倍,纵坐标不变,得到的函数为y =2sin 3x -π6,又向左平移π12个单位,得到的函数为y =2sin 3x +π12 -π6 =2sin 3x +π12 ,故D 正确;故选:BCD .题型04解三角形25(2024·河南郑州·郑州市宇华实验学校校考一模)如图,为了测量某湿地A ,B 两点间的距离,观察者找到在同一直线上的三点C ,D ,E .从D 点测得∠ADC =67.5°,从C 点测得∠ACD =45°,∠BCE =75°,从E 点测得∠BEC =60°.若测得DC =23,CE =2(单位:百米),则A ,B 两点的距离为()A.6B.22C.3D.23【答案】C【分析】在△ADC 中,求得AC =DC ;在△BCE 中,利用正弦定理求得BC ;再在△ABC 中,利用余弦定理即可求得结果.【详解】根据题意,在△ADC 中,∠ACD =45°,∠ADC =67.5°,DC =23,则∠DAC =180°-45°-67.5°=67.5°,则AC =DC =23,在△BCE 中,∠BCE =75°,∠BEC =60°,CE =2,则∠EBC =180°-75°-60°=45°,则有CE sin ∠EBC =BC sin ∠BEC ,变形可得BC =CE ⋅sin ∠BEC sin ∠EBC =2×3222=3,在△ABC 中,AC =23,BC =3,∠ACB =180°-∠ACD -∠BCE =60°,则AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =9,则AB =3.故选:C .【点睛】本题考查利用正余弦定理解三角形,涉及距离的求解,属基础题.26(2024·广东深圳·校考一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2a cos A ,则cos A =()A.13B.24C.33D.63【答案】D【分析】由已知结合余弦定理进行化简即可求解.【详解】解:因为c =2a cos A ,由余弦定理可得c =2a ⋅b 2+c 2-a 22bc,将a =3,b =5代入整理得c =26,所以cos A =c 2a =63.故选:D .27(2024·河南郑州·郑州市宇华实验学校校考一模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c -b =2b cos A ,则下列结论正确的有()A.A =2BB.B 的取值范围为0,π4C.ab的取值范围为2,3 D.1tan B -1tan A+2sin A 的最小值为22【答案】AC【分析】用正弦定理可判断A 项,由锐角三角形可判断B 项,用倍角公式可判断C 项,切化弦后用取等条件即可判断D 项.【详解】在△ABC 中,由正弦定理可将式子c -b =2b cos A 化为sin C -sin B =2sin B cos A ,把sin C =sin A +B =sin A cos B +cos A sin B 代入整理得,sin A -B =sin B ,解得A -B =B 或A -B +B =π,即A =2B 或A =π(舍去),所以A =2B ,选项A 正确;选项B :因为△ABC 为锐角三角形,A =2B ,所以C =π-3B ,由0<B <π2,0<2B <π2,0<π-3B <π2,解得B ∈π6,π4 ,故选项B 错误;选项C :a b=sin A sin B =sin2B sin B =2cos B ,因为B ∈π6,π4 ,所以cos B ∈22,32 ,2cos B ∈2,3 ,即ab的取值范围为2,3 ,故选项C 正确;选项D :1tan B -1tan A +2sin A =sin A -B sin A sin B +2sin A =1sin A+2sin A ≥21sin A ×2sin A =22,当且仅当1sin A=2sin A 即sin A =±22时取等,但因为B ∈π6,π4 ,所以A =2B ∈π3,π2 ,sin A ∈32,1 ,无法取到等号,故D 错.故选:AC .28(2024·福建厦门·统考一模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a 2cos B +ab cos A =2c .(1)求a ;(2)若A =2π3,且△ABC 的周长为2+5,求△ABC 的面积.【答案】(1)a =2;(2)34.【分析】(1)应用正弦边角关系及和角正弦公式有a sin (A +B )=2sin C ,再由三角形内角性质即可求边长;(2)应用余弦定理及已知得b 2+c 2+bc =4且b +c =5,进而求得bc =1,最后应用面积公式求面积.【详解】(1)由题设a (a cos B +b cos A )=2c ,由正弦定理有a (sin A cos B +sin B cos A )=2sin C ,所以a sin (A +B )=2sin C ,而A +B =π-C ,故a sin C =2sin C ,又sin C >0,所以a =2.(2)由(1)及已知,有cos A =b 2+c 2-a 22bc =b 2+c 2-42bc=-12,可得b 2+c 2+bc =4,又a +b +c =2+5,即b +c =5,所以(b +c )2-bc =5-bc =4⇒bc =1,故S △ABC =12bc sin A =34.29(2024·广西南宁·南宁三中校联考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a -bc=sin A -sin Csin A +sin B.(1)求角B 的大小;(2)若b =2,求△ABC 周长的最大值.【答案】(1)B =π3(2)6【分析】(1)根据题意利用正、余弦定理进行边角转化,进而可得结果;(2)根据a 2+c 2-b 2=ac ,结合基本不等式运算求解.【详解】(1)因为a -b c =sin A -sin C sin A +sin B,由正弦定理可得a -b c =a -ca +b ,整理得a 2+c 2-b 2=ac ,由余弦定理可得cos B =a 2+c 2-b 22ac =ac 2ac =12,且B ∈0,π ,所以B =π3.(2)由(1)可知:a 2+c 2-b 2=ac ,整理得a +c 2-4=3ac ,即ac =a +c 2-43,因为ac ≤a +c24,当且仅当a =c =2时,等号成立,则a +c 2-43≤a +c 24,可得a +c 2≤16,即a +c ≤4,所以△ABC 周长的最大值为4+2=6.30(2024·山东济南·山东省实验中学校考一模)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且cos C =-14,c =2a .(1)求sin A 的值;(2)若△ABC 的周长为18,求△ABC 的面积.【答案】(1)158(2)315【分析】(1)由正弦定理边化角结合同角三角函数关系求解;(2)由余弦定理解方程得边长,再利用面积公式求解.【详解】(1)因为0<C <π,cos C =-14,所以sin C =1-cos 2C =154.因为c =2a ,所以sin C =2sin A ,则sin A =sin C 2=158.(2)因为cos C =-14,所以c 2=a 2+b 2+12ab .因为c =2a ,所以3a 2-12ab -b 2=0,解得b =32a .因为△ABC 的周长为18,所以a +b +c =92a =18,解得a =4,则b =6,c =8.故△ABC 的面积为12bc sin A =12×6×8×158=315.31(2024·浙江·校联考一模)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知c 2b 2+c 2-a2=sin Csin B.(1)求角A ;(2)设边BC 的中点为D ,若a =7,且△ABC 的面积为334,求AD 的长.【答案】(1)A =π3(2)132【分析】(1)根据正弦定理和题中所给式子化简计算得到b 2+c 2-a 2=bc ,再结合余弦定理即可求出角A ;(2)根据三角形面积公式得到bc =3和b 2+c 2=10,再结合中线向量公式计算即可.