解析几何专题含答案-精选.pdf
解析几何专题评估测试题及详细答案
解析几何专题评估测试题[时间120分钟,满分150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·珠海模拟)经过圆C :(x +1)2+(y -2)2=4的圆心且斜率为1的直线方程为 A .x -y +3=0 B .x -y -3=0 C .x +y -1=0D .x +y +3=0解析 圆C :(x +1)2+(y -2)2=4的圆心的圆心坐标为(-1,2), 则所求的直线方程为y -2=x -(-1),即x -y +3=0. 答案 A2.(2013·延庆模拟)已知直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0,则“a =-2”是“l 1⊥l 2”A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 当a =-2时,kl 1=-2,kl 2=12, 所以kl 1·kl 2=-1,即l 1⊥l 2; 当l 1⊥l 2时,a (a +1)+a =0, 解得a =-2,或a =0,所以“a =-2”是“l 1⊥l 2”的充分不必要条件. 答案 A3.(2013·莱芜模拟)点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为 A .x +y -1=0 B .2x +y -3=0 C .x -y -3=0D .2x -y -5=0解析 设圆心为C ,则C (1,0),k PC =-1,由圆的几何性质可知,PC ⊥AB ,所以k AB =1,则直线AB 的方程为y -(-1)=x -2,即x -y -3=0.答案 C4.直线3x +4y -9=0与圆x 2+(y -1)2=1的位置关系是 A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心解析 已知圆的圆心坐标为(0,1),则圆心到直线的距离为d =1, 而r =1,所以d =r ,即直线和圆相切. 答案 B5.(2013·青浦模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为A .y =±2xB .y =±2xC .y =±12xD .y =±22x解析 由题意知2b =2,2c =23,所以b =1,c =3, a =c 2-a 2=2,所以双曲线的渐近线方程为y =±b a x =±12x =±22x ,选D. 答案 D6.已知圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则圆的半径为 A .9B .3C .23D .2解析 已知圆的圆心坐标为⎝ ⎛⎭⎪⎫1,-m 2,因为圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则直线2x +y =0必过圆心⎝ ⎛⎭⎪⎫1,-m 2,代入直线方程可解得m =4,则圆的半径r=12(-2)2+42-4×(-4)=3.答案 B7.若椭圆x 2a 2+y 2b 2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为A.x 24+y 22=1 B.x 23+y 2=1 C.x 22+y 24=1D .x 2+y 23=1解析 抛物线y 2=8x 的焦点坐标为(2,0),因为椭圆过该点, 代入可得a 2=4,双曲线x 2-y 2=1的焦点坐标为(±2,0), 所以椭圆的焦点在x 轴上,且a 2>b 2, 故a 2-b 2=4-b 2=(2)2,即b 2=2,则所求的椭圆的方程为x 24+y 22=1. 答案 A8.(2013·门头沟一模)已知P (x ,y )是中心在原点,焦距为10的双曲线上一点,且yx 的取值范围为⎝ ⎛⎭⎪⎫-34,34,则该双曲线方程是 A.x 29-y 216=1 B.y 29-x 216=1 C.x 216-y 29=1D.y 216-x 29=1解析 由题意知2c =10,所以c =5. 又y x 的取值范围为⎝ ⎛⎭⎪⎫-34,34,所以双曲线的渐近线斜率k =34,且焦点在x 轴上. 即b a =34,所以b =34a , 解得a 2=16,b 2=9,所以双曲线的方程为x 216-y 29=1,选C. 答案 C9.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,OQ→=12(OP →+OF →),则|OQ→|等于 A .1B .2C .2或5D .1或5解析 设双曲线的左焦点为F 1, 因为OQ→=12(OP →+OF →), 所以点Q 是线段PF 的中点,而O 是F 1F 的中点, 故线段OQ 是三角形PF 1F 的中位线, 故|OQ→|=12|PF 1|, 据双曲线的定义得||PF 1|-|PF ||=||PF 1|-6|=4, 即|PF 1|=10或|PF 1|=2,所以|OQ |=5或1. 答案 D10.(2013·济宁一模)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为原点,若OE→=12(OF →+OP →),则双曲线的离心率为A.1+52B.3+33C.52D.1+32解析 因为OE→=12(OF →+OP →),所以E 是FP 的中点.设右焦点为F 1,则F 1也是抛物线的焦点. 连接PF 1,则|PF 1|=2a ,且PF ⊥PF 1, 所以|PF |=4c 2-4a 2=2b .设P (x ,y ),则x +c =2a ,则x =2a -c ,过点F 作x 轴的垂线,点P 到该垂线的距离为2a , 由勾股定理得y 2+4a 2=4b 2, 即4c (2a -c )+4a 2=4(c 2-a 2), 解得e =5+12,选A.答案 A11.(2013·青岛一模)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,P A ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于A.7π12B.2π3C.3π4D.5π6解析 抛物线的焦点坐标为F (1,0), 准线方程为x =-1.由题意|PF |=|P A |=4,则x P -(-1)=4,即x P =3,所以y 2P =4×3,即y P =±23,不妨取P (-1,23),则设直线AF 的倾斜角等于θ, 则tan θ=23-1-1=-3,所以θ=2π3,选B.答案 B12.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,若点(-1,0)与点(1,0)到直线x a -yb =1的距离之和为S ,且S ≥45c ,则离心率e 的取值范围是A .[2,7] B.⎣⎢⎡⎦⎥⎤52,5 C.⎣⎢⎡⎦⎥⎤52,7D .[2,5]解析 直线x a -yb =1方程为bx -ay -ab =0, 则S =|-b -ab |+|b -ab |a 2+b 2=b +ab -b +ab a 2+b 2=2aba 2+b2, 而c =a 2+b 2,所以2ab a 2+b2≥45a 2+b 2, 化简得2⎝ ⎛⎭⎪⎫b a 2-5⎝ ⎛⎭⎪⎫b a +2≤0,解得12≤ba ≤2,所以e 2=c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2∈⎣⎢⎡⎦⎥⎤54,5,即e ∈⎣⎢⎡⎦⎥⎤52,5.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.(2013·日照一模)抛物线y 2=16x 的准线方程为________. 解析 在抛物线中2p =16,p =8, 所以准线方程为x =-p2=-4. 答案 x =-414.(2013·黄浦模拟)若双曲线x 24-y 2b 2=1(b >0)的一条渐近线过点P (1,2),则b 的值为________. 解析 双曲线的渐近线方程为y =±b 2x ,因为点P (1,2)在第一象限, 所以点P (1,2)在渐近线y =b 2x 上,所以有2=b2,所以b =4. 答案 415.(2013·南京模拟)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.解析 据题意知|OQ |=r =b . 又OQ 是三角形PF 1F 2的中位线, 故|PF 1|=2b ,所以|PF 2|=2a -2b , |QF 2|=a -b ,在直角三角形OQF 2中, 由勾股定理得b 2+(a -b )2=c 2. 又c 2=a 2+b 2,代入化简得b a =23, 所以e 2=1-⎝ ⎛⎭⎪⎫b a 2=59,即e =53.答案 e =5316.(2013·潍坊二模)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,上顶点为A ,离心率为12,点P 为第一象限内椭圆上的一点,若S △PF 1A ∶S △PF 1F 2=2∶1,则直线PF 1的斜率为________.解析 因为椭圆的离心率为12, 所以e =c a =12,即a =2c .设直线PF1的斜率为k(k>0),则直线PF1的方程为y=k(x+c).因为S△PF1A∶S△PF1F2=2∶1,即S△PF1A=2S△PF1F2,即12·|PF1|·|kc-b|k2+1=2×12·|PF1|·|2kc|k2+1,所以|kc-b|=4|kc|,解得b=-3kc(舍去),或b=5kc. 又a2=b2+c2,即a2=25k2c2+c2,所以4c2=25k2c2+c2,解得k2=3 25,所以k=3 5.答案3 5三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y -6=0,点T(-1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)若动圆P过点N(-2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.解析(1)因为AB边所在直线的方程为x-3y-6=0,且AD与AB垂直,所以直线AD的斜率为-3.又因为点T(-1,1)在直线AD上,所以AD边所在直线的方程为y-1=-3(x+1).3x +y +2=0.(3分) (2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2).因为矩形ABCD 两条对角线的交点为M (2,0). 所以M 为矩形ABCD 外接圆的圆心. 又|AM |=(2-0)2+(0+2)2=2 2.从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.(6分) (3)因为动圆P 过点N ,所以|PN |是该圆的半径. 又因为动圆P 与圆M 外切, 所以|PM |=|PN |+22, 即|PM |-|PN |=2 2.故点P 的轨迹是以M ,N 为焦点,实轴长为22的双曲线的左支. 因为实半轴长a =2,半焦距c =2. 所以虚半轴长b =c 2-a 2= 2. 从而动圆P 的圆心的轨迹方程为 x 22-y 22=1(x ≤-2).(10分)18.(12分)(2013·门头沟一模)已知椭圆与双曲线x 2-y 2=1有相同的焦点,且离心率为22. (1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积. 解析 (1)设椭圆方程为x 2a 2+y 2b 2=1,a >b >0, 由c =2,可得a =2,b 2=a 2-c 2=2, 即所求方程为x 24+y 22=1.(4分) (2)设A (x 1,y 1),B (x 2,y 2), 由AP →=2PB →有⎩⎨⎧-x 1=2x 21-y 1=2(y 2-1)设直线方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0,(6分) 解得x =-2k ±8k 2+22k 2+1,不妨设x 1=-2k -8k 2+22k 2+1,x 2=-2k +8k 2+22k 2+1,因为-x 1=2x 2,则--2k +8k 2+22k 2+1=2·-2k +8k 2+22k 2+1,解得k 2=114.(10分)又△AOB 的面积S =12|OP |·|x 1-x 2|=12·28k 2+22k 2+1=1268.∴△AOB 的面积为1268.(12分)19.(12分)(2013·吉安模拟)已知平面内一动点P 到点F (0,1)的距离与点P 到x 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB→的最小值. 解析 (1)设动点P 的坐标为(x ,y ),由题意得x 2+(y -1)2-|y |=1, 化简得x 2=2y +2|y |,当y ≥0时x 2=4y ; 当y <0时,x =0,所以动点P 的轨迹C 的方程为x 2=4y 和x =0(y <0).(4分) (2)由题意知,直线l 1的斜率存在且不为0,设为k , 则l 1的方程为y =kx +1.由⎩⎨⎧y =kx +1x 2=4y 得x 2-4kx -4=0,(6分) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4,y 1+y 2=4k 2+2,y 1y 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k .设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=-4k , x 3x 4=-4,y 3+y 4=4k 2+2,y 3y 4=1,(8分) AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+FD →·EF →+AF →·FB →+FD →·FB → =FD →·EF →+AF →·FB →=|FD →||EF →|+|AF →||FB →| =(y 3+1)(y 4+1)+(y 1+1)(y 2+1) =y 3y 4+(y 3+y 4)+1+y 1y 2+(y 1+y 2)+1=8+4k 2+4k 2=8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥8+4×2=16,(10分)当且仅当k 2=1k 2,即k =±1时,AD →·EB→取最小值为16.(12分)20.(12分)在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO 、NO 与抛物线的交点分别为点A 、B ,求证:动直线AB 恒过一个定点.解析 (1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2, 所以抛物线方程为y 2=4x .(4分)(2)证明 抛物线C 的准线方程为x =-1, 设M (-1,y 1),N (-1,y 2),其中y 1y 2=-4, 直线MO 的方程:y =-y 1x ,将y =-y 1x 与y 2=4x , 联立解得A 点坐标⎝ ⎛⎭⎪⎫4y 21,-4y 1.同理可得B 点坐标⎝ ⎛⎭⎪⎫4y 22,-4y 2,(8分) 则直线AB 的方程为:y +4y1-4y 2+4y 1=x -4y 214y 22-4y 21,(10分) 整理得(y 1+y 2)y -4x +4=0, 故直线AB 恒过定点(1,0).(12分)21.(12分)(2013·济宁一模)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为4 3.(1)求椭圆C 的标准方程;(2)直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB 的斜率为12.①求四边形APBQ 面积的最大值;②设直线P A 的斜率为k 1,直线PB 的斜率为k 2,判断k 1+k 2的值是否为常数,并说明理由.解析 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由已知b =23,离心率e =c a =12,a 2=b 2+c 2,得a =4,所以,椭圆C 的方程为x 216+y 212=1.(4分)(2)①由(1)可求得点P 、Q 的坐标为P (2,3),Q (2,-3),则|PQ |=6,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =12x +t ,代入x 216+y 212=1,得:x 2+tx +t 2-12=0.由Δ>0,解得-4<t <4,由根与系数的关系得⎩⎨⎧x 1+x 2=-t x 1x 2=t 2-12. 四边形APBQ 的面积S =12×6×|x 1-x 2|=3×(x 1+x 2)2-4x 1x 2=348-3t 2,故当t =0,S max =12 3.(8分)②由题意知,直线P A 的斜率k 1=y 1-3x 1-2,直线PB 的斜率k 2=y 2-3x 2-2, 则k 1+k 2=y 1-3x 1-2+y 2-3x 2-2=12x 1+t -3x 1-2+12x 2+t -3x 2-2=12(x 1-2)+t -2x 1-2+12(x 2-2)+t -2x 2-2=1+t -2x 1-2+t -2x 2-2 =1+(t -2)(x 1+x 2-4)x 1x 2-2(x 1+x 2)+4, 由①知⎩⎨⎧ x 1+x 2=-t x 1x 2=t 2-12可得k 1+k 2=1+(t -2)(-t -4)t 2-12+2t +4=1+-t 2-2t +8t 2+2t -8=1-1=0, 所以k 1+k 2的值为常数0.(12分)22.(12分)(2013·南京模拟)设椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB→?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在,说明理由. 解析 (1)因为椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,所以⎩⎪⎨⎪⎧ 4a 2+2b 2=16a 2+1b 2=1解得⎩⎪⎨⎪⎧ 1a 2=181b 2=14所以⎩⎨⎧a 2=8b 2=4. 椭圆E 的方程为x 28+y 24=1.(4分)(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB →,设该圆的切线方程为y =kx +m ,联立方程得⎩⎪⎨⎪⎧ y =kx +m x 28+y 24=1得x 2+2(kx +m )2=8, 即(1+2k 2)x 2+4kmx +2m 2-8=0,则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0,即8k 2-m 2+4>0⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(2m 2-8)1+2k 2-4k 2m 21+2k 2+m 2=m 2-8k 21+2k 2.(6分) 要使OA →⊥OB →,需使x 1x 2+y 1y 2=0, 即2m 2-81+2k 2+m 2-8k 21+2k 2=0, 所以3m 2-8k 2-8=0,所以k 2=3m 2-88≥0. 又8k 2-m 2+4>0,所以⎩⎨⎧m 2>23m 2≥8, 所以m 2≥83,即m ≥263或m ≤-263.因为直线y =kx +m 为圆心在原点的圆的一条切线, 所以圆的半径为r =|m |1+k 2, r 2=m 21+k 2=m 21+3m 2-88=83,r =263, 所求的圆为x 2+y 2=83,此时圆的切线y =kx +m 都满足m ≥263或m ≤-263,而当切线的斜率不存在时切线为x =±263与椭圆x 28+y 24=1的两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝⎛⎭⎪⎫-263,±263满足OA →⊥OB →, 综上,存在圆心在原点的圆x 2+y 2=83,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA→⊥OB →. 因为⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2, 所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=8(8k 2-m 2+4)(1+2k 2)2, |AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)(x 1-x 2)2=(1+k 2)8(8k 2-m 2+4)(1+2k 2)2 =323·4k 4+5k 2+14k 4+4k 2+1=323⎣⎢⎡⎦⎥⎤1+k 24k 4+4k 2+1,(10分) ①当k ≠0时,|AB |=323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4. 因为4k 2+1k 2+4≥8,所以0<14k 2+1k 2+4≤18, 所以323<323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4≤12,所以436<|AB |≤23, 当且仅当k =±22时取“=”.②当k =0时,|AB |=463. ③当AB 的斜率不存在时,两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝ ⎛⎭⎪⎫-263,±263,所以此时|AB |=463, 综上,|AB |的取值范围为436≤|AB |≤23,即:|AB |∈⎣⎢⎡⎦⎥⎤436,23.(12分)。
