厦门大学微积分I高等数学期末考试(A卷)
厦门大学2020年《高等数学》期末考试试题及答案解析
一、 单选题(32 分. 共 8 题, 每题 4 分)1)设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。
C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b ¹ 时,V 是线性空间。
2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。
AA)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ;C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。
3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。
DA)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。
4)设 A 是m n ´ 阶矩阵,B 是n m ´ 阶矩阵,且AB I = ,则____。
A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ;D)(),() r A n r B n == 。
5)设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 æöç÷ç÷ ç÷ èø,则j 在基123 ,2, x x x 下的表示矩阵是____。
(完整word版)微积分期末试卷A及答案
共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。
lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。
、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。
6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。
8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。
9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。
《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。
二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。
2015-2016第一学期微积分IV期末试卷答案(A卷)
一、求下列数列的极限(每题5分,共10分):1.21lim(1)n n n -→∞+解:2222111lim(1)lim[(1)][lim(1)]n n n n n n e n n n----→∞→∞→∞+=+=+=2.2222lim()123n n n n nn n n n n→∞+++⋅⋅⋅++++ 解:222222221231n n n n n n n n n n n n n n ≤+++⋅⋅⋅≤++++++ , 又2222211lim lim 1,lim lim 111111n n n n n n n n n n n→∞→∞→∞→∞====++++ 所以由夹逼准则知,2222lim()1123n n n n nn n n n n→∞+++⋅⋅⋅=++++二、求下列函数的极限:(每小题5分,共20分).1. x →解:23x →==厦门大学《微积分IV 》课程期末试卷试卷类型:(A 卷) 考试日期 2016.01.122. 2211lim x x x x→--解:221111lim lim 2x x x x x x x →→-+==-或者用洛必达法则,2211122lim lim 22121x x x x x x x →→-===---3.30lim sin x x x x →-解:3200036limlim lim 6sin 1cos sin x x x x x xx x x x→→→===--4. lim )x x x →+∞解:lim )limlimlimx x x x x x →+∞===12==。
三、求函数的微分或导数:(每小题5分,共20分)1. 已知2sin y x x =,求dy .解:2(2sin cos )dydy dx x x x x dx dx==+2.已知sin xy x =,求y '. 解:y '=22(sin )()sin cos sin x x x x x x xx x''⋅--=3.已知32cos (1)y x =-,求(1)y '解:22222223cos (1)[cos(1)]3cos (1)(sin(1))(1)y x x x x x '''=-⋅-=-⋅--⋅-2222223cos (1)sin(1)(2)6cos (1)sin(1)x x x x x x =--⋅-⋅-=⋅-⋅-所以222(1)61cos (11)sin(11)0y '=⋅⋅-⋅-=4. 设()y y x =由方程y e xy e +=所确定,求(0)y '.解:方程ye xy e +=两边对x 求导,得0y e y y x y ''++⋅=,从而y y y e x -'=+,又(0)1y =,因此(0)(0)1(0)0y y y e e-'==-+。
厦门大学《高等数学(AC)》课程试卷07年