【详解】(1)在△ABC 中,由正弦定理得,sin C sin B =cb,因为c 2b 2+c 2-a 2=sin C sin B ,所以c 2b 2+c 2-a 2=cb ,化简得,b 2+c 2-a 2=bc ,在△ABC 中,由余弦定理得,cos A =b 2+c 2-a 22bc=12,又因为0<A <π,所以A =π3(2)由S △ABC =12bc sin A =34bc =334,得bc =3,由a 2=b 2+c 2-2bc cos A ,得7=b 2+c 2-3,所以b 2+c 2=10.又因为边BC 的中点为D ,所以AD =12AB +AC,所以AD =12(AB +AC )2=12b 2+c 2+2bc cos A =12×10+2×3×12=13232(2024·河南郑州·郑州市宇华实验学校校考一模)已知在△ABC 中,3sin (A +B )=1+2sin 2C2.(1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.【答案】(1)π3;(2)4+23.【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin C +π6=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出∠AIB ,设出∠ABI ,将AI ,BI 用∠ABI 表示,根据三角函数知识求出AI +BI 的最大值可得解.【详解】(1)∵3sin (A +B )=1+2sin 2C2,且A +B +C =π,∴3sin C =1+1-cos C =2-cos C ,即3sin C +cos C =2,∴sin C +π6=1.∵C ∈(0,π),∴C +π6∈π6,7π6 ,∴C +π6=π2,即C =π3.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,AB sin ∠ACB =ABsin π3=2×2=4,∴AB =23,∵∠ACB =π3,∴∠ABC +∠BAC =2π3,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ,∴∠ABI +∠BAI =π3,∴∠AIB =2π3,设∠ABI =θ,则∠BAI =π3-θ,且0<θ<π3,在△ABI 中,由正弦定理得,BI sin π3-θ =AI sin θ=AB sin ∠AIB =23sin 2π3=4,∴BI =4sin π3-θ ,AI =4sin θ,∴△ABI 的周长为23+4sin π3-θ +4sin θ=23+432cos θ-12sin θ +4sin θ=23+23cos θ+2sin θ=4sin θ+π3+23,∵0<θ<π3,∴π3<θ+π3<2π3,∴当θ+π3=π2,即θ=π6时,△ABI 的周长取得最大值,最大值为4+23,故△ABI 的周长的最大值为4+23.【点睛】关键点点睛:将AI ,BI 用∠ABI 表示,根据三角函数知识求出AI +BI 的最大值是解题关键.33(2024·辽宁沈阳·统考一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2=ac +a 2.(1)求证:B =2A ;(2)当3c +7a 3b取最小值时,求cos B 的值.【答案】(1)证明见解析(2)cos B =-13【分析】(1)利用余弦定理并结合正弦函数两角和差公式化简即可求解.(2)利用基本不等式求得3c +7a 3b的最小值时的取等条件b =233a ,再结合余弦定理从而求解.【详解】(1)证明:由余弦定理知b 2=a 2+c 2-2ac cos B ,又因为b 2=a 2+ac ,所以a 2+ac =a 2+c 2-2ac ⋅cos B ,化简得a =c -2a cos B ,所以sin A =sin C -2sin A cos B ,因为A +B +C =π,所以sin A =sin A +B -2sin A cos B ,所以sin A =sin A cos B +cos A sin B -2sin A cos B =cos A sin B -sin A cos B ,所以sin A =sin B -A ,因为A ∈0,π ,B -A ∈-π,π ,所以A =B -A 或A +B -A =π(舍),所以B =2A .(2)由题知,3c +7a 3b =3ac +7a 23ab =3b 2-a 2 +7a 23ab=b a +43⋅a b ≥243=433,当且仅当b =233a 时取等,又因为b 2=ac +a 2,所以c =13a ,所以cos B =a 2+c 2-b22ac=a 2+13a 2-233a22a ×13a=-13.34(2024·重庆·统考一模)在梯形ABCD 中,AB ⎳CD ,∠ABC 为钝角,AB =BC =2,CD =4,sin ∠BCD =154.(1)求cos ∠BDC ;(2)设点E 为AD 的中点,求BE 的长.【答案】(1)78;(2)342【分析】(1)在△BCD 中利用余弦定理求出BD ,再利用二倍角的余弦公式计算即得.(2)利用(1)的结论,借助向量数量积求出BE 的长.【详解】(1)在梯形ABCD 中,由AB ⎳CD ,∠ABC 为钝角,得∠BCD 是锐角,在△BCD 中,sin ∠BCD =154,则cos ∠BCD =1-sin 2∠BCD =14,由余弦定理得BD =22+42-2×2×4×14=4,即△BCD 为等腰三角形,所以cos ∠BDC =cos (π-2∠BCD )=-cos2∠BCD =1-2cos 2∠BCD =78.(2)由AB ⎳CD ,得∠ABD =∠BDC ,由点E 为AD 的中点,得BE =12(BA +BD),所以|BE |=12BA 2+BD 2+2BA ⋅BD =1222+42+2×2×4×78=342.35(2024·山西晋城·统考一模)在△ABC 中,AB =33,AC =53,BC =73.(1)求A 的大小;(2)求△ABC 外接圆的半径与内切圆的半径.【答案】(1)A =2π3(2)32【分析】(1)由余弦定理即可求解;(2)由正弦定理求出外接圆半径,由等面积法求出内切圆半径.【详解】(1)由余弦定理得cos A =AB 2+AC 2-BC 22AB ⋅AC=-12,因为0<A <π,所以A =2π3.(2)设△ABC 外接圆的半径与内切圆的半径分别为R ,r ,由正弦定理得2R =BC sin A=7332=14,则R =7.△ABC 的面积S =12AB ⋅AC ⋅sin A =4534,由12r (AB +AC +BC )=S ,得r =2S AB +AC +BC =32.36(2024·黑龙江齐齐哈尔·统考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =π4,4b cos C =2c +2a .(1)求tan C ;(2)若△ABC 的面积为32,求BC 边上的中线长.【答案】(1)tan C =12(2)52.【分析】(1)利用正弦定理以及三角恒等变换的知识求得tan C .(2)根据三角形ABC 的面积求得ac ,根据同角三角函数的基本关系式求得sin A ,cos A ,利用正弦定理、向量数量积运算来求得BC 边上的中线长.【详解】(1)由正弦定理可得c sin C=bsin B ,所以4sin B cos C =2sin C +2sin A ,即22cos C =2sin C +2sin A ,又A +B +C =π,所以22cos C =2sin C +2sin π4+C =22sin C +2cos C ,整理得2cos C =22sin C ,解得tan C =12;(2)依题意,12ac sin B =12ac ×22=32,解得ac =32,又tan A =tan 3π4-C =-1-tan C1-tan C =-3,所以A 为钝角,所以由sin A cos A=-3sin 2A +cos 2A =1 ,解得sin A =310,cos A =-110,由正弦定理可得c a =sin Csin A=15310=23,又ac =32,所以a =3,c =2,b =c sin Bsin C=2×2215=5,设BC 的中点为D ,则AD =12AB +AC,所以AD 2=14(AB +AC )2=b 2+c 2+2bc cos A 4=2+5+2×2×5×-1104=54,所以BC 边上的中线长为52.37(2024·云南曲靖·统考一模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c =2a cos C -2b .(1)求A ;(2)线段BC 上一点D 满足BD =14BC ,AD =BD=1,求AB 的长度.【答案】(1)A =2π3;(2)477.【分析】(1)由余弦边角关系及已知得-bc =b 2+c 2-a 2,再由余弦定理即可求A ;(2)由题设得∠ADB=π-2B,且AD=BD=1,BC=4,C=π3-B,在△ADB、△ABC应用正弦定理得AB=2cos B、tan B=32,0<B<π3,即可求AB的长度.【详解】(1)由题设及余弦定理知:c=2a×a2+b2-c22ab-2b=a2+b2-c2b-2b,所以-bc=b2+c2-a2,又cos A=b2+c2-a22bc=-12,A∈(0,π),所以A=2π3.(2)由题设∠ADB=π-2B,且AD=BD=1,BC=4,C=π3-B,在△ADB中ADsin B=ABsin(π-2B)=ABsin2B,则AB=2cos B,在△ABC中ABsinπ3-B=BCsin2π3=83,则AB32cos B-12sin B=83,综上,可得tan B=32,0<B<π3,则cos B=27,故AB=477.。