高考解析几何复习专题
交点法探究:
①判别式;②根与系数关系:两根和、两根积(横坐标关系与纵坐标关系转换); ③数量关系转换(长度、角度、斜率、面积、向量关系或不等关系等转换); ④位置关系转换(平行或垂直或相交等)
x1 x2 x1x2
y1 y2 y1 y2
问 题
繁 与 简
关于交点法:交点法中的曲线与方程
关联特征转换典型题例关联特征转换非交点法应用题例数学语言转换数形特征转换圆锥曲线概念与基本量关系向量与数量关系转换已知点ab是椭圆的左右顶点f为左焦点点p是椭圆上异于ab的任意一点直线ap与过点b且垂直于x交于点m直线bpmn1求证
高考数学复习专题
解析几何-交点法
(高考全国卷解答题20题探究)
解析几何专题-交点法 1.数学思想:方程(组)思想 2. 问题特征:直线与圆锥曲线-相交弦 3. 途径方法:两式两线两法
焦半
|
PF
|
x0
p 2
, (P(x0,
y0 ) C
:
y2
2 px)
径:
注意:①抛物线方程有四种形式;
②焦半径对应四种不同表示方式
七、圆锥曲线问题类型
问题类型
一、求曲线或轨迹方程问题--方程(组)思想应用 (1)点与曲线-方程思想;(2)向量关系-特征转化; (3)特征量或特征量关系;(4)位置特征关系转化
4、路径选择、计算方法
交点法小练与思考 练习1 若直线
与椭圆
恒有公共点,
求实数 的取值范围
直线与曲线
练习2
已知椭圆
x
2
2
y2 1
1 的左右焦点分别为 F1、F2 ,若过点 P(0,-2)、F1 的直线交
椭圆于 A,B 两点,求 ABF2 的面积
解析几何专题(含答案)
解析几何与极坐标和参数方程专题1. 已知命题 p :方程x 22m+y 29−m=1 表示焦点在 y 轴上的椭圆,命题 q :双曲线 y 25−x 2m=1 的离心率e ∈(√62,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围.2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα,y =sinα,(α 为参数),以坐标原点为极点,以 x轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π4)=2√2.(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标.3. 在直角坐标系 xOy 中,直线 C 1:x =−2,圆 C 2:(x −1)2+(y −2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程;(2)若直线 C 3 的极坐标方程为 θ=π4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △C 2MN 的面积.4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1,直线 l 与抛物线相交于不同的 A ,B 两点.(1)求抛物线的标准方程;(2)如果直线 l 过抛物线的焦点,求 OA⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ 的值; (3)如果 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.5. 已知抛物线C:y2=2px(p>0)与直线x−√2y+4=0相切.(1)求该抛物线的方程;(2)在x轴正半轴上,是否存在某个确定的点M,过该点的动直线l与抛物线C交于A,B两点,使得1∣AM∣2+1∣BM∣2为定值.如果存在,求出点M坐标;如果不存在,请说明理由.6. 在平面直角坐标系xOy中,动点A的坐标为(2−3sinα,3cosα−2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos(θ−π4)=a.(1)判断动点A的轨迹的形状;(2)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1).(1)求椭圆 C 的方徎;(2)动点 P 在直线 l :x =−2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得 PM =PN ,再过 P 作直线 lʹ⊥MN ,直线 lʹ 是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.8. 在平面直角坐标系 xOy 中,C 1:{x =t,y =k (t −1)(t 为参数).以原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ−6ρsinθ+33=0.(1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.9. 设 F 1,F 2 分别是椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的左,右焦点,M 是 C 上一点且 MF 2 与 x 轴垂直.直线 MF 1 与 C 的另一个交点为 N . (1)若直线 MN 的斜率为 34,求 C 的离心率;(2)若直线 MN 在 y 轴上的截距为 2,且 ∣MN∣=5∣∣F 1N∣∣,求 a ,b .10. 已知抛物线 E:x 2=2py (p >0),直线 y =kx +2 与 E 交于 A ,B 两点,且 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2,其中 O 为原点.(1)求抛物线 E 的方程;(2)点 C 坐标为 (0,−2),记直线 CA ,CB 的斜率分别为 k 1,k 2,证明:k 12+k 22−2k 2 为定值.11. 已知椭圆的一个顶点为A(0,−1),焦点在x轴上.若右焦点到直线x−y+2√2=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M,N.当∣AM∣=∣AN∣时,求m的取值范围.12. 双曲线C与椭圆x28+y24=1有相同的焦点,直线y=√3x为C的一条渐近线.求双曲线C的方程.13. 已知不过第二象限的直线 l:ax −y −4=0 与圆 x 2+(y −1)2=5 相切. (1)求直线 l 的方程;(2)若直线 l 1 过点 (3,−1) 且与直线 l 平行,直线 l 2 与直线 l 1 关于直线 y =1 对称,求直线 l 2 的方程.14. 在直角坐标系 xOy 中,圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).以 O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆 C 的极坐标方程;(2)直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3 与圆 C 的交点为 O ,P ,与直线 l 的交点为 Q ,求线段 PQ 的长.15. 双曲线与椭圆有共同的焦点F1(0,−5),F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求椭圆的方程和双曲线方程.16. 在抛物线y=4x2上有一点P,若点P到直线y=4x−5的距离最短,求该点P坐标和最短距离.17. 已知函数y=a2−x+1(a>0,且a≠1)的图象恒过定点A,点A在直线mx+ny=1(mn>0)上,求1m +1n的最小值.18. 已知直线l:y=x+m与抛物线y2=8x交于A,B两点,(1)若∣AB∣=10,求m的值;(2)若OA⊥OB,求m的值.19. 若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为√2−1,求椭圆的方程.20. 讨论直线l:y=kx+1与双曲线C:x2−y2=1的公共点的个数.21. 已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程x2m+3−y22m−1=1表示焦点在y轴上的双曲线.(1)若q为真命题,求实数m的取值范围;(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.22. 已知双曲线的焦点在x轴上,∣F1F2∣=2√3,渐近线方程为√2x±y=0,问:过点B(1,1)能否作直线l,使l与双曲线交于M,N两点,并且点B为线段MN的中点?若存在,求出直线l的方程;若不存在,请说明理由.23. 已知点 P (2,0) 及圆 C :x 2+y 2−6x +4y +4=0.(1)设过 P 的直线 l 1 与圆 C 交于 M ,N 两点,当 ∣MN∣=4 时,求以 MN 为直径的圆 Q 的方程; (2)设直线 ax −y +1=0 与圆 C 交于 A ,B 两点,是否存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB ?若存在,求出实数 a 的值;若不存在,请说明理由.24. 在直角坐标系 xOy 中,已知直线 l:{x =1+√22ty =2+√22t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C:ρ2(1+sin 2θ)=2.(1)写出直线 l 的普通方程和曲线 C 的直角坐标方程;(2)设点 M 的直角坐标为 (1,2),直线 l 与曲线 C 的交点为 A ,B ,求 ∣MA ∣⋅∣MB ∣ 的值.25. 已知椭圆C:x2a2+y2b2=1(a>b>0),离心率为√32,两焦点分别为F1,F2,过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.(1)求椭圆C的方程;(2)过点P(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,求弦长∣AB∣的最大值.26. 已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n=qS n−1+1,其中q>0,n>1,n∈N∗.(1)若2a2,a3,a2+2成等差数列,求{a n}的通项公式;(2)设双曲线x2−y2a n2=1的离心率为e n,且e2=3,求e12+e22+⋯+e n2.27. 已知曲线 C 的极坐标方程为 ρ=2cosθ−4sinθ,以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标系,直线 l 的参数方程为 {x =1+tcosα,y =−1+tsinα(t 为参数).(1)判断直线 l 与曲线 C 的位置关系,并说明理由;(2)若直线 l 和曲线 C 相交于 A ,B 两点,且 ∣AB ∣=3√2,求直线 l 的斜率.28. 已知椭圆x 2a2+y 2b 2=1(a >b >0) 的离心率 e =√63,坐标原点到直线 l:y =bx +2 的距离为 √2.(1)求椭圆的方程;(2)若直线 y =kx +2(k ≠0) 与椭圆相交于 C ,D 两点,是否存在实数 k ,使得以 CD 为直径的圆过点 E (−1,0)?若存在,求出 k 的值,若不存在,请说明理由.29. 在平面直角坐标系xOy中,直线l经过点P(−3,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2−2ρcosθ−3=0.(1)若直线l与曲线C有公共点,求倾斜角α的取值范围;(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.30. 椭圆与双曲线有许多优美的对称性质.对于椭圆x2a2+y2b2=1(a>b>0)有如下命题:AB是椭圆x2 a2+y2b2=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM⋅k AB=−b2a2为定值.那么对于双曲线x 2a2−y2b2=1(a>0,b>0)则有命题:AB是双曲线x2a2−y2b2=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则k OM⋅k AB=定值.(在横线上填上正确的结论)并证明你的结论.31. (1)求中心在原点,焦点在x轴上,焦距等于4,且经过点P(3,−2√6)的椭圆方程;(2)求e=√6,并且过点(3,0)的椭圆的标准方程.332. 已知抛物线y2=4x,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.33. 已知点A(0,−2),椭圆E:x2a2+y2b2=1(a>b>0)的离心率为√32,F是椭圆的焦点,直线AF的斜率为2√33,O为坐标原点.(1)求E的方程;(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.34. P为椭圆x225+y29=1上一点,F1,F2为左右焦点,若∠F1PF2=60∘.(1)求△F1PF2的面积;(2)求P点的坐标.35. 已知双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的渐近线方程为:y =±√3x ,右顶点为 (1,0).(1)求双曲线 C 的方程;(2)已知直线 y =x +m 与双曲线 C 交于不同的两点 A ,B ,且线段 AB 的中点为 M (x 0,y 0).当 x 0≠0 时,求 y0x 0的值.36. 已知双曲线 x 216−y 24=1 的两焦点为 F 1,F 2.(1)若点 M 在双曲线上,且 MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,求 M 点到 x 轴的距离;(2)若双曲线 C 与已知双曲线有相同焦点,且过点 (3√2,2),求双曲线 C 的方程.37. 椭圆x2a2+y2b2=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且∣PF1∣=43,∣PF2∣=143,PF1⊥PF2.(1)求椭圆C的方程;(2)若直线L过圆x2+y2+4x−2y=0的圆心M交椭圆于A,B两点,且A,B关于点M对称,求直线L的方程.38. 已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y−29=0相切.(1)求圆的方程;(2)设直线ax−y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(−2,4),若存在,求出实数a的值;若不存在,请说明理由.39. 已知直线 C 1:{x =1+tcosα,y =tsinα(t 为参数),圆 C 2:{x =cosθ,y =sinθ(θ 为参数).(1)当 α=π3 时,求 C 1 与 C 2 的交点坐标;(2)过坐标原点 O 作 C 1 的垂线,垂足为 A ,P 为 OA 的中点,当 α 变化时,求点 P 轨迹的参数方程,并指出它是什么曲线.40. 已知圆 C 和 y 轴相切,圆心在直线 x −3y =0 上,且被直线 y =x 截得的弦长为 2√7,求圆 C 的方程.41. 如图,直线 l:y =x +b 与抛物线 C:x 2=4y 相切于点 A . (1)求实数 b 的值;(2)求以 A 点为圆心,且与抛物线 C 的准线相切的圆的方程.42. 在直角坐标系 xOy 中,圆 C 的方程为 (x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆 C 的极坐标方程;(2)直线 l 的参数方程是 {x =tcosα,y =tsinα,(t 为参数),直线 l 与圆 C 交于 A ,B 两点,∣AB∣=√10,求 l 的斜率.43. 已知双曲线与椭圆x29+y225=1有公共焦点F1,F2,它们的离心率之和为245.(1)求双曲线的标准方程;(2)设P是双曲线与椭圆的一个交点,求cos∠F1PF2.44. 抛物线顶点在原点,它的准线过双曲线x2a2−y2b2=1(a>0,b>0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,√6),求抛物线与双曲线方程.45. 已知曲线 C 上任一点 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1. (1)求曲线 C 的方程;(2)过点 Q (1,2) 作两条倾斜角互补的直线与曲线 C 分别交于点 A ,B ,试问:直线 AB 的斜率是否为定值,请说明理由.46. 在平面直角坐标系 xOy 中,圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),直线 l 过点 (0,2) 且倾斜角为 π3.(1)求圆 C 的普通方程及直线 l 的参数方程;(2)设直线 l 与圆 C 交于 A ,B 两点,求弦 ∣AB ∣ 的长.47. 已知椭圆C:x2a2+y2b2=1(a>b>0)的一个长轴顶点为A(2,0),离心率为√22,直线y=k(x−1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√103时,求k的值.48. 已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点为F1,F2,A点在椭圆上,离心率是√22,AF2与x轴垂直,且∣AF2∣=√2.