一、填空:(每小题4分,共20分) 1、22(21)t t ∆-+= 。
2、微分方程25cos2x y y y e x '''-+=待定特解的形式为 。
3、已知12t t y C C a =+是差分方程21320t t t y y y ++-+=的通解,则a = 。
4、级数21(2)(1)9nnnn x n ∞=--⋅∑的收敛域为 。
5、微分方程20ydx xdy y xdx -+=的通解为 。
二、判断下列级数的敛散(每小题5分,共10分):1、1!n n n n ∞=∑2、nn ∞=三、求下列方程的通解或特解:(每小题7分,共28分)1、求微分方程()0ydx y x dy +-= 满足(0)1y = 的特解。
2、求差分方程1363tt t y y +-=通解。
3、设()f x 二阶可导,并且()20()()(1)x t f x f u du dt x =+-⎰⎰,求()f x 。
4、求微分方程28cos y a y bx ''+= 的通解,其中,a b 为正常数。
四、计算下列各题:(每小题7分,共28分)1、求曲面积分()()()y z dydz z x dzdx x y dxdy ∑-+-+-⎰⎰其中∑为錐面(02)z z =≤≤的下侧。
2、将函数21()32f x x x =++展开成4x -()的幂级数。
3、求幂级数11(1)2n nn n x -∞=+∑的和函数,并求数项级数1(1)2n n n ∞=+∑的和。
4、设二阶连续导函数()f x 使曲线积分[2()3()5]()x LI f x f x e ydx f x dy ''=-+++⎰与路径无关,且有1(0)0,(0)4f f '==,试求曲线积分 (1,2)(0,0)[2()3()5]()x f x f x e ydx f x dy ''-+++⎰的值。
《微积分》课程期末考试试卷(A)及参考答案
3、若函数
f (x, y)
x y ,则
x y
f
(
1 x
,
y)
(
)
A、 x y
x y
B、 1 xy
1 xy
C、 1 xy
1 xy
4、设 D 由 y x, y 2x, y 1围成,则 dxdy ( )
D
A、 1
2
B、 1
4
C、1
5、( )是一阶微分方程
3x 2
3y2
(6
分)。
2、
z y
xy
ln
x (3
分);
2z y 2
xy
ln 2
x
(6
分)。
3、
f
1 x
(
x,
y)
1
x x2
y2
(5
分);
f
1 x
(3,4)
2 (6
5
分)。
4、
z x
y
1 y
,
z y
x
x y2
(4
分);
dz
(y
1 )dx y
(x
x y2
六、求方程 yy' x 的通解。(6 分)
七、判别级数 n1
2n n3n
的敛散性。(6
分)
《微积分》课程期末考试试卷(A)参考答案
一、 填空题(每题 3 分,共 36 分)。
1、
x3 y3
2x
xy y
3xy
2、 1
14-15厦门大学微积分I高等数学期末试卷(A卷)
一、计算下列各题:(每小题4分,共36分)1.求极限)0(21lim 1>++++∞→p nn p pp p n 。
2.求2cos ()x t x f x e dt =⎰的导数。
3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。
4.计算广义积分20x x e dx +∞-⎰。
厦门大学《微积分I 》课程期末试卷试卷类型:(理工类A 卷) 考试日期 2015.1.215.计算定积分120sin 2x x dx π⎡⎤⎛⎫⎢+ ⎪⎢⎝⎭⎢⎣⎰。
6.求方程2x ydy dx +=的通解。
7.求不定积分2(1)(1)xdx x x ++⎰。
8.求方程1y y x x'-=的通解。
9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。
二、计算下列各题:(每小题5分,共30分)1. 求极限20)(02sin lim x dt e x x t x x ⎰-→⋅。
2.计算22sin 2cos x x dx x ππ-⎤⎥+⎦⎰。
3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dxdy 。
4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。
5.求曲线⎰=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。
6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。
三、计算下列各题:(每小题6分,共24分)1.求微分方程32()()1dy x x y x x y dx++-+=-的通解。
2.设0>a ,求直线231aa x y +-=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。
微积分试卷及标准答案6套
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
厦门大学《高等数学(AC)》经管类(A卷)期末试卷及答案