2020年上海市高三数学一模分类汇编:三角

2020年上海市高三数学一模分类汇编:三角

2(2020松江一模). 若角α的终边过点(4,3)P -,则3sin()2πα+= 4(2020虹口一模). 若sin 2cos 02cos 1x xx =,则锐角x =5(2020青浦一模). 已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与单位圆的交点坐标是34(,)55-,则sin2α=6(2020徐汇一模). 已知函数()arcsin(21)f x x =+,则1()6f π-=8(2020嘉金一模). 已知点(2,)y -在角α终边上,且()tan πα-=sin α=14(2020虹口一模). 已知函数())cos(2)f x x x θθ=+++为偶函数,且在[0,]2π上为增函数,则θ的一个值可以是( )A.6π B. 3π C. 23π D. 23π-14(2020杨浦一模). 要得到函数2sin(2)3y x π=+的图象,只要将2sin 2y x =的图象( )A. 向左平移6π个单位B. 向右平移6π个单位C. 向左平移3π个单位D. 向右平移3π个单位16(2020宝山一模). 提鞋公式也叫李善兰辅助角公式,其正弦型如下:sin cos )a x b x x ϕ+=+,πϕπ-<<,下列判断错误的是( ) A. 当0a >,0b >时,辅助角arctanba ϕ= B. 当0a >,0b <时,辅助角arctan ba ϕπ=+C. 当0a <,0b >时,辅助角arctan ba ϕπ=+D. 当0a <,0b <时,辅助角arctan baϕπ=-16(2020嘉金一模). 某港口某天0时至24时的水深y (米)随时间x (时)变化曲线近似满足如下函数模型:0.5sin() 3.24(06)y x πωπω=++>,若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( )A. 16时B. 17时C. 18时D. 19时17(2020虹口一模). 在△ABC 中,8a =,6b =,1cos 3A =-,求:(1)角B ; (2)BC 边上的高.18(2020宝山一模). 已知函数()sin cos()cos 2f x x x x x π=++.(1)求函数()f x 的最小正周期及对称中心;(2)若()f x a =在区间[0,]2π上有两个解1x 、2x ,求a 的取值范围及12x x +的值.18(2020松江一模). 已知函数2()cos 2sin f x x x x =-. (1)求()f x 的最大值;(2)在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()0f A =,b 、a 、c成等差数列,且2AB AC ⋅=uu u r uuu r,求边a 的长.18(2020崇明一模). 已知函数21()2cos 22f x x x =--. (1)求函数()f x 的最大值,并写出取得最大值时的自变量x 的集合;(2)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且c =()0f C =, 若sin 2sin B A =,求a 、b 的值.18(2020青浦一模). 已知向量,sin )a x x ωω=r ,(cos ,cos )b x x ωω=r,其中0ω>,记()f x a b =⋅r r.(1)若函数()f x 的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A 、B 、C 对应的边分别为a 、b 、c ,若()2Af =4a =,5b c +=,求△ABC 的面积.19(2020徐汇一模). 如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,景区管委会又开发了风景优美的景点D ,经测量景点D 位于景点A 的北偏东30°方向8km 处,位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知5AB km =.(1)景区管委会准备由景点D 向景点B 修建一条笔直的公路,不考虑其他因素,求出这条公路的长;(结果精确到0.1km ) (2)求景点C 与景点D 之间的距离. (结果精确到0.1km )19(2020嘉金一模). 如图,某城市有一矩形街心广场ABCD ,如图,其中4AB =百米,3BC =百米,现将在其内部挖掘一个三角形水池DMN 种植荷花,其中点M 在BC 边上,点N 在AB 边上,要求4MDN π∠=.(1)若2AN CM ==百米,判断△DMN 是否符合要求,并说明理由; (2)设CDM θ∠=,写出△DMN 面积的S 关于θ的表达式,并求S 的最小值.ABCDMN。

2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)含解析

2023-2024学年上海市高考数学模拟试题(一模)一、填空题(1-4每题4分,5-6每题5分,共26分)1.已知集合{}21,RA y y x x ==-∈,{B x y ==,则A B = ______.【正确答案】⎡-⎣【分析】先求函数21,R y x x =-∈的值域,即可化简集合A,再求函数y =的定义域,即可化简集合B ,最后由集合的交集运算即可得到答案.【详解】因为{}21,R A y y x x ==-∈,所以A 为函数21,R y x x =-∈的值域,因为211y x =-≥-,所以{}1A y y =≥-.因为{B x y ==,所以B为函数y =的定义域,由220x -≥得22x ≤,即x ≤≤,所以{B x x =≤≤,所以{}{1A B y y x x ⎡⋂=≥-⋂≤≤=-⎣.故⎡-⎣2.若复数z 满足32iiz -=(其中i 是虚数单位),则||z =______.【分析】化简复数z ,再求出z ,进而求出||z .【详解】∵32i (32i)i 23i23i i i i 1z --+====--⨯-,∴23i z =-+,∴||z ==3.已知向量()3,6a = ,()3,4b =- ,则a 在b方向上的数量投影为______.【正确答案】3-【分析】根据题意,结合向量的投影公式,即可求解.【详解】因为向量()3,6a =,()3,4b =- ,所以a 在b方向上的数量投影为336415cos ,35a b a a b b⨯+⨯-⋅-====-.故答案为.3-4.若函数2()lg(2)f x ax x a =-+的定义域为R ,则实数a 的取值范围为__________.【正确答案】(1,)+∞【分析】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质,即可求解.【详解】由题意,函数2()lg(2)f x ax x a =-+的定义域为R ,即不等式220ax x a -+>在R 上恒成立,当0a =时,不等式等价与20x ->,不符合题意;则满足2)22(40a a ->⎧⎨∆=-<⎩,解得1a >,即实数a 的取值范围是(1,)+∞.