(1)求椭圆的方程;(2)若点A在第一象限,过点A作直线l,与椭圆交于另一点B,求△AOB面积的最大值.49. 已知点 (1,√22) 在椭圆 C:x 2a2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22.(1)求椭圆 C 的方程;(2)过椭圆 C 右焦点 F 的直线 l 与椭圆交于两点 A ,B ,在 x 轴上是否存在点 M ,使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值?若存在,求出点 M 的坐标;若不存在,请说明理由.答案1. 若命题 p :方程 x 22m +y 29−m =1 表示焦点在 y 轴上的椭圆为真命题; 则 9−m >2m >0, 解得 0<m <3,则命题 p 为假命题时,m ≤0 或 m ≥3,若命题 q :双曲线 y 25−x 2m =1 的离心率 e ∈(√62,√2) 为真命题; 则 √5+m 5∈(√62,√2),即5+m 5∈(32,2),即 52<m <5,则命题 q 为假命题时,m ≤52 或 m ≥5,因为命题 p ,q 中有且只有一个为真命题, 当 p 真 q 假时,0<m ≤52, 当 p 假 q 真时,3≤m <5,综上所述,实数 m 的取值范围是:0<m ≤52 或 3≤m <5.2. (1) C 1:{x =√3cosα,y =sinα(α 为参数)的直角坐标方程是:x 23+y 2=1,C 2 的直角坐标方程:ρsin (θ+π4)=2√2, 整理得,√22ρsinθ+√22ρcosθ=2√2,x +y =4.(2) 设 x +y =4 的平行线为 l 1:x +y +c =0, 当 l 1:x +y +c =0 且 c <0 和 C 1 相切时 ∣PQ ∣ 距离最小, 联立直线和椭圆方程得 x 23+(x +c )2−1=0,整理得4x 23+2cx +c 2−1=0,需要满足 Δ=−4c 23+163=0,求得 c =±2,当直线为 l 1:x +y −2=0 时,满足题意,来自QQ 群339444963 此时 ∣PQ ∣=√2,此时直线 l 1 和椭圆交点即是 P 点坐标 (32,12).3. (1) C 1:ρcosθ=−2,C 2:ρ2−2ρcosθ−4ρsinθ+4=0. (2) C 3:y =x ,圆 C 2 的圆心 C 2 到 y =x 的距离 d =√2=√22, ∴∣MN∣=2⋅√12−(√22)2=√2,∴S △C 2MN =12⋅∣MN∣⋅d =12⋅√2⋅√22=12.4. (1) 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1, 所以 p 2=1,p =2.所以抛物线的标准方程为 y 2=4x .(2) 设 l:my =x −1,与 y 2=4x 联立,得 y 2−4my −4=0, 设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=−4, 所以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(m 2+1)y 1y 2+m (y 1+y 2)+1=−3.(3) 假设直线 l 过定点,设 l:my =x +n ,{my =x +n,y 2=4x, 得 y 2−4my +4n =0,设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=4n . 由OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4=(m 2+1)y 1y 2−mn (y 1+y 2)+n 2=n 2+4n,解得 n =−2,所以 l:my =x −2 过定点 (2,0). 5. (1) 联立方程有,{x −√2y +4=0,y 2=2px,有 y 2−2√2py +8p =0,由于直线与抛物线相切,得 Δ=8p 2−32p =0,所以 p =4, 所以 y 2=8x .(2) 假设存在满足条件的点 M (m,0)(m >0),直线 l:x =ty +m ,有 {x =ty +m,y 2=8x, y 2−8ty −8m =0,设 A (x 1,y 1),B (x 2,y 2),有 Δ>0,y 1+y 2=8t ,y 1y 2=−8m ,∣AM ∣2=(x 1−m )2+y 12=(t 2+1)y 12,∣BM ∣2=(x 2−m )2+y 22=(t 2+1)y 22,1∣AM∣2+1∣BM∣2=1(t 2+1)y 12+1(t 2+1)y 22=1(t 2+1)(y 12+y 22y 12y 22)=1(t 2+1)(4t 2+m4m 2),当 m =4,满足 Δ>0 时,1∣AM∣2+1∣BM∣2 为定值, 所以 M (4,0).6. (1) 设动点 A 的直角坐标为 (x,y ),则 {x =2−3sinα,y =3cosα−2,所以动点 A 的轨迹方程为 (x −2)2+(y +2)2=9,其轨迹是半径为 3 的圆.(2) 直线 C 的极坐标方程 ρcos (θ−π4)=a 化为直角坐标方程是 √2x +√2y =2a ,由 ∣∣2√2−2√2−2a ∣∣2=3,得 a =3 或 a =−3.7. (1) 因为椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1),所以 {9a 2+1b 2=1,c 2a 2=a 2−b 2a 2=(√63)2,解得 a 2=12,b 2=4, 所以椭圆 C 的方程为x 212+y 24=1.(2) 因为直线 l 的方程为 x =−2√2, 设 P(−2√2,y 0),y 0∈(−2√33,2√33), 当 y 0≠0 时,设 M (x 1,y 1),N (x 2,y 2),由题意知 x 1≠x 2,联立 {x 1212+y 124=1,x 2212+y 224=1,所以 x 12−x 2212+y 12−y 224=0, 所以y 1−y 2x 1−x 2=13⋅x 1+x 2y 1+y 2,又因为 PM =PN , 所以 P 为线段 MN 的中点, 所以直线 MN 的斜率为 −13⋅−2√2y 0=2√23y 0, 又 lʹ⊥MN ,所以 lʹ 的方程为 y −y 0=02√2+2√2),即 y =02√2+4√23), 所以 lʹ 恒过定点 (−4√23,0). 当 y 0=0 时,直线 MN 为 x =−2√2, 此时 lʹ 为 x 轴,也过点 (−4√23,0), 综上,lʹ 恒过定点 (−4√23,0).8. (1) 由 {x =t,y =k (t −1),可得其普通方程为 y =k (x −1), 它表示过定点 (1,0),斜率为 k 的直线.由 ρ2+10ρcosθ−6ρsinθ+33=0 可得其直角坐标方程为 x 2+y 2+10x −6y +33=0, 整理得 (x +5)2+(y −3)2=1,它表示圆心为 (−5,3),半径为 1 的圆. (2) 因为圆心 (−5,3) 到直线 y =k (x −1) 的距离 d =√1+k 2=√1+k 2,故 ∣PQ ∣ 的最小值为 √1+k 2−1,故√1+k 21=2,得 3k 2+4k =0, 解得 k =0 或 k =−43.9. (1) 根据 c =√a 2−b 2 及题设知 M (c,b 2a ),F 2(−c,0),由斜率公式并化简整理易得 2b 2=3ac . 将 b 2=a 2−c 2 代入 2b 2=3ac ,解得 ca =12 或 ca =−2(舍去). 故 C 的离心率为 12.(2) 由题意,得原点 O 为 F 1F 2 的中点,MF 2∥y 轴,所以直线 MF 1 与 y 轴的交点 D (0,2) 是线段 MF 1 的中点,故 b 2a =4,即b 2=4a. ⋯⋯① 由 ∣MN∣=5∣∣F 1N∣∣ 得 ∣DF 1∣=2∣∣F 1N∣∣. 设 N (x 1,y 1),由题意知 y 1<0, 则 {2(−c −x 1)=c,−2y 1=2, 即 {x 1=−32c,y 1=−1.代入 C 的方程,得 9c 24a 2+1b 2=1. ⋯⋯② 将 ① 及c =√a 2−b 2 代入 ② 得 9(a 2−4a )4a 2+14a =1.解得 a =7,b 2=4a =28,故 a =7,b =2√7.10. (1) 将 y =kx +2 代入 x 2=2py ,得 x 2−2pkx −4p =0. 其中 Δ>0,设 A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=2pk ,x 1x 2=−4p .所以 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+x 122p ⋅x 222p =−4p +4.由已知,−4p +4=2,解得 p =12,所以抛物线 E 的方程为 x 2=y .(2) 由(1)知,x 1+x 2=k ,x 1x 2=−2. k 1=y 1+2x 1=x 12+2x 1=x 12−x 1x 2x 1=x 1−x 2,同理 k 2=x 2−x 1,k =y 1−y2x 1−x 2=x 12−x 22x 1−x 2=x 1+x 2,所以 k 12+k 22−2k 2=−8x 1x 2=16.11. (1) 依题意可设椭圆方程为 x 2a 2+y 2=1,则右焦点 F(√a 2−1,0),由题设∣∣√a 2−1+2√2∣∣√2=3,解得 a 2=3,故所求椭圆的方程为 x 23+y 2=1.(2) 设 P 为弦 MN 的中点,由 {y =kx +m,x 23+y 2=1,得 (3k 2+1)x 2+6mkx +3(m 2−1)=0, 由于直线与椭圆有两个交点,所以 Δ>0,即 m 2<3k 2+1, ⋯⋯① 所以 x P =x M +x N2=−3mk 3k 2+1, 从而 y P =kx P +m =m3k 2+1, 所以 k AP =y P +1x P=−m+3k 2+13mk,又 ∣AM∣=∣AN∣, 所以 AP ⊥MN , 则 −m+3k 2+13mk=−1k ,即 2m =3k 2+1, ⋯⋯②把 ② 代入 ① 得 2m >m 2 解得 0<m <2, 由 ② 得 k 2=2m−13>0,解得 m >12.故所求 m 的取值范围是 (12,2).12. 设双曲线方程为x 2a2−y 2b 2=1(a >0,b >0),由椭圆x 28+y 24=1,求得两焦点为 (−2,0),(2,0),所以对于双曲线 C :c =2.又 y =√3x 为双曲线 C 的一条渐近线, 所以 ba =√3,解得 a =1,b =√3. 所以双曲线 C 的方程为 x 2−y 23=1.13. (1) 因为直线 l 与圆 x 2+(y −1)2=5 √1+a 2=√5,因为直线 l 不过第二象限,所以 a =2, 所以直线 l 的方程为 2x −y −4=0.(2) 因为直线 l 1 过点 (3,−1) 且与直线 l 平行,所以设直线 l 1 的方程为 2x −y +b =0,因为直线 l 1 过点 (3,−1),所以 b =−7,则直线 l 1 的方程为 2x −y −7=0, 因为直线 l 2 与 l 1 关于 y =1 对称,所以直线 l 2 的斜率为 −2,且过点 (4,1), 所以直线 l 2 的方程为 y −1=−2(x −4),即化简得 2x +y −9=0. 14. (1) 圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).消去参数可得:(x −1)2+y 2=1.把 x =ρcosθ,y =ρsinθ 代入化简得:ρ=2cosθ,即为此圆的极坐标方程. (2) 如图所示,由直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3.可得普通方程:直线 l :y +√3x =3√3,射线 OM :y =√3x . 联立 {y +√3x =3√3,y =√3x,解得 {x =32,y =3√32,即 Q (32,3√32). 联立 {y =√3x,(x −1)2+y 2=1,解得 {x =0,y =0 或 {x =12,y =√32. 所以 P (12,√32).来自QQ 群339444963所以 ∣PQ∣∣=√(12−32)2+(√32−3√32)2=2.15. 由共同的焦点 F 1(0,−5),F 2(0,5), 可设椭圆方程为y 2a2+x 2a 2−25=1,双曲线方程为 y 2b 2−x 225−b 2=1,点 P (3,4) 在椭圆上,16a 2+9a 2−25=1,解得 a 2=40,双曲线的过点 P (3,4) 的渐近线为 y =43x ,故b 225−b 2=169,解得 b 2=16.所以椭圆方程为:y 240+x 215=1; 双曲线方程为:y 216−x 29=1.16. 设点 P (t,4t 2),点 P 到直线 y =4x −5 的距离为 d ,则 d =2√17=4(t−12)2+4√17.当 t =12时,d 取得最小值,此时 P (12,1) 为所求的点,最短距离为 4√1717. 17. 当 x =2 时 y =2, 所以过定点 A (2,2), 因为 A 在直线上,所以 2m +2n =1,且 mn >0, 所以 1m +1n =(1m +1n )(2m +2n )=2+2+2m n+2n m≥4+2√4=8,即 1m +1n 的最小值为 8.18. (1) 设 A (x 1,y 1),B (x 2,y 2). {y =x +m,y 2=8x⇒x 2+(2m −8)x +m 2=0⇒{Δ=(2m −8)2−4m 2>0,x 1+x 2=8−2m,x 1x 2=m 2.∣AB ∣=√2∣x 1−x 2∣=√2√(x 1+x 2)2−4x 1x 2=10,m =716, 因为 m <2, 所以 m =716.(2) 因为 OA ⊥OB , 所以 x 1x 2+y 1y 2=0,x 1x 2+(x 1+m )(x 2+m )=0,2x 1x 2+m (x 1+x 2)+m 2=0. 2m 2+m (8−2m )+m 2=0,m 2+8m =0,m =0 或 m =−8, 经检验 m =−8.19. 因为椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个顶点, 所以 b =c ,a =√2b ,又焦点到同侧长轴端点距离为 √2−1,即 a −c =√2−1,即 a −b =√2−1,解得 a =√2,b =c =1, 所以当焦点在 x 轴时,椭圆的方程为:x 22+y 2=1; 当焦点在 y 轴时,椭圆的方程为y 22+x 2=1.20. 由方程组 {y =kx +1,x 2−y 2=1 消去 y ,得 (1−k 2)x 2−2kx −2=0,当 1−k 2=0,即 k =±1 时,有一个交点. 当 1−k 2≠0,即 k ≠±1 时,Δ=(−2k )2+4×2(1−k 2)=8−4k 2.由 Δ>0,即 8−4k 2>0,得 −√2<k <√2,此时有两个交点. 由 Δ=0,即 8−4k 2=0,得 k =±√2,此时有一个交点. 由 Δ<0,即 8−4k 2<0,得 k <−√2 或 k >√2,此时没有交点.综上知,当 k ∈(−√2,−1)∪(−1,1)∪(1,√2) 时,直线 l 与曲线 C 有两个交点; 当 k =±√2 时,直线 l 与曲线 C 切于一点; 当 k =±1 时,直线 l 与曲线 C 交于一点;当 k ∈(−∞,−√2)∪(√2,+∞) 时,直线 l 与曲线 C 没有交点.21. (1) 由已知方程 x 2m+3−y 22m−1=1 表示焦点在 y 轴上的双曲线,则 {m +3<0,1−2m >0,得 {m <−3,m <12,得 m <−3,即 q :m <−3. (2) 若方程 x 2+2mx +(m +2)=0 有两个不等的正根,则 {Δ=4m 2−4(m +2)>0,−2m >0,m +2>0,解得 −2<m <−1,即 p :−2<m <−1. 因 p 或 q 为真,所以 p ,q 至少有一个为真. 又 p 且 q 为假,所以 p ,q 至少有一个为假.因此,p ,q 两命题应一真一假,当 p 为真,q 为假时,{−2<m <−1,m ≥−3,解得 −2<m <−1;当 p 为假,q 为真时,{m ≤−2或m ≥−1,m <−3,解得 m <−3.综上,−2<m <−1 或 m <−3. 22. 根据题意,c =√3,ba =√2, 所以 a =1,b =√2.所以双曲线的方程是:x 2−y 22=1.过点 B (1,1) 的直线方程为 y =k (x −1)+1 或 x =1.①当 k 存在时,联立方程可得 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0.当直线与双曲线相交于两个不同点,可得 Δ=(2k 2−2k )2−4(2−k 2)(−k 2+2k −3)>0,k <32,又方程的两个不同的根是两交点 M ,N 的横坐标, 所以 x 1+x 2=2(k−k 2)2−k 2.又因为 B (1,1) 是线段 MN 的中点, 所以2(k−k 2)2−k 2=2,解得 k =2.所以 k =2,使 2−k 2≠0 但使 Δ<0.因此当 k =2 时,方程 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0 无实数解,故过点 B (1,1) 与双曲线交于两点 M ,N 且 B 为线段 MN 中点的直线不存在. ②当 x =1 时,直线经过点 B 但不满足条件. 综上所述,符合条件的直线 l 不存在.23. (1) 由于圆 C :x 2+y 2−6x +4y +4=0 的圆心 C (3,−2),半径为 3,∣CP∣=√5,而弦心距 d =√5,所以 d =∣CP∣=√5, 所以 P 为 MN 的中点,所以所求圆的圆心坐标为 (2,0),半径为 12∣MN∣=2,故以 MN 为直径的圆 Q 的方程为 (x −2)2+y 2=4;(2) 把直线 ax −y +1=0 即 y =ax +1 代入圆 C 的方程,消去 y ,整理得 (a 2+1)x 2+6(a −1)x +9=0.由于直线 ax −y +1=0 交圆 C 于 A ,B 两点,故 Δ=36(a −1)2−36(a 2+1)>0,即 −2a >0,解得 a <0.则实数 a 的取值范围是 (−∞,0).设符合条件的实数 a 存在,由于 l 2 垂直平分弦 AB ,故圆心 C (3,−2) 必在 l 2 上. 所以 l 2 的斜率 k PC =−2, 所以 k AB =a =12, 由于 12∉(−∞,0),故不存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB .24. (1) 直线 l:{x =1+√22ty =2+√22t(t 为参数),消去参数 t 可得普通方程 l:x −y +1=0.曲线 C:ρ2(1+sin 2θ)=2,可得 ρ2+(ρsinθ)2=2, 可得直角坐标方程:x 2+y 2+y 2=2, 即 C:x 22+y 2=1.(2) 把 l:{x =1+√22t y =2+√22t 代入 x 22+y 2=1 中,整理得 3t 2+10√2t +14=0, 设 A ,B 对应的参数分别为 t 1,t 2, 所以 t 1⋅t 2=143,点 M 在直线上由 t 的几何意义可知,∣MA ∣∣MB ∣=∣t 1⋅t 2∣=143.25. (1) 由题得:ca =√32,4a =8,所以 a =2,c =√3. 又 b 2=a 2−c 2,所以 b =1,即椭圆 C 的方程为 x 24+y 2=1.(2) 由题意知,∣m∣≥1.当 m =1 时,切线 l 的方程 x =1,点 A ,B 的坐标分别为 (1,√32),(1,−√32),此时 ∣AB∣=√3;当 m =−1 时,同理可得 ∣AB∣=√3.