一、解下列各题 (每小题6分,共42分)1、 220limarctan xt x x e dtx x-→-⎰. 2、设函数()f x 连续,且31()x f t dt x -=⎰,求(7)f .3、设(cos )ln(sin )f x dx x c '=+⎰,求()f x .4、已知点()3,4为曲线2y a =a , b .5、求函数2()2ln f x x x =-的单调区间与极值.6、设函数21()cos x f x x⎧+=⎨⎩0,0.x x ≤> 求2(1)f x dx -⎰.7、求曲线3330x y xy +-=的斜渐近线.二、计算下列积分(每小题6分,共36分)1、31sin cos dx x x ⎰.2、.3、523(23)x dx x +⎰.4、41cos 2xdx x π+⎰. 5、312⎰ 6、2220x x edx +∞-⎰,其中12⎛⎫Γ= ⎪⎝⎭.三、应用题(每小题6分,共12分)1、 假设在某个产品的制造过程中,次品数y 是日产量x 的函数为: 2100,102100.x x y xxx ⎧≤⎪=-⎨⎪>⎩并且生产出的合格品都能售出。
如果售出一件合格品可盈利A 元,但出一件次品就要损失3A元。
为获得最大利润,日产量应为多少? 2、设函数()f x 连续,(1)0f =,且满足方程1()()xf x xe f xt dt -=+⎰,求()f x 及()f x 在[]1,3上的最大值与最小值.四、证明题(每小题5分,共10分)1、当0x >时,证明:(1ln x x +>2、设函数)(x f 在[],a b 上连续,()0f x ≥且不恒为零,证明()baf x dx ⎰0>.一、解下列各题 (每小题6分,共42分)1、解:2220023200011lim lim lim arctan 33xxt t x x x x x e dtx e dte x x x x ---→→→---===⎰⎰ 2、 解:两边求导有233(1)1xf x -=,令2x =,得1(7)12f =。
2021微积分A期末试题及答案
2021⭌᮶㢔⫕➶᮷ᱤAᱥᱤ㔋ᱥ⒴㋜ㄯⶌ㗎㗎㝘(2022年1⽉3⽇,⽤时120分钟)专业班级学号姓名题号⼀⼆三四总分分数㮥ᮢ㫍㵗㝘(ょ㝘4➶ᱨ⤎16➶)阅卷⼈得分1.下列说法正确的是(D)A.有界数列⼀定收敛;B.有限区间上的连续函数⼀定⼀致连续;C.函数f在R上处处可导,它的导函数f1⼀定是连续的;D.有界数集⼀定存在上确界。
2.下列哪个极限不存在(B)A.limxÑ0x sin1xB.limxÑ0D(x),其中D(x)是Dirichlet函数C.limxÑ0|sgn(x)|D.limnÑ+8(1+122+¨¨¨+1n2)3.当xÑ0时,下⾯哪个函数不是与y=x等阶的⽆穷⼩(D)A.sin xB.arcsin xC.ln(1+x)D.1´cos x4.函数f(x)定义在R上,在x0处可导⽽且f(x0)ą0。
下列说法错误的是(A)A.函数f(x)在x0处的微分是f1(x0);B.函数f(x)在x0处连续;C.存在x0的⼀个邻域U(x0),使得在该邻域内f(x)ą0;D.当xÑx0时,f(x)=f(x0)+o(1)。
✠ᮢ㝤ⶥ㝘(ょ㝘4➶ᱨ⤎20➶)阅卷⼈得分5.集合A=t(1+1n)n|n P N,ną0u,那么inf A=2,sup A=e。
6.函数φ(t),ψ(t)在R上⼆阶可导,⽽且φ1(t)‰0。
由参数⽅程x=φ(t),y=ψ(t)确定了函数关系y=y(x)。
那么d yd x =ψ1(t)/φ1(t),d2yd x2=ψ2(t)φ1(t)´ψ1(t)φ2(t)φ13(t)。
7.函数y=2x3+3x2´12x+18在区间[´3,3]上的最⼤值是63,最⼩值是11。
8.函数y=x4+8x3+1图像的垂直渐近线是x=´1,斜渐近线是y=x。
9.函数f(x)在R上的连续,F(x)=şxf(x+t)dt,那么F1(x)=2f(2x)´f(x)。
2020-2021大学《高等数学》(下)期末课程考试试卷A(含答案)
第1页 共2页《高等数学(下)》期末课程考试试卷A适用专业:工科专业 考试日期:试卷所需时间120分钟 闭卷 试卷总分100分一、填空题:(每小题2分,共16分)1、(,)limx y →= ;2(,)(0,0)1cos lim()xyx y xyxy e →-= .2、若,(0)x z y y =>,则偏导数x z = ;y z = .3、曲线22220x y z x y z ⎧++=⎨++=⎩在点(0,1,1)-的切线方程为 .4、改变积分次序:23132001(,)(,)xx dx f x y dy dx f x y dy -+=⎰⎰⎰⎰.5、L 为平面上任一不包含原点闭区域的边界,则曲线积分22Lxdy ydxx y -+⎰= .6、设()f x 是以2l 为周期的连续函数,且01()(cos sin )2n n n a n x n xf x a b l lππ∞==++∑,则n a = ,n b = .7、211x-在(1,1)-内展开成x 的幂级数为 . 8、微分方程20y y y '''++=的通解为 .二、选择题:(共6小题,每小题2分,共12分)1、函数(,)z f x xy =具有二阶连续偏导数,则22zx∂∂等于( )(A) 12222xf f xyf ++; (B) 112212(1)f f y f +++; (C) 21112222f yf y f ++; (D) 2111222f yf y f ++.2、积分(,)(,)LP x y dx Q x y dy +⎰与路径无关的充要条件是( )(A)P Q y x ∂∂=∂∂; (B) P Q y x ∂∂=-∂∂; (C) P Q x y ∂∂=∂∂; (D) P Q x y∂∂=-∂∂. 