本题主要考查了对数函数的性质,以及一元二次函数的图象与性质的应用,其中解答中把函数的定义域为R ,转化为不等式220ax x a -+>在R 上恒成立,利用一元二次函数的性质求解是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力.5.等差数列{}n a 中,18153120a a a ++=,则9102a a -的值是______.【正确答案】24【分析】先由等差数列的通项公式化简18153120a a a ++=得到1724a d +=,再由等差数列的通项公式把9102a a -化为17a d +即可求出答案.【详解】设等差数列{}n a 的首项为1a ,公差为d ,则()1815111173312014535d a a a a a a a d d ++=++++=+=,所以1724a d +=.所以()()9101112224897d a a a a a d d -=++-=+=.故246.过抛物线24x y =的焦点且倾斜角为3π4的直线被抛物线截得的弦长为______.【正确答案】8【分析】写出直线方程,联立抛物线的方程,运用定义和焦点弦长公式,计算即可得到.【详解】抛物线24x y =的焦点为()0,1F ,准线方程为1y =-,直线l 的倾斜角为3π4,设直线l 与抛物线交于,M N 两点,则直线l 的方程为1y x =-+,代入24x y =得2610y y -+=,则1(M x ,1)y ,2(N x ,2)y ,126y y +=,则1228MN MF NF y y =+=++=,故8二、单项选择题(每题5分,共50分)7.设:x a α>,1:0x xβ->,若α是β的充分条件,则实数a 的取值范围是()A.()0,+∞ B.(],1-∞ C.[)1,+∞ D.(],0-∞【正确答案】C【分析】解分式不等式10x x->得β,由α是β的充分条件等价于β包含α,根据包含关系列不等式求解即可【详解】()1010x x x x->⇔->,解得1x >或0x <,由α是β的充分条件,则有1a ≥.故选:C8.函数()(1f x x =+)A.奇函数B.偶函数C.非奇非偶函数D.既奇又偶函数【正确答案】C【分析】求出()f x 的定义域不关于原点对称,即可判断()f x 为非奇非偶函数.【详解】函数()(1f x x =+的定义域为101x x -≥+,则()()110111x x x x ⎧+-≥⇒-<≤⎨≠-⎩,由于定义域不关于原点对称,故()f x 为非奇非偶函数.故选:C .9.已知事件A 与事件B 是互斥事件,则()A.)(0P A B ⋂= B.)()()(P A B P A P B ⋂=C.)()(1P A P B =- D.)(1P A B ⋃=【正确答案】D【分析】根据互斥事件、对立事件、必然事件的概念可得答案.【详解】因为事件A 与事件B 是互斥事件,则A B 、不一定是互斥事件,所以()P A B ⋂不一定为0,故选项A 错误;因为事件A 与事件B 是互斥事件,所以A B ⋂=∅,则()0P A B ⋂=,而()()P A P B 不一定为0,故选项B 错误;因为事件A 与事件B 是互斥事件,不一定是对立事件,故选项C 错误;因为事件A 与事件B 是互斥事件,A B ⋃是必然事件,所以()1P A B ⋃=,故选项D 正确.故选:D.10.甲,乙两个小组各10名学生的数学测试成绩如下(单位:分).甲组:76,90,84,86,81,87,86,82,85,83乙组:82,84,85,89,79,80,91,89,79,74现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A ;“抽出的学生的数学测试成绩不低于85分”记为事件B ,则()|P A B 的值是()A.59B.49C.29D.19【正确答案】A【分析】利用条件概率公式求解即可得()P A B到答案.【详解】由题意知,()101202P A ==,()920P B =()P AB 表示20人随机抽取一人,既是甲组又是数学测试成绩不低于85分的概率,()51204P AB ==,根据条件概率的计算公式得()()()1549920P AB P A B P B ===.故选:A11.如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,点G 为MC 的中点.则下列结论中不.正确的是()A.MC AN⊥ B.平面//DCM 平面ABN C.直线GB 与AM 是异面直线 D.直线GB 与平面AMD 无公共点【正确答案】D【分析】根据给定条件,证明//AN DG 判断A ;利用线面、面面平行的判定推理判断B ;取DM 中点O ,证得四边形ABGO 是梯形判断CD 作答.【详解】因为MD ⊥平面ABCD ,NB ⊥平面ABCD ,则//MD NB ,取,,AB CD AN 的中点,,F E H ,连接,,,EF EG FH GH ,如图,点G 为MC的中点,则//////EG MD NB FH ,且1122EG MD NB FH ===,于是四边形EFHG 是平行四边形,//,GH EF GH EF =,在正方形ABCD 中,//,EF AD EF AD =,则//,GH AD GH AD =,因此四边形ADGH 为平行四边形,//AN DG ,而1MD CD ==,点G 为MC 的中点,有DG MC ⊥,所以MC AN ⊥,A 正确;因为//MD NB ,MD ⊂平面DCM ,NB ⊄平面DCM ,则//NB 平面DCM ,又//AB CD ,CD ⊂平面DCM ,AB ⊄平面DCM ,则//AB 平面DCM ,而,,NB AB B NB AB =⊂ 平面ABN ,所以平面//DCM 平面ABN ,B 正确;取DM 中点O ,连接,GO AO ,则有11////,22GO CD AB GO CD AB ==,即四边形ABGO 为梯形,因此直线,AO BG 必相交,而AO ⊂平面AMD ,于是直线GB 与平面AMD 有公共点,D 错误;显然点A ∈平面ABGO ,点M ∉平面ABGO ,直线BG ⊂平面ABGO ,点A ∉直线BG ,所以直线GB 与AM 是异面直线,C 正确.故选:D结论点睛:经过平面内一点和外一点的直线,与平面内不经过该点的直线是异面直线.12.数列{}n a 的前n 项和1nn S a =-,*n ∈N ,关于数列{}n a 有以下命题:①{}n a 一定是等比数列,但不可能是等差数列;②{}n a 一定是等差数列,但不可能是等比数列;③{}n a 可能是等比数列,也可能是等差数列;④{}n a 可能既不是等差数列,也不是等比数列;⑤{}n a 可能既是等差数列,又是等比数列;其中正确命题的个数是()A.1B.2C.3D.4【正确答案】B【分析】分0a =,1a =,0a ≠且1a ≠三种情况讨论,由11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a ,根据等差、等比数列的通项公式的特征可作出判断.【详解】当0a =时,1n S =-,则111a S ==-,当2n ≥时,10n n n a S S -=-=,即1,10,2n n a n -=⎧=⎨≥⎩,此时,数列{}n a 既不是等差数列,也不是等比数列;当1a =时,0n S =,则110a S ==,当2n ≥时,10n n n a S S -=-=,则()0n a n N *=∈,此时,数列{}n a 为等差数列,但不是等比数列;当0a ≠且1a ≠时,111a S a ==-,当2n ≥时,()()()111111nn n n n n a S S a aa a ---=-=---=-,则()21a a a =-,()()1111n n n n a a a a a a a+--∴==-且()2111a a a a a a -==-,则数列{}n a 是以a 为公比的等比数列.由以上分析知,正确的说法为③④.故选:B.本题考查数列通项n a 与n S 的关系及等差、等比数列的通项公式,准确把握等差、等比数列的通项公式特征是解决问题的关键.13.已知参数方程3342x t ty t ⎧=-⎪⎨=⎪⎩[]1,1t ∈-,则下列曲线方程符合该方程的是()A.B.C.D.【正确答案】B【分析】利用特殊值法即可选出答案.【详解】令20y t ==得1,0,1t =-,将其分别代入334x t t =-得1,0,1x =-,所以该方程所表示的曲线恒过点()()()1,0,0,0,1,0-,显然只有B 项满足.故选:B.14.