当 ∣m∣>1 时,设切线 l 的方程为 y =k (x −m )(k ≠0), 由 l 与圆 x 2+y 2=1√k 2+1=1,即 m 2k 2=k 2+1.得 k 2=1m 2−1.由 {y =k (x −m ),x 24+y 2=1得 (1+4k 2)x 2−8k 2mx +4k 2m 2−4=0. 设 A ,B 两点的坐标分别为 (x 1,y 1),(x 2,y 2),则 Δ=64k 4m 2−4(1+4k 2)(4k 2m 2−4)=48k 2>0,x 1+x 2=8k 2m1+4k 2,x 1x 2=4k 2m 2−41+4k 2.所以∣AB∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3∣m∣m 2+3.因为 ∣m∣≥1, 所以 ∣AB∣=4√3∣m∣m 2+3=4√3∣m∣+3∣m∣≤2,且当 m =±√3 时,∣AB∣=2,由于当 m =±1 时,∣AB∣=√3,所以 ∣AB∣ 的最大值为 2.26. (1)当n≥2时,S n+1=qS n+1, ⋯⋯①S n=qS n−1+1, ⋯⋯②①−②得a n+1=q⋅a n,即从第二项开始,数列{a n}为等比数列,公比为q,当n=2时,S2=qS1+1,即a1+a2=qa1+1,可得a2=a1q,所以数列{a n}是以1为首项,q为公比的等比数列,所以a2=a1q=q,a3=a1q2=q2,因为2a2,a3,a2+2成等差数列,所以2a3=2a2+a2+2,即2q2=2q+q+2,解得q=2,所以数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n−1;(2)由(1)可得数列{a n}是以1为首项,q为公比的等比数列,所以a n=q n−1>0,根据题意,e n2=1+a n2,因为e2=3,所以1+a22=9,解得a2=2√2,所以q=a2a1=2√2,所以a n=(2√2)n−1,所以e n2=1+a n2=1+8n−1,所以e12+e22+⋯+e n2=n+(1+8+82+⋯+8n−1)=n+8n−17.27. (1)因为曲线C的极坐标方程为ρ=2cosθ−4sinθ,所以ρ2=2ρcosθ−4ρsinθ,所以曲线C的直角坐标方程为x2+y2=2x−4y,即(x−1)2+(y+2)2=5,因为直线l过点(1,−1),且该点到圆心的距离为√(1−1)2+(−1+2)2<√5,所以直线l与曲线C相交.(2)当直线l的斜率不存在时,直线l过圆心,∣AB∣=2√5≠3√2,因此直线l必有斜率,设其方程为y+1=k(x−1),即kx−y−k−1=0,圆心到直线l的距离d=√k2+1=√(√5)2−(3√22)2,解得k=±1,所以直线l的斜率为±1.28. (1)直线l:y=bx+2,坐标原点到直线l的距离为√2,√b2+1=√2,所以 b =1, 因为椭圆的离心率 e =√63, 所以a 2−1a 2=(√63)2,所以 a 2=3, 所以所求椭圆的方程是x 23+y 2=1.(2) 直线 y =kx +2 代入椭圆方程,消去 y 可得:(1+3k 2)x 2+12kx +9=0, 所以 Δ=36k 2−36>0, 所以 k >1 或 k <−1,设 C (x 1,y 1),D (x 2,y 2),则有 x 1+x 2=−12k 1+3k2,x 1x 2=91+3k 2,因为 EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),且以 CD 为直径的圆过点 E , 所以 EC ⊥ED ,所以 (x 1+1)(x 2+1)+y 1y 2=0,所以 (1+k 2)x 1x 2+(2k +1)(x 1+x 2)+5=0, 所以 (1+k 2)×91+3k 2+(2k +1)×(−12k1+3k 2)+5=0, 解得 k =76>1,所以当 k =76 时,以 CD 为直径的圆过定点 E .29. (1) 将曲线 C 的极坐标方程 ρ2−2ρcosθ−3=0 化为直角坐标方程为 x 2+y 2−2x −3=0, 直线 l 的参数方程为 {x =−3+tcosα,y =tsinα(t 为参数),将参数方程代入 x 2+y 2−2x −3=0,整理得 t 2−8tcosα+12=0, 因为直线 l 与曲线 C 有公共点,所以 Δ=64cos 2α−48≥0, 所以 cosα≥√32 或 cosα≤−√32, 因为 α∈[0,π),所以 α 的取值范围是 [0,π6]∪[5π6,π).(2) 曲线 C 的方程 x 2+y 2−2x −3=0 可化为 (x −1)2+y 2=4,其参数方程为 {x =1+2cosθ,y =2sinθ(θ 为参数), 因为 M (x,y ) 为曲线上任意一点,所以 x +y =1+2cosθ+2sinθ=1+2√2sin (θ+π4),所以 x +y 的取值范围是 [1−2√2,1+2√2]. 30. b 2a 2证明:设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则有 {x 0=x 1+x 22,y 0=y 1+y 22.x 12a 2−y 12b 2=1,x 22a 2−y 22b 2=1, 两式相减得 x 12−x 22a 2=y 12−y 22b 2,即(x 1−x 2)(x 1+x 2)a 2=(y 1−y 2)(y 1+y 2)b 2,(y 1−y 2)(y 1+y 2)(x 1−x 2)(x 1+x 2)=b 2a 2 即 k OM ⋅k AB =b 2a 2.31. (1) 设椭圆的方程为 x 2a 2+y 2b 2=1(a >b >0). 因为椭圆的焦距等于 4,且经过点 P(3,−2√6), {2c =2√a 2−b 2=4,32a2+(−2√6)2b2=1,解得 {a 2=36,b 2=32.所以所求的椭圆方程为 x 236+y 232=1. (2) ①当椭圆的焦点在 x 轴上时, 因为 a =3,e =c a=√63, 所以 c =√6,可得 b 2=a 2−c 2=3.此时椭圆的标准方程为 x 29+y 23=1;②当椭圆的焦点在 y 轴上时, 因为 b =3,e =ca =√63, 所以√a 2−b 2a=√63,解得 a 2=27.此时椭圆的标准方程为y 227+x 29=1.综上所述,所求椭圆的标准方程为 x 29+y 23=1 或 y 227+x 29=1.32. 设 M (x,y ),P (x 1,y 1),Q (x 2,y 2),易求 y 2=4x 的焦点 F 的坐标为 (1,0),因为 M 是 FQ 的中点,所以 {x =1+x22,y =y 22⇒{x 2=2x −1,y 2=2y, 又 Q 是 OP 的中点,所以 {x 2=x12,y 2=y 12⇒{x 1=2x 2=4x −2,y 1=2y 2=4y,因为 P 在抛物线 y 2=4x 上,所以 (4y )2=4(4x −2), 所以 M 点的轨迹方程为 y 2=x −12.33. (1) 设 F (c,0),由条件知 2c=2√33,得 c =√3.又 ca=√32, 所以 a =2,b 2=a 2−c 2=1,故 E 的方程为 x 24+y 2=1.(2) 依题意当 l ⊥x 轴不合题意,故设直线 l :y =kx −2,设 P (x 1,y 1),Q (x 2,y 2),将 y =kx −2 代入x 24+y 2=1,得 (1+4k 2)x 2−16kx +12=0,当 Δ=16(4k 2−3)>0,即 k 2>34时,x 1,2=8k±2√4k 2−31+4k 2.从而 ∣PQ∣∣=√k 2+1∣∣x 1−x 2∣=4√k 2+1⋅√4k 2−31+4k 2,又点 O 到直线 PQ 的距离 d =√k 2+1,所以 △OPQ 的面积 S △OPQ =12d∣∣PQ∣∣=4√4k 2−31+4k 2,设 √4k 2−3=t ,则 t >0,S △OPQ =4t t 2+4=4t+4t≤1,当且仅当 t =2,k =±√72等号成立,且满足 Δ>0,所以当 △OPQ 的面积最大时,l 的方程为:y =√72x −2 或 y =−√72x −2.34. (1) 因为 a =5,b =3, 所以 c =4,设 ∣PF 1∣=t 1,∣PF 2∣=t 2, 则 t 1+t 2=10, ⋯⋯①t 12+t 22−2t 1t 2⋅cos60∘=82, ⋯⋯②由 ①2−② 得 t 1t 2=12,所以 S △F 1PF 2=12t 1t 2⋅sin60∘=12×12×√32=3√3.(2) 设 P (x,y ),由 S △F 1PF 2=12⋅2c ⋅∣y ∣=4⋅∣y ∣ 得 4∣y ∣=3√3, 所以 ∣y ∣=3√34⇒y =±3√34, 将 y =±3√34代入椭圆方程解得 x =±5√134, 所以 P (5√134,3√34) 或 P (5√134,−3√34) 或 P (−5√134,3√34) 或 P (−5√134,−3√34). 35. (1) 双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 的渐近线方程为:y =±ba x , 则由题意得,ba =√3,a =1,解得b =√3, 则双曲线的方程为:x 2−y 23=1;(2) 联立直线方程和双曲线方程,得到, {y =x +m,x 2−y 23=1,消去 y ,得 2x 2−2mx −m 2−3=0, 设 A (x 1,y 1),B (x 2,y 2),则判别式 Δ=4m 2+8(m 2+3)>0,x 1+x 2=m , 中点 M 的 x 0=m 2,y 0=x 0+m =32m , 则有 y0x 0=3.来自QQ 群33944496336. (1)如图所示,不妨设 M 在双曲线的右支上,M 点到 x 轴的距离为 ℎ, MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,则 MF 1⊥MF 2, 设 ∣MF 1∣=m ,∣MF 2∣=n ,由双曲线定义知,m −n =2a =8, ⋯⋯① 又 m 2+n 2=(2c )2=80, ⋯⋯② 由 ①② 得 m ⋅n =8, ∴12mn =12∣F 1F 2∣⋅ℎ, ∴ℎ=2√55.来自QQ 群339444963(2) 设所求双曲线 C 的方程为 x 216−λ−y 24+λ=1(−4<λ<16),由于双曲线 C 过点 (3√2,2),所以 1816−λ−44+λ=1,解得 λ=4 或 λ=−14(舍去). ∴ 所求双曲线 C 的方程为 x 212−y 28=1.37. (1) ∵ 点 P 在椭圆 C 上, ∴2a =∣PF 1∣+∣PF 2∣=6,a =3.在 Rt △PF 1F 2 中,2c =∣F 1F 2∣=√∣PF 2∣2+∣PF 1∣2=√(143)2+(43)2=2√533;故椭圆的半焦距 c =√533,从而 b 2=a 2−c 2=289,∴ 椭圆 C 的方程为 x 29+y 2289=1.(2) 已知圆的方程为 (x +2)2+(y −1)2=5,∴ 圆心 M 的坐标为 (−2,1). 设 A ,B 的坐标分别为 (x 1,y 1),(x 2,y 2). 由题意 x 1≠x 2 且 x 129+y 12289=1, ⋯⋯①x 229+y 22289=1. ⋯⋯②由②−①得(x1−x2)(x1+x2)9+(y1−y2)(y1+y2)289=0. ⋯⋯③又A,B关于点M对称,∴x1+x2=−4,y1+y2=2,代入③得y1−y2x1−x2=5681,即直线L的斜率为5681,∴直线L的方程为y−1=5681(x+2),即56x−81y+193=0.故所求的直线方程为56x−81y+193=0.来自QQ群33944496338. (1)设圆心为M(m,0)(m∈Z).由于圆与直线4x+3y−29=0相切,且半径为5,所以∣4m−29∣5=5,即∣4m−29∣=25.因为m为整数,故m=1.故所求圆的方程为(x−1)2+y2=25.(2)把直线ax−y+5=0,即y=ax+5,代入圆的方程,消去y,整理,得(a2+1)x2+2(5a−1)x+1=0,由于直线ax−y+5=0交圆于A,B两点,故Δ=4(5a−1)2−4(a2+1)>0,即12a2−5a>0,由于a>0,解得a>512,所以实数a的取值范围是(512,+∞).(3)设符合条件的实数a存在,则直线l的斜率为−1a ,l的方程为y=−1a(x+2)+4,即x+ay+2−4a=0,由于l垂直平分弦AB,故圆心M(1,0)必在l上,所以1+0+2−4a=0,解得a=34.由于34∈(512,+∞),故存在实数a=34.使得过点P(−2,4)的直线l垂直平分弦AB.来自QQ群339444963 39. (1)当α=π3时,C1的普通方程为y=√3(x−1),C2的普通方程为x2+y2=1.联立方程组{x2+y2=1, y=√3(x−1),解得C1与C2的交点为(1,0) 和 (12,−√32).(2) C 1 的普通方程为xsinα−ycosα−sinα=0,A 点坐标为 (sin 2α,−cosαsinα),故当 α 变化时,P 点轨迹的参数方程为{x =12sin 2α,y =−12sinαcosα,(α为参数). P 点轨迹的普通方程为(x −14)2+y 2=116.故 P 点轨迹是圆心为 (14,0),半径为 14 的圆. 40. 设圆心为 (3t,t ),半径为 r =∣3t∣, 则圆心到直线 y =x 的距离 d =√2=∣∣√2t ∣∣,由勾股定理及垂径定理得:(2√72)2=r 2−d 2,即 9t 2−2t 2=7,解得:t =±1,所以圆心坐标为 (3,1),半径为 3;或圆心坐标为 (−3,−1),半径为 3, 则圆 C 的方程为 (x −3)2+(y −1)2=9 或 (x +3)2+(y +1)2=9. 41. (1) 由 {y =x +b,x 2=4y得 x 2−4x −4b =0, ⋯⋯①因为直线 l 与抛物线 C 相切,所以 Δ=(−4)2−4×(−4b )=0, 解得 b =−1.(2) 由(1)知 b =−1,故方程 ① 即为 x 2−4x +4=0,解得 x =2,代入 x 2=4y ,得 y =1. 故点 A (2,1),因为圆 A 与抛物线 C 的准线相切,所以圆 A 的半径 r 等于圆心 A 到抛物线的准线 y =−1 的距离,即 r =∣1−(−1)∣=2, 所以圆 A 的方程为 (x −2)2+(y −1)2=4.42. (1) 由 {x =ρcosθ,y =ρsinθ, 可得,(ρcosθ+6)2+ρ2sin 2θ=25,整理得 ρ2+12ρcosθ+11=0 即为所求.(2) 令直线 l 的斜率为 k ,可得直线的直角坐标方程为 kx −y =0. 圆的半径为 r =5,圆心到直线的距离 d =√k 2+1,又因为 ∣AB∣=√10,所以可得∣AB∣24+d 2=r 2,即 52+36k 2k 2+1=25,解得 k =±√153. 43. (1) 椭圆 x 29+y 225=1 的焦点为 (0,±4),离心率为 e =45. 因为双曲线与椭圆的离心率之和为 245, 所以双曲线的离心率为 2, 所以 ca =2.因为双曲线与椭圆 x 29+y 225=1 有公共焦点 F 1,F 2,所以 c =4,所以 a =2,b =√12,所以双曲线的方程是 y 24−x 212=1.(2) 由题意,∣PF 1∣+∣PF 2∣=10,∣PF 1∣−∣PF 2∣=4, 所以 ∣PF 1∣=7,∣PF 2∣=3, 因为 ∣F 1F 2∣=8, 所以 cos∠F 1PF 2=72+32−822⋅7⋅3=−17.44. 由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点, 所以 p =2c .设抛物线方程为 y 2=4c ⋅x , 因为抛物线过点 (32,√6), 所以 6=4c ⋅32,所以 c =1,故抛物线方程为 y 2=4x . 又双曲线 x 2a2−y 2b 2=1 过点 (32,√6),所以94a2−6b 2=1.又 a 2+b 2=c 2=1, 所以94a2−61−a 2=1.所以 a 2=14 或 a 2=9(舍). 所以 b 2=34, 故双曲线方程为 4x 2−4y 23=1.45. (1) 因为 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1, 所以 P 到点 F (1,0) 的距离与它到直线 l :x =−1 的距离相等,所以由抛物线定义可知点 P 的轨迹是以 F 为焦点、以直线 l :x =−1 为准线的抛物线,设抛物线方程为 y 2=2px (p >0) , 所以 P =2,所以曲线 C 的方程为 y 2=4x .(2) 直线 AB 的斜率为定值 −1,理由如下:设 A (x 1,y 1),B (x 2,y 2),则 y 12=4x 1,y 22=4x 2,因为直线 AQ ,BQ 倾斜角互补, 所以 k AQ +k BQ =0,即 y 1−2x 1−1+y 2−2x 2−1=0,4y1+2+4y 2+2=0,所以 y 1+y 2=−4, 所以 k AB =y 1−y 2x 1−x 2=4y1+y 2=−1.46. (1) 圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),消去参数可得:圆 C 的普通方程为 x 2+y 2=4.由题意可得:直线 l 的参数方程为 {x =12t,y =2+√32t (t 为参数). (2) 依题意,直线 l 的直角坐标方程为 √3x −y +2=0, 圆心 C 到直线 l 的距离 d =22=1, 所以 ∣AB ∣=2√r 2−d 2=2√3.47. (1) 因为椭圆一个顶点为 A (2,0),离心率为 √22,所以 {a =2,ca =√22,a 2=b 2+c 2,所以 b =√2,所以椭圆 C 的方程为 x 24+y 22=1.(2) 直线 y =k (x −1) 与椭圆 C 联立 {y =k (x −1),x 24+y 22=1, 消元可得 (1+2k 2)x 2−4k 2x +2k 2−4=0,设 M (x 1,y 1),N (x 2,y 2),则 x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−41+2k 2, 所以 ∣MN∣=√1+k 2×√(x 1+x 2)2−4x 1x 2=2√(1+k 2)(4+6k 2)1+2k 2,因为 A (2,0) 到直线 y =k (x −1) 的距离为 d =√1+k 2,所以 △AMN 的面积 S =12∣MN∣d =∣k∣√4+6k 21+2k 2,因为 △AMN 的面积为 √103, 所以∣k∣√4+6k 21+2k 2=√103, 所以 k =±1. 48. (1) 由题意 ca =√22,b 2a=√2,a 2=b 2+c 2,解得 a =2√2,b =c =2, 则椭圆的方程为:x 28+y 24=1.(2) 要使 △AOB 面积最大,则 B 到 OA 所在直线距离最远. 设与 OA 平行的直线方程为 y =√22x +b .由 {y =√22x +b,x 28+y 24=1, 消去 y 并化简得 x 2+√2bx +b 2−4=0. 由 Δ=0 得 b =±2√2, 不妨取 b >0,所以与直线 OA 平行,且与椭圆相切的直线方程为:y =√22x +2√2,则 B 到直线 OA 的距离等于 O 到直线:y =√22x +2√2 的距离 d ,d =4√33,又 ∣OA ∣=√6,△AOB 面积的最大值 S =12×√6×4√33=2√2.49. (1) 因为点 (1,√22) 在椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22,所以 { 1a 2+12b 2=1,c a =√22,a 2=b 2+c 2, 解得 a =√2,b =1,所以椭圆 C 的方程为x 22+y 2=1.来自QQ 群339444963(2) 假设存在点 M (x 0,0),使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值, 设 A (x 1,y 1),B (x 2,y 2),设直线 l 的方程为 x =my +1,联立 {x 22+y 2=1,x =my +1得 (m 2+2)y 2+2my −1=0,y 1+y 2=−2m m 2+2,y 1y 2=−1m 2+2,MA ⃗⃗⃗⃗⃗⃗ =(x 1−x 0,y 1)=(my 1+1−x 0,y 1),MB ⃗⃗⃗⃗⃗⃗ =(x 2−x 0,y 2)=(my 2+1−x 0,y 2), 所以MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ =(my 1+1−x 0)(my 2+1−x 0)+y 1y 2=(m 2+1)y 1y 2+m (1−x 0)(y 1+y 2)+(1−x 0)2=−(m 2+1)m 2+2+−2m 2(1−x 0)m 2+2+(1−x 0)2=m 2(x 02−2)+2(1−x 0)2−1m 2+2,。