3、二元函数x y x y x z 9332233-++-=的极大值点是( )(A)(1,0); (B)(1,2); (C)(-3,0); (D)(-3,2).4、S 为222x y R += (0)R >上01z ≤≤部分,则22sin()Sx y dS +⎰⎰为( )(A) 22sin R Re R π; (B) 2sin R Re R π; (C) 22sin R R e R π; (D) 0. 5、设1n n u ∞=∑是正项级数,那么下列命题正确的是: ( )(A) 若11n n u u +< ,则1n n u ∞=∑收敛; (B) 若lim 0n n u →∞=,则1n n u ∞=∑收敛; (C) 若21n n u ∞=∑收敛,则1n n u ∞=∑收敛; (D) 若1n n u ∞=∑收敛,则21n n u ∞=∑收敛.6、函数3222222,0(,)0,0x x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩,在点(0,0)处说法正确的是( )(A) 偏导数存在且可微; (B) 偏导数存在但不可微; (C) 偏导数不存在且不可微; (D) 以上都不对.三、计算题:(共5小题,每小题10分,共50分)1、求函数32z x y xy =-的所有二阶偏导数.2、已知2z u v =,其中u xy =,v x y =+,求zx ∂∂和z y∂∂.3、计算:22()(2sin )Lx y dx x y dy --+⎰,其中曲线L 是在圆周y =上由点(0,0)到点(1,1)的一段弧.4、计算:D,其中区域D 为:0,022x y ππ≤≤≤≤.5、求:222Sx dydz y dzdx z dxdy ++⎰⎰,其中曲面S 为22z x y =+被1z =所割下的有限部分的下侧.四、(8分)求幂级数1n n nx ∞=∑的收敛域及其和函数.五、(8分)设一平面平行于平面6650x y z +++=,且与三坐标面围成的四面体体积为1,求此平面方程.六、(6分)设(),(0)f x x >可导,且211()1x f x f dt x =+⎰,求()f x .《高等数学(下)》期末课程考试试卷A答案适用专业:工科专业考试日期:试卷所需时间120分钟闭卷试卷总分100分一、填空题:(每小题2分,共16分)1、(,)limx y→= 4 ;2(,)(0,0)1coslim()xyx yxyxy e→-= 1/2 .2、若xz y=,(0)y>则偏导数xz=1xxy-;yz=lnxy y.3、曲线2222x y zx y z⎧++=⎨++=⎩在点(0,1,1)-的切线方程为11211x y z-+==-.4、改变积分次序:231320010(,)(,)xxdx f x y dy dx f x y dy-+=⎰⎰⎰⎰132(,)ydy f x y dx-⎰.5、L为平面上任一不包含原点闭区域的边界,则曲线积分22Lxdy ydxx y-+⎰= 0 .6、设()f x是以2l为周期的连续函数,且01()(cos sin)2n nna n x n xf x a bl lππ∞==++∑,则na=1()cos,(0,1,)lln xf x dx nl lπ-=⎰,n b=1()sin,(1,2,)lln xf x dx nl lπ-=⎰.7、211x-在(1,1)-内展开成x的幂级数为2421nx x x+++++.8、微分方程20y y y'''++=的通解为12()xy C C x e-=+.二、选择题:(共6小题,每小题2分,共12分)1、函数(,)z f x xy=具有二阶连续偏导数,则22zx∂∂等于( C )(A)12222xf f xyf++;(B)112212(1)f f y f+++;(C)21112222f yf y f++;(D)2111222f yf y f++.2、积分(,)(,)LP x y dx Q x y dy+⎰与路径无关的充要条件是(A)(A)P Qy x∂∂=∂∂;(B)P Qy x∂∂=-∂∂;(C)P Qx y∂∂=∂∂;(D)P Qx y∂∂=-∂∂.3、二元函数xyxyxz9332233-++-=的极大值点是( D )(A)(1,0);(B)(1,2);(C)(-3,0);(D)(-3,2).4、S为222x y R+=(0)R>上01z≤≤部分,则22sin()Sx y dS+⎰⎰为(A)(A)22sinRRe Rπ;(B)2sinRRe Rπ;(C)22sinRR e Rπ;(D) 0.5、设1nnu∞=∑是正项级数,那么下列命题正确的是:(D)(A)若11nnuu+<,则1nnu∞=∑收敛;(B)若lim0nnu→∞=,则1nnu∞=∑收敛;(C)若21nnu∞=∑收敛,则1nnu∞=∑收敛;(D)若1nnu∞=∑收敛,则21nnu∞=∑收敛.6、函数3222222,0(,)0,0xx yf x y x yx y⎧+≠⎪=+⎨⎪+=⎩,在点(0,0)处说法正确的是( B )(A) 偏导数存在且可微;(B)偏导数存在但不可微;(C)偏导数不存在且不可微;(D)以上都不对.三、计算题:(共5小题,每小题10分,共50分)1、求函数32z x y xy=-的所有二阶偏导数.解:223zx y yx∂=-∂,32zx xyy∂=-∂,…………4分226zxyx∂=∂,22232z zx yx y y x∂∂==-∂∂∂∂,222zxy∂=-∂…………10分2、已知2z u v=,其中u xy=,v x y=+,求zx∂∂和zy∂∂.解:22332z z u z vx y xyx u x v x∂∂∂∂∂=+=+∂∂∂∂∂…………5分22332z z u z vx y x yy u y v y∂∂∂∂∂=+=+∂∂∂∂∂…………10分第3页共2页3、计算:22()(2sin )Lx y dx x y dy --+⎰,其中L是在圆周y =(0,0)到点(1,1)的一段弧. 