设函数()sin 6f x x π⎛⎫=- ⎪⎝⎭,若对于任意5,62ππα⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为A.π6B.π2C.7π6D.π【正确答案】B【分析】先求()3[,0]2f α∈-,再由存在唯一确定的β,使得()()3[0,]2f f βα=-∈,得2[,)633m πππ-∈,从而得解.【详解】当5,62ππα⎡⎤∈--⎢⎥⎣⎦时,有2,36ππαπ⎡⎤-∈--⎢⎥⎣⎦,所以()3[,0]2f α∈-.在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()3[0,]2f f βα=-∈.[]0,,[,]666m m πππββ∈-∈--,所以25[,),[,63326m m πππππ-∈∈.故选B.本题主要考查了三角函数的图像和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.15.若曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,则实数λ的取值范围是()A.(1,)+∞B.(,1]-∞C.(](),11,-∞-⋃+∞ D.[1,0)(1,)-+∞U 【正确答案】C【分析】先分析出||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.若曲线22:144x y C λ+=为椭圆,只需点()2,0A -落在椭圆内,列不等式求出λ的范围;若当曲线22:144x y C λ+=为双曲线时,只需把||2y x =+表示的射线与渐近线比较,列不等式求出λ的范围.【详解】如图示:||2y x =+表示起点为()2,0A -的两条斜率分别为1和-1的射线.当曲线22:144x y C λ+=为椭圆时,即0λ>,只需点()2,0A -落在椭圆内,即240144λ+<,解得:1λ>;当曲线22:144x y C λ+=为双曲线时,即0λ<,渐近线方程:y =要使曲线||2y x =+与曲线22:144x y C λ+=恰有两个不同的交点,1≤,解得.1λ≤-所以实数λ的取值范围是(],1(1,)-∞-+∞ 故选:C16.已知定义在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意x R ∈,()(2)f x f x =-;③当[0,1]x ∈时,3()2f x x =;④()(4)g x f x =.若过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则直线l 斜率k 的取值范围是()A.60,11⎛⎫⎪⎝⎭B.30,5⎛⎫ ⎪⎝⎭C.(0,1)D.330,8⎛⎫ ⎪⎝⎭【正确答案】A【分析】结合①②可知()f x 是周期为2的函数,再结合④可知()g x 是周期为12的函数,结合③作出()g x 在[0,2]上的图像,然后利用数形结合即可求解.【详解】因为函数()f x 的图象关于y 轴对称,所以()f x 为偶函数,即()()f x f x =-,又因为对于任意x R ∈,()(2)f x f x =-,所以()(2)()f x f x f x =-=-,从而()(2)f x f x =+,即()f x 是周期为2的函数,因为()(4)g x f x =,则()g x 图像是()f x 的图像的横坐标缩短为原来的14得到,故()g x 也是偶函数,且周期为11242⨯=,结合当[0,1]x ∈时,3()2f x x =,可作出()g x 在[0,2]的图像以及直线l 的图像,如下图所示:当74x =时,易知3()2g x =,即73(,)42A ,则直线MA 的斜率362711(1)4MAk -==--,过点(1,0)-的直线l 与函数()g x 的图象在[0,2]x ∈上恰有8个交点,则只需6011MA k k <<=,即直线l 斜率k 的取值范围是60,11⎛⎫ ⎪⎝⎭.故选:A.三、解答题(本题满分14分,第1小题满分4分,第2小题满分10分)17.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,椭圆的一个顶点与两个焦点构成的三角形面积为2.(1)求椭圆C 的方程;(2)已知直线()()10y k x k =->与椭圆C 交于A ,B 两点,且与x 轴,y 轴交于M ,N 两点.①若MB AN = ,求k 的值;②若点Q 的坐标为7,04⎛⎫⎪⎝⎭,求证:QA QB ⋅ 为定值.【正确答案】(1)22142x y +=(2)①22k =;②证明见解析【分析】(1)根据椭圆的离心率和三角形的面积即可求出224,2a b ==,则椭圆方程可得;(2)①根据根与系数的关系以及向量的数量积的运算即可求出;②根据根与系数的关系以及向量的数量积的运算即可求出.【小问1详解】22c e a ==,222a c ∴=,代入222a b c =+得b c =.又椭圆的一个顶点与两个焦点构成的三角形的面积为2,即1222b c ⨯=,即2bc =,以上各式联立解得224,2a b ==,则椭圆方程为22142x y +=.【小问2详解】①直线()1y k x =-与x 轴交点为()1,0M ,与y 轴交点为()0,N k -,联立()22241x y y k x ⎧+=⎪⎨=-⎪⎩消去y 得:()222124240k x k x k +-+-=,()()4222164122424160k k k k ∆=-+-=+>设()()1122,,,A x y B x y ,则2122412kx x k+=+()()22111,,,,MB x y AN x k y =-=--- 又212241,12k MB AN x x k =+==+ 由得:解得:2k =±.由0k >得22k =;②证明:由①知2122412k x x k +=+212224,12k x x k-=+)()()2112212127777,,114444QA QB x y x y x x k x x ⎛⎫⎛⎛⎫⎛⎫∴⋅=-⋅-=--+-- ⎪ ⎪⎪⎝⎭⎝⎝⎭⎝⎭ ()()22212127491416k x x k x x k ⎛⎫=++--+++⎪⎝⎭()2222222472449151124121616k k k k k k k -⎛⎫=++--++=- ⎪++⎝⎭,QA QB ∴⋅为定值.方法点睛:求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(卷二)一、填空题(每题5分,共20分)18.已知圆22:16C x y +=,直线:()(32)0l a b x b a y a -+--=(,a b 不同时为0),当,a b 变化时,圆C 被直线l 截得的弦长的最小值为___________.【正确答案】【分析】由题意知直线l 恒过定点(3,1),当圆心到直线距离取最大值时,此时圆C 被直线l 截得的弦长为最小值,即可求出答案.【详解】把直线:()(32)0l a b x b a y a -+--=化为(21)(3)0a x yb x y --+-+=2103301x y x x y y --==⎧⎧⇒⎨⎨-+==⎩⎩,恒过定点(3,1),当圆C 被直线l 截得的弦长的最小值时,圆心(0,0)到定点(3,1)的距离为,圆心到直线:()(32)0l a b x b a y a -+--=距离,此时直线弦长为最小值=.故答案为.19.若随机变量()3,XB p ,()22,YN σ,若()10.657P X ≥=,()02P Y p <<=,则()4P Y >=______.【正确答案】0.2【分析】解不等式1﹣(1﹣p )3=0.657得到p =0.3,再利用正态分布求解.【详解】解:∵P (X ≥1)=0.657,∴1﹣(1﹣p )3=0.657,即(1﹣p )3=0.343,解得p =0.3,∴P (0<Y <2)=p =0.3,∴P (Y >4)=12(02)2P Y -<<=120.30.22-⨯=.故0.2.20.已知在R 上的减函数()y f x =,若不等式()()2233f x x f y y -≤---成立,函数()1y f x =-的图象关于点()1,0中心对称,则当14x ≤≤时,yx的取值范围是______.