专题8 平面解析几何(解析版)
专题8 平面解析几何纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.预测2021年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下.主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.一、单选题1.(2020届山东省菏泽一中高三2月月考)已知点()2,4M 在抛物线C :22y px =(0p >)上,点M 到抛物线C 的焦点的距离是( ) A .4 B .3 C .2 D .1【答案】A 【解析】由点()2,4M 在抛物线22y px =上,可得164p =,解得4p =,即抛物线2:8C y x =,焦点坐标(2,0)F ,准线方程为2x =-. 所以,点M 到抛物线C 焦点的距离为:()224--=. 故选:A .2.(2020·山东高三模拟)已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( )AB .2C .4D .【答案】C 【解析】圆22650x y y +-+=可化为22(3)4x y +-=.设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则12,l l 的斜率分别为1212,22x xk k ==, 所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-,()22222:24x x l y x x =-+,即222x y x y =-,由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即()()1122,,,A x y B x y 都在直线32xt y -=-上, 所以直线AB 的方程为32xt y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 故选:C.3.(2020届山东省济宁市高三3月月考)过点(的直线将圆()22325x y -+=分成两段圆弧,当两段圆弧中的劣弧所对圆心角最小时,该直线的斜率为( ) A. BC.-D【答案】D 【解析】点(为圆内定点,圆心到直线的距离越长,则劣弧所对的圆心角越大,∴只有当过点(的直线与过点(和圆心的直线垂直时,可以使两段圆弧中的劣弧所对的圆心角最小, 过点()2,3和圆心()3,0的直线斜率为303k -==- ∴过点()2,3的直线斜率为133k -=故选:D4.(2020届山东省济宁市第一中学高三一轮检测)过点()1,2P 的直线与圆221x y +=相切,且与直线10ax y +-=垂直,则实数a 的值为( )A .0B .43-C .0或43D .43【答案】C【解析】当0a =时,直线10ax y +-=,即直线1y =,此时过点()1,2P 且与直线1y =垂直的直线为1x =,而1x =是与圆相交,不满足题意,所以0a =不成立,当0a ≠时,过点()1,2P 且与直线10ax y +-=垂直的直线斜率为1a ,可设该直线方程为()121y x a-=-,即210x ay a -+-=,再根据直线与圆相切,即圆心到直线距离为1可得,22111a a -=+,解得43a =.故本题正确答案为C. 5.(2020届山东省高考模拟)已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( )A .2B .3C .2D .3【答案】D 【解析】根据题意可画出以上图像,过M 点作12F F 垂线并交12F F 于点H ,因为123MF MF ,M 在双曲线上,所以根据双曲线性质可知,122MF MF a ,即2232MF MF a ,2MF a =,因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ,ab cMH,即M 点纵坐标为ab c ,将M 点纵坐标带入圆的方程中可得22222a b c x b ,解得2b cx,2,b ab ccM, 将M 点坐标带入双曲线中可得422221b a a c c ,化简得4422b a a c ,222422c aa a c ,223c a =,3c ae,故选D 。
平面解析几何经典题(含答案)
平面解析几何一、直线的倾斜角与斜率1、直线的倾斜角与斜率、直线的倾斜角与斜率(1)倾斜角a 的范围000180a £<(2)经过两点的直线的斜率公式是(3)每条直线都有倾斜角,但并不是每条直线都有斜率2.两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k Û=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ^Û=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
互相垂直。
二、直线的方程1、直线方程的几种形式名称名称方程的形式方程的形式 已知条件已知条件 局限性局限性 点斜式点斜式为直线上一定点,k 为斜率为斜率 不包括垂直于x 轴的直线轴的直线 斜截式斜截式k 为斜率,b 是直线在y 轴上的截距轴上的截距 不包括垂直于x 轴的直线轴的直线 两点式两点式是直线上两定点是直线上两定点 不包括垂直于x 轴和y 轴的直线直线截距式截距式a 是直线在x 轴上的非零截距,b 是直不包括垂直于x 轴和y 轴或线在y 轴上的非零截距轴上的非零截距过原点的直线过原点的直线 一般式一般式A ,B ,C 为系数为系数 无限制,可表示任何位置的直线直线 三、直线的交点坐标与距离公式三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是,两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。
解析几何经典练习题(含答案)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
高考数学-解析几何-专题练习及答案解析版
高考数学解析几何专题练习解析版82页1.已知双曲线的方程为22221(0,0)x y a b a b-=>>, 过左焦点F 1的直线交双曲线的右支于点P, 且y 轴平分线段F 1P, 则双曲线的离心率是( ) A . 3B .32+C . 31+D . 322. 一个顶点的坐标()2,0, 焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A, B 两点,且△OAB (O 为坐标原点)的面积为, 则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点, 则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0, π/2), Q (-2, π), 则有 ( )(A)P 在曲线C 上, Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上, Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数), 则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N, 若212F F MN ≤, 则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线, 交双曲线于A, B 两点, 设双曲线的左顶点M, 若MAB ∆是直角三角形, 则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x , N M ,是椭圆上关于原点对称的两点, P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k , 021≠k k , 则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)4313.设P 为双曲线11222=-y x 上的一点, F 1、F 2是该双曲线的两个焦点, 若2:3:21=PF PF , 则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为, 则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为3, 过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r, 则k =( )(A )1 (B (C (D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 2x +3y -6=0的交点位于第一象限, 则直线l 的倾斜角的取值范围是( ) A .[6π, 3π) B .(6π, 2π) C .(3π, 2π) D .[6π, 2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点, 若线段AB 的中点为(1,1)M -, 则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -, 若F 为双曲线221x y -=的右焦点, P 是该双曲线上且在第一象限的动点, 则OA FP uu r uu r⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a , 则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点, P 为双曲线上的一点, 若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列, 则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1, 1)、B(0, -1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=, 则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P , 半径10r =; B 、圆心()1,3P , 半径10r =;C 、圆心()1,3P -, 半径10r =;D 、圆心()1,3P -, 半径10r =。
高三数学解析几何专题(含解析)
高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)试题部分一、选择题:1. 在直角坐标系中,点A(2,3)关于原点O的对称点坐标是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)2. 已知直线l的斜率为1,且过点P(1,2),则直线l的方程为()A. x+y3=0B. xy+3=0C. x+y+3=0D. xy3=03. 圆C的方程为x^2+y^2=4,点D(3,0)在圆外,则直线CD的斜率为()A. 1B. 1C. 3D. 34. 下列关于椭圆的方程中,离心率最小的是()A. x^2/4 + y^2/9 = 1B. x^2/9 + y^2/4 = 1C. x^2/16 + y^2/25 = 1D. x^2/25 + y^2/16 = 15. 设双曲线x^2/a^2 y^2/b^2 = 1的渐近线方程为y=kx,则k 的值为()A. a/bB. b/aC. a/bD. b/a6. 在平面直角坐标系中,点A(1,2)到直线y=3x+1的距离为()A. 2B. 3C. 4D. 57. 已知抛物线y^2=8x的焦点坐标为()A. (2,0)B. (2,0)C. (0,2)D. (0,2)8. 若直线y=2x+3与圆(x1)^2+(y2)^2=16相交,则交点的个数为()A. 0B. 1C. 2D. 39. 在等轴双曲线x^2 y^2 = 1上,点P到原点的距离为2,则点P的坐标为()A. (1,1)B. (1,1)C. (1,1)D. (1,1)10. 已知点A(2,3)和点B(2,1),则线段AB的中点坐标为()A. (0,2)B. (0,4)C. (2,2)D. (2,4)二、判断题:1. 直线y=2x+1的斜率为2,截距为1。
()2. 两个圆的半径分别为1和2,圆心距为3,则这两个圆相交。
()3. 椭圆的离心率越大,其形状越接近圆。
()4. 抛物线的焦点到准线的距离等于其焦距的一半。
专题06 解析几何(解析版)
一、单选题1.过点(1,0)-,且与直线1153x y ++=-有相同方向向量的直线的方程为 A .3530x y +-= B .3530x y ++= C .3510x y +-= D .5350x y -+=【答案】B【解析】由1153x y ++=-可得,3x +5y +8=0,即直线的斜率35-, 由题意可知所求直线的斜率k 35=-,故所求的直线方程为y 35=-即3x +5y +3=0.故选:B .2.以抛物线24y x =的焦点为右焦点,且长轴为4的椭圆的标准方程为A .2211615x y +=B .221164x y +=C .22143x y +=D .2214x y +=【答案】C【解析】有已知抛物线24y x =的焦点为(1,0),设椭圆方程为22221x y a b+=,则221a b -=,又由已知2a =,所以23b =,故椭圆方程为22143x y +=,故选:C.3.明代数学家程大位所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二。
试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度” . A .6丈 B .8丈 C .12丈D .16丈【答案】B【解析】由题得面积为3.2亩,即3.2240768⨯=平方步,由圆的面积设半径r 步,则2768r π=, 取3π=则2256r =,16r =步,又1丈=10尺, 1步=5尺,故1丈=2步,故16r =步8=丈, 故选:B4.若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是 A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为2+2=25+k , 则k >﹣25, 圆C 1:x 2+y 2=1的圆心坐标为,半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|1或|C 1C 2|1, 即51或51,解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是∪.故选:D .5.已知22(2)9x y -+=的圆心为C .过点(2,0)M -且与x 轴不重合的直线l 交圆C 于A 、B 两点,点A 在点M 与点B 之间.过点M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹为. A .圆的一部分 B .椭圆的一部分 C .双曲线的一部分 D .抛物线的一部分【答案】C【解析】可得圆2+y 2=9的圆心为C ,半径为R =3. 如图,∵CB =CA =R =3,∴∠CBA =∠CAB , ∵AC ∥MP ,∴,∴∠CBA =∠CAB =∠PMA , ∴PM =PB =PC +BC⇒PM ﹣PC =BC =3,且3<MC . ∴点P 的轨迹是双曲线的一部分,故选C .6.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-A .1-B .12-C .1D .2【答案】A 【解析】由题意得:因为21x y -=与圆222x y +=在第一象限的交点为1,1(),所以lim =1lim =1n n n n x y →∞→∞,,1limlim 1n n n n n n y y x x →∞→∞'-='∴-,又由222n n x y +=得220n n n nn n n ny xx x y y x y +=⇒=-''''lim 1lim lim lim() 1.1lim n n n nn n n n n nn n n x y y x x x y y →∞→∞→∞→∞→∞-∴='=-=-=--'选A. 7.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PF PA的最小值是A .12B.2C.2D.3【答案】B 【解析】由题意可知,抛物线的准线方程为x=﹣1,A , 过P 作PN 垂直直线x=﹣1于N ,由抛物线的定义可知PF=PN ,连结PA ,当PA 是抛物线的切线时,PF PA有最小值,则∠APN 最大,即∠PAF 最大,就是直线PA 的斜率最大,设在PA 的方程为:y=k ,所以214y k x y x ()=+⎧⎨=⎩,解得:k 2x 2+x+k 2=0,所以△=2﹣4k 4=0,解得k=±1,所以∠NPA=45°,PF PA=cos ∠NPA=2.故选B . 8.已知1x 、2x 是关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,则经过两点()211,A x x 、()222,B x x 的直线与双曲线2214x y -=的交点个数为A .0B .1C .2D .根据m 的值来确定【答案】B【解析】关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,所以44(21)8(2)0,2m m m ∆=--=->∴<,1212221212112,2AB x x x x k x x x x -+=∴===-+ 双曲线2214x y -=渐近线方程曲线12y x =±,∴直线AB 与双曲线的渐近线平行或重合,若()211,A x x 或()222,B x x 在直线12y x =得1x ,2x 的值为0或2,此时1210,2m m -==, m Z ∈Q ,不合题意,直线AB 不与双曲线重合,∴直线AB 与双曲线一定平行,所以有一个交点.故选:B9.如图,平面直角坐标系中,曲线的方程可以是.A .()()22110x y x y--⋅-+=B()2210x y -+=C .