解:1222()(2sin )(21)4L L L Dx y dx x y dy dxdy π++--+=--+=⎰⎰⎰…………4分122215sin 2()(2sin )(2sin )24L x y dx x y dy y dy --+=-+=-⎰⎰…………6分 2022211()(2sin )3L x y dx x y dy x dx --+==-⎰⎰…………8分 2213sin 2()(2sin )464Lx y dx x y dy π--+=-+⎰…………10分 4、计算:D,其中区域D 为:0,022x y ππ≤≤≤≤.解:原式=cos()Dx y dxdy +⎰⎰…………4分=222202cos()cos()xxdx x y dy dx x y dy πππππ--+-+⎰⎰⎰⎰…………8分=2π-…………10分5、求:222Sx dydz y dzdx z dxdy ++⎰⎰,其中曲面S 为22z x y =+被1z =所割下的有限部分的下侧.解:原式=2()Dx y z dv dxdy Ω++-⎰⎰⎰⎰⎰…………6分=22112(cos sin )d d z dz πρθρρρθρθπ++-⎰⎰⎰…………8分=3π-…………10分 四、(8分)求幂级数1nn nx ∞=∑的收敛域及其和函数,并求2121222n n+++++的和。
微积分期末试题及答案
微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。
A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。
A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。
A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。
A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。
A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。
答案:1/x2. 函数y=e^x的原函数是______。
答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。
答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。
答案:x=25. 定积分∫(0 to 2) x dx的值是______。
答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。
答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。
将x=3代入原函数,得到极小值点为(3,-1)。
2. 求定积分∫(0 to 3) (x^2-2x+1)dx。
答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。
3. 求曲线y=x^3在点(1,1)处的切线方程。
答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。
四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。
《微积分》期末考试试卷(含ABC三套)
四、计算题 1、求极限 lim
x 。 (6 分) x 0 2 4 x
B、 lim f (0 x) f (0)
x 0
f (x) f (0) x
)
D、 lim
x 0
f ( x x) f ( x) x
4、 (ln x)dx =( A、 ln x
2
B、 ln x C )
C、
2
1 x
1 D、 C x
5、定积分为零的是( A、 ( x 3 x 5 )dx
四、计算题 1、求极限 lim
1 cos x 。 (6 分) x 0 x2
2、 y ln( x x 2 a 2 ), 求y 。 (8 分)
3、 y cos x , 求dy 。 (8 分)
4、求 arctan xdx 。 (10 分)
2 sin 3 xdx 。 5、求 (10 分) 2
sin x A、 lim 1 x x
2
sin
B、 lim
x 0
1 x
1 x 1
C、 lim
x
2
tan x 1 x
D、 lim x sin
x
1 1 x
)
3、若函数 y f ( x) 在点 x=0 处可导,则 f (0) =( A、 f (0) C、 lim
x 0
2 2
B、 ( x 3 x 5 1)dx
2 2
C、 x sin xdx
2
D、 x 2 cos xdx
2
二、填空题(每空 3 分,共 18 分) 1、若函数 y f ( x) 在点 x。连续,则 lim f ( x) f ( x0 ) =
高数下册期末a卷考试题及答案