【正确答案】12,4⎡⎤-⎢⎥⎣⎦【分析】由对称性得函数()f x 是奇函数,由奇函数的定义及单调性化简不等式为具体的不等式,变形为两个不等式组,在平面直角坐标系中作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,yx表示这部分的点到原点连线的斜率,由图可得其取值范围.【详解】∵函数(1)=-y f x 的图象关于点(1,0)中心对称,∴函数()y f x =的图象关于原点对称,即()f x 是奇函数,不等式()()2233f x x f y y -≤---可化为()()2233f x x f y y -≤+,又()f x 是R 上的减函数,∴2233x x y y -≥+,即()(3)0x y x y +--≥030x y x y +≥⎧⎨--≥⎩或030x y x y +≤⎧⎨--≤⎩,作出这两个不等式组表示的平面区域在直线1x =和4x =之间的部分,如图阴影部分(含边界),yx表示阴影部分的点与原点连线的斜率,1x =与4x =分别代入30x y --=,可得(1,2)D -,(4,1)B ,2OD k =-,14OB k =,∴124y x -≤≤.故12,4⎡⎤-⎢⎥⎣⎦.21.设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项,若对任意的*n ∈N ,都有[]13,n nS s t S -∈,则t s -的最小值为________.【正确答案】94【分析】先根据和项与通项关系得{}n a 通项公式,再根据等比数列求和公式得n S ,再根据函数单调性得13n nS S -取值范围,即得t s ,取值范围,解得结果.【详解】因为2n S 是6和n a 的等差中项,所以46n n S a =+当2n ≥时,111114643n n n n n n n S a a a a a a ----=+∴=-∴=-当1n =时,11146=2S a a =+∴因此112[1()]13132([1()]132313n n n n n a S ---=⨯-∴==--+当n 为偶数时,3143[1()][,)2332n n S =-∈当n 为奇数时,313[1(](,2]232n n S =+∈因此343(,2][,)232n S ∈U 因为13n n S S -在343(,2][,232U 上单调递增,所以[]113232*********,,4662244n n S s t t s S ⎡⎤-∈⋃⊆∴-≥-=⎢⎥⎣⎦)(,故94本题考查根据和项求通项、等比数列定义、等比数列求和公式、利用函数单调性求值域,考查综合分析求解能力,属较难题.二、单项选择题(每题5分,共10分)22.在正四面体A BCD -中,点P 为BCD ∆所在平面上的动点,若AP 与AB 所成角为定值,0,4πθθ⎛⎫∈ ⎪⎝⎭,则动点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线【正确答案】B【分析】把条件转化为AB 与圆锥的轴重合,面BCD 与圆锥的相交轨迹即为点P 的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令AB 与圆锥的轴线重合,如图所示,则圆锥母线与AB 所成角为定值,所以面BCD 与圆锥的相交轨迹即为点P 的轨迹.根据题意,AB 不可能垂直于平面BCD ,即轨迹不可能为圆.面BCD 不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算AB 与平面BCD 所成角为θ=时,轨迹为抛物线,arctan θ≠时,轨迹为椭圆, 0,4πθ⎛⎫∈ ⎪⎝⎭,所以轨迹为椭圆.故选:B.本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.23.若P 在曲线22:14x C y +=上,若存在过P 的直线交曲线C 于A 点,交直线:4l x =于B 点,满足||||PA PB =或||||PA AB =,则称P 点为“H 点”,那么下列结论中正确的是()A.曲线C 上所有点都是H 点B.曲线C 上仅有有限多个点是H 点C.曲线C 上所有点都不是H 点D.曲线C 上有无穷多个点(但不是全部)是H 点【正确答案】D【分析】设出22P A x x -≤<≤,利用相似三角形求得P x 和A x 的关系,设出PA 的方程与椭圆方程联立求得A P x x 的表达式,利用判别式大于0求得k 和m 的不等式关系,最后联立①②③求得A x 的范围,进而通过1A x <时,242P A x x =-<-,故此时不存在H 点,进而求得H 点的横坐标取值范围,判断出题设的选项.【详解】解:由题意,P 、A 的位置关系对称,于是不妨设22,(P A x x -≤<≤此时)PA AB =.由相似三角形,244A P x x -=-即:24P A x x =-⋯①设:PA y kx m =+,与椭圆联立方程组,2214y kx mx y =+⎧⎪⎨+=⎪⎩消y 得22212104k x kmx m ⎛⎫+++-= ⎪⎝⎭解得22114A P m x x k -=⋯+②0∆> ,2241k m >-⋯③联立①②③,得2222114A A x x k-<+,而2202114k<<+,即222A A x x -<,即12A x ≤≤,而当1A x <时,242P A x x =-<-,故此时不存在H 点又因为P 的位置可以和A 互换(互换后即)PA PB =,所以H 点的横坐标取值为[2,0][1,2]-⋃.故选:D.本题主要考查了直线与圆锥曲线的关系问题.解题的关键是求得H 点的横坐标取值范围.属于较难题.三、多项选择题(每题6分,共12分)24.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共截去八个三棱锥,得到的半正多面体的表面积为3,则关于该半正多面体的下列说法中正确的是()A.与AB 所成的角是60°的棱共有8条B.AB 与平面BCD 所成的角为30°C.二面角A BC D --的余弦值为33-D.经过A ,B ,C ,D 四个顶点的球面面积为2π【正确答案】CD【分析】补全该半正多面体得到一正方体.对于A 选项,由正三角形可得60°角,再利用平行关系得结果;B 选项,利用正方体找出线面角为∠ABE=45°;C 选项,先作出二面角的补角∠AFE ,在△AEF 中,求出3cos 3EF AFE AF ∠==即可得结果;D 选项,由半正多面体的对称中心与相应的正方体的对称中心为同一点,构造三角形,求出球的半径,最后求得经过A ,B ,C ,D 四个顶点的球面面积.【详解】补全该半正多面体得到一正方体,设正方体的棱长为a .由题意,该半正多面体是由6个全等的正方形与8个全等的正三角形构成,由半正多面体的表面积为33+,可得223228633422a ⎛⎫⎫⨯⨯+⨯=+ ⎪⎪ ⎪⎪⎝⎭⎝⎭,解得a =1.对于A ,在与AB 相交的6条棱中,与AB 成60°角的棱有4条,这4条棱中,每一条都有3条平行的棱,故与AB 所成的角是60°的棱共有16条,故A 不正确;对于B ,因为AE ⊥平面BCD ,所以AB 与平面BCD 所成角为∠ABE =45°,故B 不正确;对于C ,取BC 中点F ,连接EF ,AF ,则有AF ⊥BC ,EF ⊥BC ,故二面角A -BC -D 的补角为∠AFE .二面角A -BC -D 的余弦值为-cos ∠AFE ,在Rt △AEF 中,1,,24AE EF AE EF ==⊥,∴AF =3cos 3EF AFE AF ∠==,cos 3AFE -∠=-,故C 正确;对于D ,由半正多面体的对称中心与相应的正方体的对称中心为同一点,即为正方体对角线的中点O ,点O 在平面ABE 的投影为投影点O 1,则有1111,22OO AO ==,∴22AO ==,故经过A ,B ,C ,D 四个顶点的球面的半径为面积为2422S ππ⎛⎫== ⎪ ⎪⎝⎭,故D 正确.故选:CD立体几何中补形是一种常用的方法:(1)一个不规则几何体是由规则几何体经过截取得到的,通常可以用补形,还原为规则几何体,如正方体,长方体等;(2)通常可以用来求①体积(距离),②与外接球(内切球)相关的问题.25.在棱长为1的正方体1111ABCD A B C D -中,已知点P 为侧面11BCC B 上的一动点,则下列结论正确的是()A.若点P 总保持1PA BD ⊥,则动点P 的轨迹是一条线段;B.若点P 到点A 的距离为3,则动点P 的轨迹是一段圆弧;C.若P 到直线AD 与直线1CC 的距离相等,则动点P 的轨迹是一段抛物线;D.