()10x y --= D0=【答案】C【解析】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线, 故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩, 221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分, 和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误. 故选C.10.已知双曲线22221(00)x y b a a b-=>>,的两条渐近线与抛物线y 2=2px 的准线分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB p = A .1 B .32C .2D .3【答案】C 【解析】∵双曲线的方程为22221(00)x y b a a b-=>>,∴双曲线的渐近线的方程为b y x a =±∵抛物线22(0)y px p =>的准线方程是2px =-∴双曲线的渐近线与抛物线准线相交的A ,B 两点的纵坐标分别是2pby a=±∵双曲线的离心率为2∴2c a =∴b a ===∴A ,B 两点的纵坐标分别是2y p =±又∵AOB ∆x 轴是AOB ∠的平分线∴122p⨯=2p =故选C.11.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且4PF =,则椭圆C 的方程为A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知, ∠PFF′=∠FPO ,∠OF′P=∠OPF′, 所以∠PFF′+∠OF′P=∠FPO+∠OPF′, 由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知, ∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得8==,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36, 于是 b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=.故选B .12.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使||||MA MF +取得最小值的M 的坐标为A .()0,0B .1,12⎛⎫ ⎪⎝⎭C .(D .()2,2【答案】D【解析】如图所示,过M 作准线的垂线,垂足为B .MF MA MB MA +=+,当M 、B 、A 三点共线时,MB MA +最小,即M 运动到'M 时,即()2,2M ,故选D13.已知数列{}n a 的通项公式为()()*11n a n N n n =∈+,其前n 项和910n S =,则双曲线2211x y n n-=+的渐近线方程为A .3y x =±B .4y x =±C .10y x =±D .3y x =±【答案】C 【解析】 由()11111n a n n n n ==-++得1111111 (11223111)n n S n n n n =-+-++-=-=+++.又910n S =即9110n n =+,故9n =,故双曲线221109x y -=渐近线为10y x ==±故选:C 14.已知点P 为椭圆221916x y +=上的任意一点,点12,F F 分别为该椭圆的上下焦点,设1221,PF F PF F αβ=∠=∠,则sin sin αβ+的最大值为A B C .98D .32【答案】D【解析】设|1PF |=m ,|2 PF |=n ,|12F F |=2c ,A ,B 为短轴两个端点, 由正弦定理可得()2m n csin sin sin βααβ==+,即有()2m n csin sin sin αβαβ+=++,由椭圆定义可得e ()22sin c a sin sin αβαβ+===+,∴()sin sin αβαβ+=+. 在三角形21F PF 中,由m+n=2a,cos222222221242444122224m n c m n mn c b b F PF m n mn mn mn+-+--∠===-≥+⨯()()-1=22412b a-,当且仅当m=n 时,即P 为短轴端点时,cos 21F PF ∠最小,21F PF ∠最大, ∴()21sin sin F AF αβ+≤∠=8,∴3sin sin 82αβ+≤=,故选:D . 15.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-uuu r uuu u r uuu r 的最小值为 A.B .4C.D .以上都不对【答案】B【解析】由题意,设O 为12,F F 的中点,根据向量的运算,可得122222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuu r uuu r uuu r, 又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥uuu r , 所以122224MF MF MN NO a +-=≥=uuu r uuu u r uuu r uuu r, 即122MF MF MN +-uuu r uuu u r uuu r的最小值为4.故选:B.16.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π;;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为5. A .1个 B .2个C .3个D .4个【答案】B 【解析】①Q 点M 是母线的中点, ∴截面的半径2r =,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确,故选B .17.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若V OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B【解析】根据题意,可知其渐近线的斜率为3±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和y =联立,求得3(,2M N ,所以3MN ==,故选B. 18.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一.给出下列三个结论:①曲线C 恰好经过6个整点;②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过,,,, ,六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.19.在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为()3,1,M -、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为A .0个B .2个C .4个D .无数个【答案】D【解析】如图所示,任取圆2C 上一点Q ,以AQ 为直径画圆,交圆1C 与,M N 两点,设(),Q m n ,则AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭, 有2214m n +=,以AQ 为直径的圆的方程为()(3)()(1)0x m x y n y --+-+=, 即22(3)(1)3x m x y n y n m -++--=-,用1C 的方程减去以AQ 为直径的圆的方程,可得公共弦MN 所在的直线方程, 即(3)(1)123m x n y n m ++-=-+,将AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭代入上式得: 左边=22316921(3)(1)222m n m m n n m n +-+++-+⎛⎫++-⋅= ⎪⎝⎭62243122m n m n -+==-+=右边,所以公共弦MN 也是以AQ 为直径的圆的直径, 则MN AQ =,根据对角线互相平分且相等的四边形是矩形即可得出四边形AMQN 是矩形, 由Q 的任意性知,四边形AMQN 能构成无数个矩形, 故选:D 。
解析几何专题练习(带答案)
解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。
解析几何专题及答案
yx O3(,0)7E 73(,1)7F 619(0,)74F ⨯519(,0)73F ⨯42(1,)74F ⨯323(0,)74F ⨯25(,1)73F ⨯13(1,)7F αααα2正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AEBF ==,动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .16B .14C .12D .10答案B【命题意图】本试题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可.【解析】如图,易知3(,0)7E .记点F 为1F ,则13(1,)7F 由反射角等于入射角知,44173-⨯,得25(,1)73F ⨯又由531734-⨯⨯得323(0,)74F ⨯,依此类推,42(1,)74F ⨯、519(,0)73F ⨯、619(0,)74F ⨯、73(,1)7F .由对称性知,P点与正方形的边碰撞14次, 可第一次回到E 点.法二:结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可.3设a ∈R,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0显然平行;若直线l 1与直线l 2平行,则有:211a a =+,解之得:a =1 or a =﹣2.所以为充分不必要条件.2.设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[13,1+3]-B .(,13][1+3,+)-∞-∞UC .[222,2+22]-D .(,222][2+22,+)-∞-∞U 【答案】D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为22|(1)+(1)2|==1(1)+(1)m n d m n ++-++,所以21()2m n mn m n +=++≤,设=t m n +,则21+14t t ≥,解得(,222][2+22,+)t ∈-∞-∞U . 3.对任意的实数k,直线y=kx+1与圆222=+y x 的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心【答案】C【解析】圆心(0,0)C 到直线10kx y -+=的距离为211211d r k =<<=+,且圆心(0,0)C 不在该直线上.法二:直线10kx y -+=恒过定点(0,1),而该点在圆C 内,且圆心不在该直线上,故选C. 【考点定位】此题考查了直线与圆的位置关系,涉及的知识有:两点间接距离公式,点与圆的位置关系,以及恒过定点的直线方程.直线与圆的位置关系利用d 与r 的大小为判断.当0d r ≤<时,直线与圆相交,当d r =时,直线与圆相切,当d r >时,直线与圆相离.4.已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析: 22304330+-⨯=-<,所以点(3,0)P 在圆C 内部,故选A.6.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____. 【答案】43. 【考点】圆与圆的位置关系,点到直线的距离【解析】∵圆C 的方程可化为:()2241x y -+=,∴圆C 的圆心为(4,0),半径为1. ∵由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;∴存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤. ∵min AC 即为点C 到直线2y kx =-的距离2421k k -+,∴24221k k -≤+,解得403k ≤≤. ∴k 的最大值是43.1(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为63,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l 的距离为32,求AOB △面积的最大值.解:(Ⅰ)设椭圆的半焦距为c ,依题意633c a a ⎧=⎪⎨⎪=⎩,,1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,3AB =.(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.由已知2321m k =+,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤.当且仅当2219k k=,即33k =±时等号成立.当0k =时,3AB =, 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 133222S AB =⨯⨯=.2(本小题满分12分)已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =u u u r u u u rg ,若存在,求k 的值;若不存在,说明理由. 解法一:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=,由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, Q 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u rg ,则NA NB ⊥,又M Q 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥Q x 轴,22216||||2488M N k k k MN y y +∴=-=+-=. 又222121212||1||1()4AB k x x k x x x x =+-=++-gg 2222114(1)11622k k k k ⎛⎫=+-⨯-=++ ⎪⎝⎭g g . 22216111684k k k +∴=++g ,解得2k =±.x Ay 11 2 M N B O即存在2k =±,使0NA NB =u u u r u u u rg .解法二:(Ⅰ)如图,设221122(2)(2)A x x B x x ,,,,把2y kx =+代入22y x =得 2220x kx --=.由韦达定理得121212kx x x x +==-,.∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.22y x =Q ,4y x '∴=,∴抛物线在点N 处的切线l 的斜率为44kk ⨯=,l AB ∴∥. (Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u rg .由(Ⅰ)知22221122224848k k k k NA x x NB x x ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,,,,则22221212224488k k k k NA NB x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭u u u r u u u r g222212124441616k k k k x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=--+-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭1212144444k k k k x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--+++ ⎪⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦g()221212121214()4164k k k x x x x x x k x x ⎡⎤⎡⎤=-++++++⎢⎥⎢⎥⎣⎦⎣⎦g22114(1)421624k k k k k k ⎛⎫⎡⎤=--⨯++⨯-+⨯+ ⎪⎢⎥⎝⎭⎣⎦g22313164k k ⎛⎫⎛⎫=---+ ⎪ ⎪⎝⎭⎝⎭0=,21016k --<Q ,23304k ∴-+=,解得2k =±.即存在2k =±,使0NA NB =u u u r u u u rg .3(本小题满分12分)已知双曲线C 的方程为22221(0,0)y x a b a b-=>>,离心率52e =,顶点到渐近线的距离为255。
全国高考数学解析几何大题精选50题(完美编辑、含答案、知识卡片)
20.(2018•江苏)如图,在平面直角坐标系 xOy 中,椭圆 C 过点(
),焦点 F1
试卷第 9 页,总 25 页
(﹣ ,0),F2( ,0),圆 O 的直径为 F1F2. (1)求椭圆 C 及圆 O 的方程; (2)设直线 l 与圆 O 相切于第一象限内的点 P. ①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标; ②直线 l 与椭圆 C 交于 A,B 两点.若△OAB 的面积为 ,求直线 l 的方程.
试卷第 1 页,总 25 页
线型道路 PB,QA,规划要求:线段 PB,QA 上的所有点到点 O 的距离均不.小.于.圆 O 的半径.已知点 A,B 到直线 l 的距离分别为 AC 和 BD(C,D 为垂足),测得 AB =10,AC=6,BD=12(单位:百米). (1)若道路 PB 与桥 AB 垂直,求道路 PB 的长; (2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由; (3)在规划要求下,若道路 PB 和 QA 的长度均为 d(单位:百米),求当 d 最小时, P、Q 两点间的距离.
点的圆. (1)求 C 的轨迹方程; (2)动点 P 在 C 上运动,M 满足
=2 ,求 M 的轨迹方程.
试卷第 8 页,总 25 页
18.(2018•浙江)如图,已知点 P 是 y 轴左侧(不含 y 轴)一点,抛物线 C:y2=4x 上 存在不同的两点 A,B 满足 PA,PB 的中点均在 C 上. (Ⅰ)设 AB 中点为 M,证明:PM 垂直于 y 轴;
22.(2018•上海)设常数 t>2.在平面直角坐标系 xOy 中,已知点 F(2,0),直线 l: x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l 与 x 轴交于点 A、与Γ交于点 B.P、Q 分别是曲线Γ与线段 AB 上的动点. (1)用 t 表示点 B 到点 F 的距离; (2)设 t=3,|FQ|=2,线段 OQ 的中点在直线 FP 上,求△AQP 的面积; (3)设 t=8,是否存在以 FP、FQ 为邻边的矩形 FPEQ,使得点 E 在Γ上?若存在, 求点 P 的坐标;若不存在,说明理由.