高数下册期末a卷考试题及答案一、选择题(每题5分,共30分)1. 以下哪个函数不是周期函数?A. \( \sin(x) \)B. \( \cos(x) \)C. \( e^x \)D. \( \tan(x) \)答案:C2. 函数 \( f(x) = x^2 \) 在 \( x=1 \) 处的导数是:A. 0B. 1C. 2D. 3答案:C3. 以下哪个选项是 \( \int_0^1 x^2 dx \) 的正确计算结果?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A4. 以下哪个选项是 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值?A. 0B. 1C. 2D. 3答案:B5. 以下哪个选项是 \( \int \frac{1}{x} dx \) 的原函数?A. \( \ln|x| + C \)B. \( x + C \)C. \( e^x + C \)D. \( \sin x + C \)答案:A6. 以下哪个选项是 \( \int e^x \cos x \, dx \) 的正确积分结果?A. \( \frac{1}{2} e^x (\cos x + \sin x) + C \)B. \( \frac{1}{2} e^x (\cos x - \sin x) + C \)C. \( \frac{1}{2} e^x (\cos x + \sin x) - C \)D. \( \frac{1}{2} e^x (\cos x - \sin x) - C \)答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = \ln(x) \) 的定义域是 \( ______ \)。
答案:\( (0, +\infty) \)2. 函数 \( f(x) = \sqrt{x} \) 的导数是 \( ______ \)。
大学微积分考试试题(A卷)
微积分考试试题一、 填空题(每题2分⨯10=20分)1、函数245)(x x f --=的定义域是 .2、 设3)(-=x x f ,则=)]1([f f .3、 =---∞→13926lim 22n n n n .4、 x xx 5sin 3sin lim 0→ .5、 =-∞→x x x )431(lim .6、 =')(arccos x .7、 函数y x =,则=dy .8、 函数x e y tan =的导数为 .9、 0sin lim x xx →= .10、 微积分的创始人是: .二 选择题(每题2分⨯5=10分)1、 x x f arcsin 1)(=是( ).A 偶函数B 奇函数C 单调函数D 有界函数2、 若,21)(lim 0=→x ax f x 则 ,)(lim 0=→x bx f x ( ). (ab 0≠)A a b2 B ab 21C 2abD b a23、 函数⎪⎩⎪⎨⎧=≠=00sin )(x a x xxx f ,)(x f 在x=0处连续, 则a=( ).A 0B 1C 2D 不存在4、设曲线)(x f y =在0x x =处切线是水平的,则当0→x 时,)()(0x f x f -较之0x x -为( )无穷小。
A 同阶B 等价C 低阶D 高阶5、 设函数(),()u x v x 在x 可导,则( )A []u v u v '''+=+B []u v u v '''-=+C []u v u v '''⨯=+D []u v u v '''÷=+三、计算题(每小题6分,共24分)1、已知x x f 2sec 8)(tan -=,求)(x f2、求极限12253lim 323+-+∞→x x x x x 3、求极限xx x x 3sin tan lim 0-→ 4、求极限x x x 1)41(lim -→ 四、计算题(每小题8分,共24分)1、求x e x y 12-=的导数2、设)(x y y =由隐函数e xy e y +=确定,求y '3、求211dx x +⎰五、应用题(每小题8分,共16分)1、 某厂生产某种产品所需要成本为()5200()C Q Q =+元,销售后得到总收入为2()100.01()R Q Q Q =-元,问该厂每批生产多少件产品才能使利润最大?2、 某工厂需要修建一个容积为4立方米的正方柱体(即池底为正方形)无盖水池,池底与池壁的材料相同,问池底边长和池高分别为多少时,用料最省?六、 证明题(6分)证明方程e x x =+2332至少有一个正根。
微积分期末试题及答案
微积分期末试题及答案(正文开始)第一部分:选择题(共20题,每题5分,共100分)1. 设函数 f(x) = x^3 - 2x + 1,求 f'(x)。
2. 求函数 f(x) = e^x 的不定积分。
3. 将函数 f(x) = sin(x) 在区间[0, π] 上进行定积分,求结果。
4. 设函数 f(x) = ln(x),求 f'(x)。
5. 求函数 f(x) = 2x^2 + 3x + 1 的定积分,其中积分区间为 [-1, 2]。
6. 设函数f(x) = √(x^2 + 1),求 f'(x)。
7. 求函数 f(x) = 3x^2 - 6 的不定积分。
8. 计算定积分∫(0 to π/2) cos(x) dx 的值。
9. 设函数 f(x) = e^(2x),求 f'(x)。
10. 求函数 f(x) = x^3 - 4x^2 + 5x - 2 的不定积分。
11. 计算定积分∫(0 to 1) x^2 dx 的值。
12. 设函数 f(x) = (sinx + cosx)^2,求 f'(x)。
13. 求函数 f(x) = 2e^x 的不定积分。
14. 计算定积分∫(1 to e) ln(x) dx 的值。
15. 设函数 f(x) = x^2e^x,求 f'(x)。
16. 求函数 f(x) = ln(2x + 1) 的不定积分。
17. 求函数 f(x) = sin^2(x) 在区间[0, π/2] 上的定积分。
18. 设函数 f(x) = e^(3x),求 f'(x)。
19. 求函数f(x) = ∫(1 to x) t^2 dt 的不定积分。