若P 到直线BC 与直线11C D 的距离比为1:2,则动点P 的轨迹是一段双曲线.【正确答案】ABD【分析】由1BD ⊥平面1AB C 且平面1AB C 平面111BCC B B C =,即可判断A ;根据球的性质及与正方体的截面性质即可判断B ;作PE BC ⊥,EF AD ⊥,连接PF ,作1PQ CC ⊥.建立空间直角坐标系,由PF PQ =即可求得动点P 的轨迹方程,即可判断C ;根据题意,由距离比即可求得轨迹方程,进而判断D.【详解】对于A ,111,BD B C D A AB ⊥⊥,且1AC AB A ⋂=,所以1BD ⊥平面1AB C ,平面1AB C 平面111BCC B B C =,故动点P 的轨迹为线段1BC ,所以A 正确;对于B ,点P 的轨迹为以A 为球心、半径为233的球面与面11BCC B 的交线,即为一段圆弧,所以B 正确;对于C ,作PE BC ⊥,EF AD ⊥,连接PF ;作1PQ CC ⊥.由PF PQ =,在面11BCC B 内,以C 为原点、以直线CB 、CD 、1CC 为x ,y ,z轴建立平面直角坐标系,如下图所示:设(),0,P x z,则x =,化简得221x z -=,P 点轨迹所在曲线是一段双曲线,所以C 错误.对于D ,由题意可知点P 到点1C 的距离与点P 到直线BC 的距离之比为2:1,结合C 中所建立空间直角坐标系,可得121PC PE =,所以21241PC PE =,代入可得()222141x z z +-=,化简可得221314493z x ⎛⎫+ ⎪⎝⎭-=,故点P 的轨迹为双曲线,所以D 正确.综上可知,正确的为ABD.故选:ABD.本题考查了空间几何体中截面的形状判断,空间直角坐标系的综合应用,轨迹方程的求法,属于难题.四、解答题(本题满分18分(本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分)26.对于数列{}n a ,若存在正数k ,使得对任意*,m n ∈N ,m n ≠,都满足||||m n a a k m n -≤-,则称数列{}n a 符合“()L k 条件”.(1)试判断公差为2的等差数列{}n a 是否符合“(2)L 条件”?(2)若首项为1,公比为q 的正项等比数列{}n a 符合“1(2L 条件”.求q 的范围;(3)在(2)的条件下,记数列{}n a 的前n 项和为n S ,证明:存在正数0k ,使得数列{}n S 符合“0()L k 条件”.【正确答案】(1)符合(2)1[,1]2(3)证明见解析【分析】(1)将12(1)n a a n =+-代入||||m n a a k m n -≤-即可得证;(2)由“正项等比数列”分成1q =,1q >,01q <<三类,结合数列单调性进行分析求证;(3)1q =时,n S n =,01k ≥即可成立;当112q ≤<时,设m n <,则等价于证明0(1)()m n q q k q n m ---≤即可.【小问1详解】因为{}n a 是等差数列且公差为2,所以12(1)n a a n =+-,所以对任意m ,*n ∈N ,m n ≠,11|||[2(1)][2(1)]||2()|2m n a a a m a n m n m n -=+--+-=-≤-恒成立,所以数列{}n a 符合“(2)L 条件”.【小问2详解】因为0n a >,所以0q >.若1q =,则1||0||2m n a a m n -=≤-,数列{}n a 符合“1()2L 条件”;若1q >,因为数列{}n a 递增,不妨设m n <,则1()2n m a a n m ≤--,即1122n m a n a m -≤-,(*)设12n n b a n =-,由(*)式中的m ,n 任意性得数列{}n b 不递增,所以11111()(1)022n n n n n b b a a q q -++-=--=--≤,*n ∈N ,则当[2(1)]41log q n ->-时,11(1)02n q q --->,矛盾.若01q <<,则数列{}n a 单调递减,不妨设m n <,则1()2n m a a n m ≤--,即1122m n a m a n +≤+,(**)设12n n c a n =+,由(**)式中的m ,n 任意性得,数列{}n a 不递减,所以11111()(1)022n n n n n c c a a q q +++-=-+=-+≥,*n ∈N .因为01q <<时,11()(1)2n f n q q -=-+单调递增,所以1()(1)(1)02max f n f q ==-+≥,因为01q <<,所以112q ≤<.综上,公比q 的范围为1[,1]2.【小问3详解】由(2)得,11n n q S q-=-,112q ≤<,当1q =时,n S n =,要存在0k 使得0||||n m S S k n m -≤-,只要01k ≥即可.当112q ≤<时,要证数列{}n S 符合“0()L k 条件”,只要证存在00k >,使得011||11n mq q k n m q q---≤---,*n ∈N ,不妨设m n <,则只要证0(1)()m n q q k q n m ---≤,只要证00(1)(1)m m n n q k q q k q ≤+-+-.设0()(1)n n g n q k q =+-,由m ,n 的任意性,只要证00(1)()(1)(1)(1)()0n n g n g n q q k q q k q +-=-+-=--≥,只要证0n k q ≥,*n ∈N ,因为112q ≤<,所以存在0k q ≥,上式对*n ∈N 成立.所以,存在正数0k ,使得数列{}n S 符合“0()L k 条件”.思路点睛:对于数列中的恒成立或存在性问题,通常结合条件进行分类讨论,构造合适的函数模型,借助函数性质进行判断.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年一模汇编——函数一、填空题【杨浦1】函数12()f x x -=的定义域为【答案】(0,)x ∈+∞【解析】12()f x x-==(0,)x ∈+∞ 【长宁,嘉定,金山2】方程27x =的解为 【答案】2log 7x =【解析】本题考察了对数的概念 【杨浦3】已知函数()f x 的反函数12()log fx x -=,则(1)f -=【答案】12【解析】因为21log 12=-,所以1(1)2f -= 【宝山3】函数)1(31<=-x y x 的反函数是 .【答案】1log 3+=xy ,]1,0(∈x 【解析】y x ,互换,13-=y x ⇒1log 3+=xy]1,0(∈x 【普陀5】设函数()log (4)(01)a f x x a a =+≠>且,若其反函数的零点为2,则a =__________. 【答案】2【解析】反函数-1(2)0f =,有2(0)log (04)=log 2=2a a f =+,易知2a =【崇明5】函数()f x =的反函数是 .【答案】12()1(0)fx x x -=-≥【解析】令1+=x y ,2211y x x y ∴=+⇒=-【徐汇5】 已知()y f x =是定义在R 上的偶函数,且它在[0,)+∞上单调递增,那么使得(2)()f f a -≤成立的实数a 的取值范围是【答案】(][),22,-∞-+∞【解析】由题,()y f x =是定义在R 上的偶函数,且它在[0,)+∞上单调递增,则()f x 在(],0-∞上单调递减,(2)()f f a -≤,则2a -≤,解得a 的取值范围是(][),22,-∞-+∞【闵行6】设函数22log (1)1()log 1x f x x --=,则方程()1f x =的解为【答案】2x = 【解析】22222log (1)1()=log (1)log log (1)1log 1x f x x x x x x --=-+=-=()()12100x x x x -=⎧⎪∴-⎨⎪⎩>>2x ∴= 【奉贤8】已知点()3,9在函数()1x f x a =+的图像上,则()f x 的反函数为()1f x -=__________. 【答案】()2log 1x -【解析】将点()3,9代入函数()1x f x a =+中得2a =,所以()12xf x =+,用y 表示x 得()2log 1x y =-,所以()1f x -=()2log 1x -【虹口8】设1()f x -为函数2()log (41)x f x =-的反函数,则当1()2()f x f x -=时,x 的值为_________. 