高考数学解析几何专题汇编及详细答案
解析几何专题汇编1.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12x D .y =±x解析:选C.由e =52,得c a =52,∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,∴所求渐近线方程为y =±12x . 2. O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2 B .22C .2 3 D .4解析:选C.设P (x 0,y 0),则|PF |=x 0+2=42,∴x 0=32,∴y 20=42x 0=42×32=24,∴|y 0|=2 6.∵F (2,0),∴S △POF =12|OF |·|y 0|=12×2×26=2 3.3.已知椭圆E :x 2a 2+y2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 解析:选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1.②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2).∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a 2.而k AB =0-(-1)3-1=12,∴b 2a 2=12,∴a 2=2b 2,∴c 2=a 2-b 2=b 2=9,∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.4.设椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点, PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36 B.13C.12 D.33解析:选D.如图,由题意知s in 30°=|PF 2||PF 1|=12, m ∴|PF 1|=2|PF 2|.又∵|PF 1|+|PF 2|=2a ,∴|PF 2|=2a3. ∴tan 30°=|PF 2||F 1F 2|=2a32c =33.∴c a =33.故选D.5.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1)C .y =3(x -1)或y =-3(x -1)D .y =22(x -1)或y =-22(x -1)解析:选C.设直线AB 的倾斜角为θ,由题意知p =2,F (1,0),|AF ||BF |=3.又1|F A |+1|FB |=2p ,∴13|BF |+1|BF |=1,∴|BF |=43,|AF |=4,∴|AB |=163. 又由抛物线焦点弦公式:|AB |=2p sin 2θ,∴163=4sin 2θ,∴s in 2θ=34,∴s in θ=32,∴k =tan θ=±3.故选C.6.椭圆C :x 24+y 23=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是 ( )A .[12,34]B .[38,34]C .[12,1]D .[34,1]解析:选B.由题意可得A 1(-2,0),A 2(2,0),当P A 2的斜率为-2时,直线P A 2的方程为y =-2(x -2),代入椭圆方程,消去y 化简得19x 2-64x +52=0,解得x =2或x =2619.由点P 在椭圆上得点P (2619,2419),此时直线P A 1的斜率k =38.同理,当直线P A 2的斜率为-1时,直线P A 2方程为y =-(x -2),代入椭圆方程,消去y 化简得7x 2-16x +4=0,解得x =2或x =27.由点P 在椭圆上得点P (27,127),此时直线P A 1的斜率k =34.数形结合可知,直线P A 1斜率的取值范围是[38,34].7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1解析:选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.8.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若MA →·MB →=0,则k =( )A.12 B.22C. 2 D .2解析:选D.抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k 2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2.9.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 ( ) A .2x +y -3=0 B .2x -y -3=0C .4x -y -3=0 D .4x +y -3=04解析:选A.设P (3,1),圆心C (1,0),切点为A 、B ,则P 、A 、C 、B 四点共圆,且PC 为圆的直径,∴四边形P ACB 的外接圆方程为(x -2)2+(y -12)2=54①,圆C :(x -1)2+y 2=1②,①-②得2x +y -3=0,此即为直线AB 的方程.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( A.316 B.38C.233 D.433解析:选D.∵双曲线C 2:x 23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p 2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2 B.3C.32 D.62解析:选D.由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3,所以C 2的离心率e =c a =62.12.)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B .2C.83 D.1623解析:选C.∵抛物线方程为x 2=4y ,∴其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x 轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 312⎪⎪⎪20=4-43=83. 13.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的两条渐近线与抛物线y 2=2p x (p>0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2 D .3解析:选C.由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3,即渐近线方程为y =±3x .而抛物线准线方程为x =-p 2,于是A ⎝⎛⎭⎫-p 2,-3p 2,B ⎝⎛⎭⎫-p 2,3p 2,从而△AOB 的面积为12·3p·p 2=3,可得p =2.14.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是()A .m>12B .m ≥1C .m>1D .m>2解析:选C.∵双曲线x 2-y 2m=1的离心率e =1+m ,又∵e>2,∴1+m>2,∴m>1. 15.双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25 B.45C .255 D.455解析:选C.双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255.16.已知过点P(2,2)的直线与圆(x -1)2+y 2=5相切,且与直线a x -y +1=0垂直,则a =( )A .-12B .1C .2 D.12解析:选C.由题意知圆心为(1,0),由圆的切线与直线a x -y +1=0垂直,可设圆的切线方程为x +ay +c =0,由切线x +ay +c =0过点P(2,2),∴c =-2-2a , ∴|1-2-2a|1+a2=5,解得a =2. 17.(2)双曲线x 2-y 2=1的顶点到其渐近线的距离等于( )A .12 B.22C .1 D. 2解析:选B.双曲线x 2-y 2=1的顶点坐标为(±1,0),渐近线为y =±x ,∴x ±y =0,∴顶点到渐近线的距离为d =|±1±0|2=22.18在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 发射后又回到点P(如图).若光线QR 经过△ABC 的重心,则AP 等于( )A .2B .1C .83 D.43解析:选D.分别以AB ,AC 所在直线为x 轴,y 轴,A 为原点建立如图所示的平面直角坐标系.因为AB =AC =4,故B(4,0),C(0,4).设P(t,0)为线段AB 上的点,点P 关于AC 的对称点P ′(-t,0).点P 关于直线BC 的对称点为M(4,4-t).由光的反射定理知,点P ′,M 一定在直线RQ 上.又△ABC 的重心坐标为G(43,43),由题意知点G 在线段RQ 上,即P ′,G ,M 三点共线.∵P ′G →=(43+t ,43),MP ′→=(-4-t ,t -4),P ′G →∥MP ′→,∴(43+t)(-4+t)-43(-4-t)=0,解得t =43,即|AP →|=43. 19.已知点O(0,0),A(0,b),B(a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0D .|b -a 3|+|b -a 3-1a |=0解析:选C.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意; 若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a=-1,所以a(a 3-b)=-1,即b -a 3-1a=0.以上两种情况皆有可能,故只有C 满足条件.20.已知点M(a ,b)在圆O :x 2+y 2=1外, 则直线a x +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定解析:选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交.21.过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( )A .33 B .-33C .±33 D .- 3解析:选B.由于y =1-x 2,即x 2+y 2=1(y ≥0),直线l 与x 2+y 2=1(y ≥0)交于A ,B 两点,如图所示,S △AOB =12·s in ∠AOB ≤12,且当∠AOB =90°时,S △AOB 取得最大值,此时AB =2,点O 到直线l 的距离为22,则∠OCB =30°,所以直线l 的倾斜角为150°,则斜率为-33.22.已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D.双曲线C 1的焦点在x 轴上,a =co s θ,b =s in θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =s in θ,b =s in θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ.故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等.23.已知点A(2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM|∶|MN|=( )A .2∶ 5 B .1∶2C . 1∶ 5 D .1∶3 解析:选C.如图所示,由抛物线定义知|MF|=|MH|,所以|MF|∶|MN|=|MH|∶|MN|.由于△MHN ∽△FOA ,则|MH||HN|=|OF||OA|=12,则|MH|∶|MN|=1∶5,即|MF|∶|MN|=1∶ 5. 24.已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相B .虚轴长相等C .离心率相等D .焦距相等解析:选D.双曲线C 1和C 2的实半轴长分别是s in θ和co s θ,虚半轴长分别是co s θ和s in θ,则半焦距c 都等于1,故选D.25.抛物线y 2=8x 的焦点到直线x -3y =0的距离是( )A .2 3 B .2C . 3 D .1 解析:选D.抛物线y 2=8x 的焦点为F(2,0),则d =|2-3×0|12+(-3)2=1.故选D.26.从椭圆x 2a 2+y 2b2=1(a>b>0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP(O 是坐标原点),则该椭圆的离心率是( )A .24 B.12C .22 D.32解析:选C.设P(-c ,y 0),代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e.由题意设P(-c ,y 0),将P(-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a 2=b 4a 2.∴y 0=b 2a 或y 0=-b 2a (舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac. ∵A(a,0),B(0,b),∴k AB =b -00-a =-b a .又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac ,∴b =c.∴e =ca=c b 2+c 2=c 2c 2=22.故选C. 27.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A .12 B.32C .1 D. 3 解析:选B.由题意可得抛物线的焦点坐标为(1,0), 双曲线的渐近线方程为3x -y =0或3x +y =0,则焦点到渐近线的距离d 1=|3×1-0|(3)2+(-1)2=32 或d 2=|3×1+0|(3)2+12=32. 28.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A .52-4 B.17-1C .6-2 2 D.17解析:选A.设P(x ,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2.而|PM|=|PC 1|-1,|PN|=|PC 2|-3,∴|PM|+|PN|=|PC 1|+|PC 2|-4≥52-4.29.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6 B .4C .3 D .2 解析:选B.如图,圆心M(3,-1)与定直线x =-3的最短距离为|MQ|=3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.30.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -2=0 B .x +y +1=0C .x +y -1=0 D .x +y +2=0解析:选A.与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b|12+12=1,故b =±2.因为直线与圆相切于第一象限,故结合图形分析知b=-2,故直线方程为x +y -2=0,故选A.31.已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B.x 24-y 25=1C .x 22-y 25=1 D.x 22-y25=1 解析:选B.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,故选B.32.已知中心在原点的椭圆C 的右焦点为F(1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1 B.x 24+y 23=1C .x 24+y 22=1 D.x 24+y23=1 解析:选D.右焦点为F(1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y23=1,故选D.33.直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( )A .1B .2C .4D .4 6 解析:选C.圆的方程可化为C :(x -1)2+(y -2)2=5,其圆心为C(1,2),半径R = 5.如图所示,取弦AB 的中点P ,连接CP ,则CP ⊥AB ,圆心C 到直线AB 的距离d =|CP|=|1+4-5+5|12+22=1.在Rt △ACP 中,|AP|=R 2-d 2=2,故直线被圆截得的弦长|AB|=4.34.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.解析:设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦. |CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2.∴最短弦长为2 2.答案:2 235.已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:设C(x ,x 2),由题意可取A(-a ,a),B(a ,a), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a)x 2+a 2-a =0,即y 2+(1-2a)y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.答案:[1,+∞)36.双曲线x 216-y 29=1的两条渐近线的方程为________.解析:由双曲线方程可知a =4,b =3,所以两条渐近线方程为y =±34x .答案:y =±34x37.在平面直角坐标系x Oy 中,椭圆C 的标准方程为x 2a 2+y2b2=1(a>b>0),右焦点为F,右准线为l ,短轴的一个端点为B.设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.解析:依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bca.由已知可得b 2c =6·bca,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e=c a =33.答案:3338 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 539若抛物线y 2=2p x 的焦点坐标为(1,0),则p =________;准线方程为________.解析:∵ 抛物线y 2=2p x 的焦点坐标为(p 2,0),∴准线方程为x =-p2.又抛物线焦点坐标为(1,0),故p =2,准线方程为x =-1.答案:2;x =-140.设F 为抛物线C :y 2=4x 的焦点,过点P(-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ|=2,则直线l 的斜率等于________.答案:±141.已知抛物线y 2=8x 的准线过双曲线x 2a 2-y2b2=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.解析:由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.答案:x 2-y 23=1 42.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-143.已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF.若|AB|=10,|AF|=6,co s ∠ABF =45,则椭圆C 的离心率e =________.解析:设椭圆的右焦点为F 1,因为直线过原点,所以|AF|=|BF 1|=6,|BO|=|AO|.在△ABF 中,设|BF|=x ,由余弦定理得36=100+x 2-2×10x ×45,解得x =8,即|BF|=8.所以∠BFA =90°,所以△ABF 是直角三角形,所以2a =6+8=14,即a =7.又因为在Rt △ABF 中,|BO|=|AO|,所以|OF|=12|AB|=5,即c =5.所以e =57.答案:5744.双曲线x 216-y 2m =1的离心率为54,则m 等于________.解析:x 216-y 2m =1中,a =4,b =m ,∴c =16+m.而e =54,∴16+m 4=54,∴m =9.答案:945.椭圆Γ:x 2a 2+y2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 解析:已知F 1(-c,0),F 2(c,0),直线y =3(x +c)过点F 1,且斜率为3,∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c.由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.答案:3-146.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A(5,0)在线段PQ 上,则△PQF 的周长为________.解析:由双曲线方程知,b =4,a =3,c =5,则虚轴长为8,则|PQ|=16.由左焦点F(-5,0),且A(5,0)恰为右焦点,知线段PQ 过双曲线的右焦点,则P ,Q 都在双曲线的右支上.由双曲线的定义可知|PF|-|PA|=2a ,|QF|-|QA|=2a ,两式相加得,|PF|+|QF|-(|PA|+|QA|)=4a ,则|PF|+|QF|=4a +|PQ|=4×3+16=28,故△PQF 的周长为28+16=44.答案:4447.双曲线x 216-y 29=1的离心率为________.解析:由题意a 2=16⇒a =4.又b 2=9,则c 2=a 2+b 2=16+9=25⇒c =5,故e =c a =54.答案:5449.设F 1,F 2是双曲线C :x 2a 2-y2b2=1(a>0,b>0)的两个焦点,P 是C 上一点.若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.解析:设点P 在双曲线右支上,F 1为左焦点,F 2为右焦点,则|PF 1|-|PF 2|=2a.又|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a.∵在双曲线中c>a ,∴在△PF 1F 2中|PF 2|所对的角最小且为30°.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|co s 30°,即4a 2=16a 2+4c 2-83ac ,即3a 2+c 2-23ac =0.∴(3a -c)2=0,∴c =3a ,即ca = 3.∴e = 3.答案: 350.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF为等边三角形,则p =________.解析:由于x 2=2py(p>0)的准线为y =-p 2,由⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=3,解得准线与双曲线x 2-y 2=3的交点为A ⎝⎛⎭⎫-3+14p 2,-p 2,B ⎝⎛⎭⎫3+14p 2,-p 2,所以AB =23+14p 2.由△ABF 为等边三角形,得32AB =p ,解得p =6.答案:6 51.椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =32,a +b =3.(1)求椭圆C 的方程;(2)如图所示,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明:2m -k 为定值.解:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3,得c =3,a =2,b =1.故椭圆C 的方程为x24+y 2=1.(2)证明:法一:因为B(2,0),点P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)⎝⎛⎭⎫k ≠0,k ≠±12,①①代入x 24+y 2=1,解得P ⎝⎛⎭⎪⎫8k 2-24k 2+1,-4k 4k 2+1.直线AD 的方程为y =12x +1.②①与②联立解得M ⎝ ⎛⎭⎪⎫4k +22k -1,4k 2k -1. 由D(0,1),P ⎝ ⎛⎭⎪⎫8k 2-24k 2+1,-4k4k 2+1,N(x ,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,解得N ⎝⎛⎭⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).法二:设P(x 0,y 0)(x 0≠0,x 0≠±2),则k =y 0x 0-2,直线AD 的方程为y =12(x +2),直线BP 的方程为y =y 0x 0-2(x -2),直线DP 的方程为y -1=y 0-1x 0x ,令y =0,由于y 0≠1可得N ⎝ ⎛⎭⎪⎫-x 0y 0-1,0, 联立,得⎩⎪⎨⎪⎧y =12(x +2),y =y0x 0-2(x -2),解得M ⎝ ⎛⎭⎪⎫4y 0+2x 0-42y 0-x 0+2,4y 02y 0-x 0+2,因此MN 的斜率为m =4y 02y 0-x 0+24y 0+2x 0-42y 0-x 0+2+x 0y 0-1=4y 0(y 0-1)4y 20-8y 0+4x 0y 0-x 20+4 =4y 0(y 0-1)4y 20-8y 0+4x 0y 0-(4-4y 20)+4=y 0-12y 0+x 0-2, 所以2m -k =2(y 0-1)2y 0+x 0-2-y 0x 0-2=2(y 0-1)(x 0-2)-y 0(2y 0+x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-2y 20-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=2(y 0-1)(x 0-2)-12(4-x 20)-y 0(x 0-2)(2y 0+x 0-2)(x 0-2)=12(定值).52.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA|+|MC|≥|AC|,当且仅当A ,M ,C 共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA|+|MC|+|MB|+|MD|最小,则点M 为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.② 由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M(2,4).答案:(2,4)53.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C.