20. 计算定积分∫(0 to π) sin^2(x) dx 的值。
第二部分:计算题(共4题,每题25分,共100分)1. 计算函数f(x) = ∫(0 to x^2) (2t + 1) dt 在区间 [-1, 1] 上的定积分。
厦门大学 【精品】2016-2017学年第2 学期 高等数学A期末考试试卷
厦门大学2016-2017学年第2 学期高等数学A 期末考试试卷2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。
2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。
4.设yz u x =,则du = 。
5.级数11(1)npn n ∞=-∑,当p 满足 条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xy x y y +=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →=( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 ( )A .直线L 平行于平面πB .直线L 在平面π上C .直线L 垂直于平面πD .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= ( )A .33()2b a π-B .332()3b a π-C .334()3b a π-D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
2. 计算二重积分22Dx y dxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门大学微积分I高等数学期末考试(A卷)
————————————————————————————————作者:————————————————————————————————日期:
一、计算下列各题:(每小题4分,共36分)
1.求极限)0(21lim 1>++++∞→p n
n p p
p p n 。
2.求2cos ()x t x f x e dt =⎰
的导数。
3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。
4.计算广义积分20x x e dx +∞-⎰。
厦门大学《微积分I 》课程期末试卷
试卷类型:(理工类A 卷) 考试日期 2015.1.21
5.计算定积分()123021sin 21x x dx x π⎡⎤⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭+⎢⎥⎣⎦
⎰。
6.求方程
2x y dy dx
+=的通解。
7.求不定积分2(1)(1)
x dx x x ++⎰。
8.求方程1y y x x
'-
=的通解。
9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。
二、计算下列各题:(每小题5分,共30分)
1. 求极限20)(02sin lim
x dt e x x t x x ⎰-→⋅。
2. 计算322sin cos cos 2cos x x x x dx x π
π-⎡⎤-+⎢⎥+⎣⎦⎰。
3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dx
dy 。
4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。
5.求曲线⎰
=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。
6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力
()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。
三、计算下列各题:(每小题6分,共24分)
1.求微分方程32()()1dy x x y x x y dx
++-+=-的通解。
2.设0>a ,求直线231a
a x y +-
=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。
3. 设二阶常系数线性微分方程sin y y y x αβγ'''++=的一个特解为
2312cos sin ,55
x x y e e x x =+++试确定,,αβγ,并求出该方程的通解。
4.设)(x f 为),(+∞-∞上的连续函数, 且当0≠x 时满足函数方程: ⎰⎰⎰-+-=1000))(1()()()(2
dx x f x dt t tf dt x
t f x f x x , 求)(x f 。
四、证明题:(每小题5分,共10分;其中第2题和第3题任选一题)
1.设()f x 可导,120
(1)2()f f x dx =⎰,证明: (0,1)ξ∃∈,使得()0f ξ'=。
2. 证明:[]22002ln(sin )ln(sin 2)ln 2x dx x dx ππ=-⎰⎰,并利用此等式计算20ln(sin )x dx π⎰。
3.设)(x f 和)(x g 均在],[b a 上单调不减的连续函数(b a <),证明: ⎰⎰⎰-≤b
a b a b a dx x g x f a b dx x g dx x f )()()()()(。