【答案】1【解析】由于函数2()log (41)x f x =-的反函数为)12(log 4+=xy ,当1()2()f x f x -=, 即)12(log 2)14(log 42+=-xx,计算出1=x 【松江8】已知函数()y f x =存在反函数()-1y f x =,若函数()+2y f x =的图像经过点()16,,则函数()-12+log y f x x =的图像必过点__________. 【答案】()43,.【解析】()y f x =的图像过点()14,,()-1y f x =过点()41,,()-12+log y f x x =的图像过点()43,. 【普陀10】已知函数22()(815)()f x x x ax bx c =++++是偶函数,若方程21ax bx c ++=在区间[]1,2上有解,则实数a 的取值范围是_____________.【答案】11,83⎡⎤⎢⎥⎣⎦【解析】函数整理为()()()()432()815815815f x ax a b x a b c x b c x c =+++++++++,因为函数是偶函数,需80a b +=,1580b c +=,即8b a =-,15c 158b a =-=,所以21ax bx c ++=可整理:281510ax ax a -+-=.令()28151g x ax ax a =-+-,对称轴4x =在区间[]1,2的右侧,可保证区间内函数()g x 单调,根据零点存在性定理:()()120g g ⋅≤,即()()81514161510a a a a a a -+-⋅-+-≤,易得11,83a ⎡⎤∈⎢⎥⎣⎦【崇明10】已知函数()f x 是定义在R 上的周期为2的奇函数.当01x <≤时,3(1)f x x ax =-+,则实数a 的值等于 .【答案】2【解析】函数为奇函数,)()(x f x f -=-,当1-≤x <0时,1)(3--=ax x x f , 函数周期为2,所以)1()1(f f =-,代入得2=a【黄浦10】已知函数()y f x =与()y g x =的图像关于直线y x =对称,若2()log (22)xf x x =++,则满足2()log 3()f x g x >>的x 的取值范围是 【答案】2(0,log 15)【解析】22223()log (22)log 3log (22)log 02x x x f x x x =++>⇒+>⇒>由题意得2()log (22)xf x x =++单调递增,故反函数单调递增,22(log 3)log 15f =, 112222log 3()log 3(log 15)()log 15g x f f x x -->⇒=>⇒<【青浦10】已知对于任意给定的正实数k ,函数()22x xf x k -=+⋅的图像都关于直线x m=成轴对称图形,则m = 【答案】21log 2k【解析】对任意的R x ∈,)()(x m f m x f -=+成立,故m x x m m x m x k k ----+⋅+=⋅+2222,整理得0)22)(22(=⋅----m m x x k ,所以022=⋅--m m k ,即k m 2log 21=. 【松江10】函数=ax by cx d++的图像如图,若图像经过()()0-1-4,3,,两点,且-1x =和2y =是其两条渐近线,则:::a b c d = __________. 【答案】2:-1:1:1.【解析】()==adb a adc cxd b ax b a c c c y dcx d cx d c x c-++-+=++++,由于-1x =和2y =是其两条渐近线,则12d ac c ==,,又函数图像经过()0-1,,所以-1b d=,所以:::2:-1:1:1a b c d =.【杨浦10】已知六个函数(1)21y x=;(2)cos y x =;(3)12y x =;(4)arcsin y x =;(5)1lg()1xy x+=-;(6)1y x =+,从中任选三个函数,则其中弃既有奇函数又有偶函数的选法有 种。

【答案】12【解析】奇函数有(4)(5),偶函数有(1)(2),所以一共有两奇一偶2种,一奇两偶2种,一奇一偶8种,合计12种 【杨浦11】已知函数1()1(0)f x x x=->,若关于x 的方程[]2()()230f x mf x m +++=有三个不相等的实数解,则实数m 的取值范围为 【答案】34(,]23m ∈-- 【解析】设()f x t =,则当(0,1)x ∈时,t 有两个解,当{}1[1,)x ∈⋃+∞时,t 有一个解,因为2230t mt m +++=有三个解,而一个一元二次方程最多两个解,因此这两个解一定一个在(0,1),另一个在{}1[1,)⋃+∞,当另一个为1x =时,两根之积为0,此时32m =-,而两根之和不可能为32,矛盾,因此另一个在[1,)+∞,因此(0)0(1)0f f >⎧⎨≤⎩,即230340m m +>⎧⎨+≤⎩,所以34(,]23m ∈-- 【闵行11】若()|||3|f x x a x a =-⋅-,且[0,1]x ∈上的值域为[0,(1)]f ,则实数a 的取值范围是 【答案】10,4⎡⎤⎢⎥⎣⎦【解析】当0a =时,符合,当0a >时必有14104a a ≤⇒<≤当0a <时,()f x 单调递增,值域为()()()20,13,1f f a f ⎡⎤=⎡⎤⎣⎦⎣⎦,不符合【奉贤11】给出下列一组函数:()()212log +23f x x x =+、()()22ln 2+58f x x x =+、()()23lg 3+813f x x x =+、()()240.3log +7.46551713.931034f x x x =+,......,请你通过研究以上所给的四个函数解析式具有的特征,写出一个类似的函数解析式()2log a y Ax Bx C =++()0,1a a >≠:______________.【答案】()23log 4710y x x =++(答案不唯一) 【解析】()222,log 2610A CB y x x +==++【黄浦11】设函数()y f x =的定义域为D ,若对任意的1x D ∈,总存在2x D ∈,使得12()()1f x f x ⋅=,则称函数()f x 具有性质M ,下列结论:① 函数3y x x =-具有性质M ;② 函数35x x y =+具有性质M ;③若函数8log (2)y x =+,[0,]x t ∈具有性质M ,则510t =;④若3sin 4x ay +=具有性质M ,则5a =;其中正确结论的序号是 【答案】②③【解析】①函数3y x x =-,由于(0)0f =,故不成立 ②函数35x x y =+值域(0,)+∞,所以具有性质M ③函数8log (2)y x =+,[0,]x t ∈单调递增,1(0)3f =,故()3510f t t =⇒= ④若3sin 4x ay +=具有性质M ,则5a =±,故不成立 【松江11】若实数,0a b >,满足abc a b c =++,221a b +=,则实数c 的最小值为________.【答案】-【解析】法1(三角换元),令cos ,sin ,0,2a b πθθθ⎛⎫==∈ ⎪⎝⎭代入得cos sin sin cos 1c θθθθ+=-,再设sin cos t θθ=+,可知(t ∈所以222231312t t c t t t t ===----,在(t ∈上单调递减,故t =时c 最小,最小为-法2.根据对称式的形式,大胆猜测当2a b ==时c最小,代入得c =-【静安12】设0,,0,0a a M N >≠1>>,我们可以证明对数的运算性质如下:log log log log a a a a M N M N a a a MN +==,① log log log a a a MN M N ∴=+.我们将①式称为证明的“关键步骤”.则证明log log ra a M r M =(其中0,M r R >∈)的“关键步骤”为________.【答案】log log ra a M r M =【解析】log log ()a a M r M r r a a M ==,log log r a a M r M ∴=.【普陀12】若M N 、两点分别在函数()y f x =与()y g x =的图像上,且关于直线1x =对称,则称M N 、是()y f x =与()y g x =的一对“伴点”(M N 、与N M 、视为相同的一对)。

相关文档
最新文档