(1)求C 的方程;(2)l 是与圆P 、圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB|.解: 由已知得圆M 的圆心为M(-1,0),半径r 1=1;圆N 的圆心为N(1,0),半径r 2=4.设圆P 的圆心为P(x ,y),半径为R.(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM|+|PN|=(R +r 1)+(r 2-R)=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P(x ,y),由于|PM|-|PN|=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2,所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可求得Q(-4,0),所以可设l :y =k(x +4).由l 与圆M 相切得|3k|1+k 2=1,解得k =±24.当k =24时,将y =24x +2代入x 24+y 23=1,并整理得7x 2+8x -8=0,解得x 1,2=-4±627,所以|AB|=1+k 2|x 2-x 1|=187.当k =-24时,由图形的对称性可知|AB|=187.综上,|AB|=23或|AB|=187.54.在平面直角坐标系x Oy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.解:(1)设P(x ,y),圆P 的半径为r.由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P(x 0,y 0).由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧ |x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧ x 0-y 0=1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧ x 0-y 0=-1,y 20-x 20=1,得⎩⎪⎨⎪⎧x 0=0,y 0=1,此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y +1)2=3或x 2+(y -1)2=3.55.已知双曲线C :x 2a 2-y 2b2=1(a>0,b>0)的左、右焦点分别为F 1、F 2,离心率为3,直线y=2与C 的两个交点间的距离为 6.(1)求a 、b ; (2)设过F 2的直线l 与C 的左、右两支分别交于A 、B 两点,且|AF 1|=|BF 1|,证明:|AF 2|、|AB|、|BF 2|成等比数列.解:(1)由题设知ca =3,即a 2+b 2a2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =± a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l 的方程为y =k(x -3),|k|<22,将其代入①并化简,得(k 2-8)x 2-6k 2x +9k 2+8=0.设A(x 1,y 1),B(x 2,y 2),则x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1),|BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1.由|AF 1|=|BF 1|,得-(3x 1+1)=3x 2+1,即x 1+x 2=-23,故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199.由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1,|BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1,故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4,|AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16,因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|、|AB|、|BF 2|成等比数列.56.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M(m ,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2.若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解:(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a.由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)法一:设P(x 0,y 0)(y 0≠0),又F 1(-3,0),F 2(3,0),所以直线PF 1,PF 2的方程分别为 lPF 1:y 0x -(x 0+3)y +3y 0=0,lPF 2:y 0x -(x 0-3)y -3y 0=0. 由题意知|my 0+3y 0|y 20+(x 0+3)2=|my 0-3y 0|y 20+(x 0-3)2.由于点P 在椭圆上,所以x 204+y 20=1. 所以|m +3|(32x 0+2)2=|m -3|(32x 0-2)2.因为-3<m<3,-2<x 0<2,可得m +332x 0+2=3-m2-32x 0,所以m =34x 0.因此-32<m<32.法二:设P(x 0,y 0),当0≤x 0<2时,①当x 0=3时,直线PF 2的斜率不存在,易知P(3,12)或P(3,-12).若P(3,12),则直线PF 1的方程为x -43y +3=0.由题意得|m +3|7=3-m ,因为-3<m<3,所以m =334.若P(3,-12),同理可得m =334.②当x 0≠3时,设直线PF 1,PF 2的方程分别为y =k 1(x +3),y =k 2(x -3).由题意知|mk 1+3k 1|1+k 21=|mk 2-3k 2|1+k 22,所以(m +3)2(m -3)2=1+1k 211+1k 22.因为x 204+y 20=1,且k 1=y 0x 0+3,k 2=y 0x 0-3,所以(m +3)2(m -3)2=4(x 0+3)2+4-x 204(x 0-3)2+4-x 20=3x 20+83x 0+163x 20-83x 0+16=(3x 0+4)2(3x 0-4)2,即|m +3||m -3|=|3x 0+4||3x 0-4|.因为-3<m<3,0≤x 0<2且x 0≠3,所以3+m 3-m =4+3x 04-3x 0,整理得m =3x 04,故0≤m<32且m ≠334.综合①②可得0≤m<32.当-2<x 0<0时,同理可得-32<m<0. 综上所述,m 的取值范围是(-32,32).(3)设P(x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k(x -x 0).联立得⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2k x 0y 0+k 2x 20-1)=0.由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-x 04y 0.由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0,所以1kk 1+1kk 2=1k (1k 1+1k 2)=(-4y 0x 0)·2x 0y 0=-8,因此1kk 1+1kk 2为定值,这个定值为-8.57.在平面直角坐标系x Oy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22.(1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP →=tOE →,求实数t 的值.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得⎩⎪⎨⎪⎧a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m. 由题意得-2<m<0或0<m< 2.将x =m 代入椭圆方程x 22+y 2=1,得|y|=2-m 22. 所以 S △AOB =|m|·2-m 22=64.解得m 2=32或m 2=12.①因为OP →=tOE →=12t(OA →+OB →)=12t(2m,0)=(mt,0),又P 为椭圆C 上一点,所以(mt )22=1.②由①②,得t 2=4或t 2=43,又t>0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =k x +h. 将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4kh x +2h 2-2=0.设A(x 1,y 1),B(x 2,y 2).由判别式Δ>0可得1+2k 2>h 2,此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k 2,y 1+y 2=k(x 1+x 2)+2h =2h1+2k 2, 所以|AB|=1+k 2×(x 1+x 2)2-4x 1x 2=22×1+k 2×1+2k 2-h 21+2k 2.因为点O 到直线AB 的距离d =|h|1+k 2,所以S △AOB =12|AB|d =12×22×1+k 2×1+2k 2-h 21+2k 2×|h|1+k2=2×1+2k 2-h 21+2k 2×|h|.又S △AOB=64, 所以2×1+2k 2-h 21+2k 2×|h|=64.③令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0. 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④因为OP →=tOE →=12t(OA →+OB →)=12t(x 1+x 2,y 1+y 2)=(-2kht 1+2k 2,ht 1+2k 2),又P 为椭圆C 上一点,所以t 2[12(-2kh 1+2k 2)2+(h 1+2k 2)2]=1,即h 2t 21+2k 2=1.⑤ 将④代入⑤,得t 2=4或t 2=43.又t>0,故t =2或t =233.经检验,适合题意.综合(ⅰ)(ⅱ),得t =2或t =233.58.如图,在平面直角坐标系x Oy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =k x +3. 由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1. 设点M(x ,y),因为MA =2MO , 所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以点C 的横坐标a 的取值范围为[0,125].59.已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A 、B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点, 求|MN |的最小值.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,所以抛物线C 的方程为x 2=4y .(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去y ,整理得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2|84-x 1-84-x 2|=82|x 1-x 2x 1x 2-4(x 1+x 2)+16|=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 225t 2+6t +1>2 2. 当t <0时,|MN |=2 2 (5t +35)2+1625≥852.综上所述,当t =-253,即k =-43时,|MN |的最小值是85 2.60.设椭圆E :x 2a 2+y21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1、F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上.解:(1)因为椭圆的焦点在x 轴上且焦距为1,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明:设出点P 的坐标,并求出其横、纵坐标的关系式. 注意点在直线上时,点的坐标满足直线方程. 设P (x 0,y 0),F 1(-c,0),F 2(c,0),其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c,直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c (x -c ).当x =0时,y =cy 0c -y 0,即点Q 坐标为(0,cy 0c -x 0).因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1).①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限,解得x 0=a 2,y 0=1-a 2, 即点P 在定直线x +y =1上.61.直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 互相垂直平分.所以可设A (t ,12),代入椭圆方程得t 24+14=1,即t =±3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2, 所以AC 的中点为M (-4km 1+4k 2,m1+4k 2).因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·(-14k )≠-1,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 在W 上且不是W 的顶点时,四边形OABC 不可能是菱形.62.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若AC →·DB →+AD →·CB →=8,求k 的值.解:(1)设F (-c,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3,于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D(x 2,y 2),由F (-1,0)得直线C D 的方程为y =k (x +1),由方程组⎩⎪⎨⎪⎧y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0. 由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.63.如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△AB D 面积取最大值时直线l 1的方程.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D(x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k 2,所以|P D|=8k 2+14+k2. 设△AB D 的面积为S ,则S =12|AB |·|P D|=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1.64.如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N . (1)若点C 的纵坐标为2,求|MN |;(2)若|AF |2=|AM |·|AN |,求圆C 的半径.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2.又|CO |=5,所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝⎛⎭⎫y 204,y 0,则圆C 的方程为⎝⎛⎭⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0.设M (-1,y 1),N (-1,y 2),则⎩⎨⎧Δ=4y 20-4⎝⎛⎭⎫1+y 202=2y 20-4>0,y 1y 2=y22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4,所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝⎛⎭⎫32,6或⎝⎛⎭⎫32,-6,从而|CO |2=334,|CO |=332,即圆C 的半径为332. 65.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解:(1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |= 3.(2)四边形OABC 不可能为菱形.理由如下:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.。
解析几何——直线专题(答案)
解析几何——直线专题参考答案1.D 【解析】试题分析:直线斜率2142-=-=-=B A k .考点:直线的斜率.2.A 【解析】试题分析:∵直线经过两点(2,4)A ,(1,)B m ,∴直线AB 的斜率4421k m π-==--, 又∵直线的倾斜角为045,∴1k =,∴3m =.故选:A .考点:直线的斜率;直线的倾斜角. 3.033=-+y x 【解析】试题分析:AB 直线斜率12312k --==-,所以高线斜率为13-,高线方程为()1023303y x x y -=--∴+-= 考点:直线垂直的位置关系及直线方程 4.A 【解析】试题分析:两直线平行,系数满足()()3122,02a a a a ⨯-=⨯-∴=,0a =时两直线重合32a ∴=考点:直线平行的判定 5.A 【解析】试题分析:因为所求直线与直线220x y --=平行,所以设所求直线为20x y m -+=,又过点()1,0,代入求出1m =-,所以所求直线为210x y --=,故选A 。
考点:两直线的平行 6.C 【解析】试题分析:由两直线垂直需满足:“1212..0A A B B +=”可得()6210m m ⨯-+=,解得613m =考点:平面直线的位置关系 7.C 【解析】试题分析:由点到直线的距离公式求得,点()2,1A 及直线30x y ++=的距离是213322d ++==,则AP 的最小值是32.考点:点到直线的距离 8.A 【解析】试题分析:设圆心为C ,直线:0l x y -=,则|||||06|2222C l PQ PC r d r -≥-≥--=-=,所以选A.考点:直线与圆位置关系 9.B 【解析】试题分析:由平行直线可得364=m ,得m=8,在利用平行线间距离公式算的286|182|22=++=d ,注意计算距离时两平行线方程中x,y 前系数要一致. 考点:两直线平行的充要条件,平行线间距离. 10.B 【解析】试题分析:根据题意可知,由于直线02=-y x 与直线042=+-a y x 是平行线,那么可知,运用平行线之间的距离公式1222|C -C |d A B =+,那么将方程统一形式,得到为x-2y=0,x-2y+2a=0故可知距离为2|-0|2=5a 102+1a ∴=±,故选B. 考点:本试题考查了两平行直线的距离。
【知识梳理】解析几何的20个微专题(附高考数学真题讲析)
【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
x1
2 2 1 k2
.
1 2k 2
若 k 0 ,则线段
的垂直平分线为 y 轴,与左准线平行,不合题意.
k 从而 k 0 ,故直线 C 的方程为 y 1 2k 2
1
2k 2
k x 1 2k 2 ,
则点的坐标为
5k2 2
2 3k 2 1 1 k 2
2, k 1 2k2
,从而
C
.
k 1 2k 2
2 3k 2 1 1 k 2 4 2 1 k2
2
所以点 P 的坐标为 ( 2 , 1 ) ,因此 S1 的最大值为 9 ,此时点 P 的坐标为 ( 2 , 1 ) .
24
S2
4
24
考点: 1.椭圆、抛物线的标准方程及其几何性质; 2.直线与圆锥曲线的位置关系; 3. 二次函数
的图象和性质 .
14.【2015 江苏高考, 18】(本小题满分 16 分)
x2 4.【 2016 高考新课标 3 理数】已知 O 为坐标原点, F 是椭圆 C : a 2
D. m <n 且 e1e2<1
y2 b2 1(a b 0) 的左
焦点, A, B 分别为 C 的左,右顶点 . P 为 C 上一点,且 PF x 轴.过点 A 的直线与线段 PF
交于点 M ,与 y 轴交于点 E .若直线 BM 经过 OE 的中点,则 C 的离心率为()
m(2m2 1)2
S2
| PM | | m 2
x0 |
8(4m2
,
1)
所以 S1 S2
2(4m2 1)( m2 1)
,
( 2m2 1)2
令 t 2m2 1,则 S1 S2
(2t 1)(t 1) t2
11 t 2 t 2,
5
1
当
1 ,即 t
2 时,
S1 取得最大值
9 ,此时 m
2
,满足
0,
t2
S2
4
方程与椭圆方程联立方程组,解出 AB 两点坐标,利用两点间距离公式求出 AB 长,再根据中点
坐标公式求出 C 点坐标,利用两直线交点求出
P 点坐标,再根据两点间距离公式求出
6
PC 长,
利用 PC=2AB解出直线 AB 斜率 ,写出直线 AB 方程 .
( 2)当
x 轴时,
2 ,又 C 3 ,不合题意.
,
xm
4
即点 M 在定直线 y
1
上.
4
( ii)由( i)知直线方程为 y
mx
m2
,
2
令 x 0得 y
m2
m2
,所以 G (0,
),
2
2
m2
1
2m3
m2
又 P (m,
2
), F (0, ), D 2
( 4m2
1 , 2( 4m2
), 1)
所以 S1
1 | GF | m 2
1 m(m2 1) , 4
1
椭圆专题练习
x2
1.【 2017 浙江, 2】椭圆
9
y2 1 的离心率是
4
13
A.
3
5
B.
3
2
C.
3
5
D.
9
x2 2.【 2017 课标 3,理 10】 已知椭圆 C: a 2
y2 b 2 1 ,( a>b>0)的左、右顶点分别为
A1, A2,
且以线段 A1A2 为直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为
2
x2 y2 xOy 中, F 是椭圆 a2 b2 1(a> b> 0) 的 BFC 90 ,则该椭圆的离心率是 .
x2 7.【2017 课标 1,理 20】已知椭圆 C: a 2
y2 b2
=1( a>b>0),四点
P1( 1,1),P2( 0,1),P3( –1,
1
3
3
), P4( 1, )中恰有三点在椭圆 C 上.
如图, 在平面直角坐标系 xOy 中,已知椭圆 x 2 a2
y2 b 2 1 a b 0 的离心率为
2 ,且右焦点 2
F 到左准线 l 的距离为 3. ( 1)求椭圆的标准方程;
( 2)过 F 的直线与椭圆交于 A, B 两点,线段 AB 的垂直平分线分别交直线 l 和 AB 于 点 P, C,若 PC=2AB,求直线 AB 的方程 .
x2 4 ,所以椭圆的方程为
y2
1.
43
( 2)(Ⅱ)解:设直线的斜率为 k ( k 0 ),则直线的方程为 y k (x 2) .设 B (xB , yB ) ,由
x2 y2 方程组 4 3 1 ,消去 y ,整理得 (4k2 3) x2 16k 2x 16k 2 12 0 .
y k( x 2)
解得 x
6
A.
3
3
B.
3
2
C.
3
1
D.
3
3.【 2016 高考浙江理数】
已知椭圆
C1:
x2 m2
+y2=1(m >1)与双曲线
C2:
x2 n2
–y2=1(n>0)的焦点重合,
e1,e2 分别为 C1, C2 的离心率,则()
A. m>n 且 e1e2>1
B. m>n 且 e1e2<1 C. m<n 且 e1e2>1
率.
x2 y2 10.【2017 天津,理 19】设椭圆 a 2 b2 1(a b 0) 的左焦点为 F ,右顶点为 A ,离心率为
2
1 .已知 A 是抛物线
y2
2 px( p
0) 的焦点, F 到抛物线的准线的距离为
1
.
2
2
( I)求椭圆的方程和抛物线的方程;
( II)设上两点 P , Q 关于轴对称,直线 AP 与椭圆相交于点 B ( B 异于点 A ),直线 BQ 与轴
(Ⅱ)如图,动直线: y k1 x
3 交椭圆 E 于 A, B 两点, C 是椭圆 E 上一点,直线 OC 的斜率
2
为 k2 ,且 k1k2
2 , M 是线段 OC 延长线上一点,且 MC : AB 2:3 , M 的半径为 MC ,
4
OS,OT 是 M 的两条切线,切点分别为 S,T .求 SOT 的最大值,并求取得最大值时直线的斜
( A) 1 3
( B) 1 2
( C) 2 3
( D) 3 4
x2 y2
5.【 2015 高考新课标 1,理 14】一个圆经过椭圆
1 的三个顶点,且圆心在 x 轴的正半
16 4
轴上,则该圆的标准方程为 .
6.【 2016 高考江苏卷】如图,在平面直角坐标系
右焦点,直线 y
b 与椭圆交于 B ,C 两点,且
关系,联立方程组求 B ;利用两直线方程组求 H,最后根据 BF HF , 列等量关系解出直线
斜率 .取值范围
试题解析: ( 1 )解:设 F (c, 0),由 1
1
3c
11
,即
3c ,可得
|OF | | OA | | FA | c a a(a c)
a2
c2
3
c
2
,又
a2
c2
b2
3 ,所以 c2 1 ,因此 a2
13.【2016 高考山东理数】( 本小题满分 14 分 )
x2 平面直角坐标系 xOy 中,椭圆 C: a2
y2 b2
1 a> b>0 的离心率是
3
,抛物线
E:x2
2
2y
的焦点 F 是 C 的一个顶点 .
( I)求椭圆 C 的方程;
( II)设 P 是 E 上的动点,且位于第一象限, E 在点 P 处的切线与 C 交与不同的两点 A,B,线
段 AB 的中点为 D,直线 OD 与过 P 且垂直于 x 轴的直线交于点 M .
( i)求证:点 M 在定直线上 ;
3
( ii)直线与 y 轴交于点
G,记 △PFG 的面积为 S1 , △ PDM
的面积为
S2 ,求
S1 S2
的最大值及
取得最大值时点 P 的坐标 .
【答案】( Ⅰ)x2
4y2
1(; Ⅱ)(
因为 C 2 ,所以
k 1 2k 2
,解得 k 1 . 1 2k2
此时直线
方程为 y x 1或 y x 1.
【考点定位】椭圆方程,直线与椭圆位置关系
15.【2016 高考天津理数】 (本小题满分 14 分)
设椭圆 x2 a2
y2 1( a
3
3 )的右焦点为 F ,右顶点为 A ,已知 1
1
3e
,
| OF | | OA | | FA |
(1) 求点 P 的轨迹方程;
(2)设点 Q 在直线 x 3上,且 OP PQ 1 。证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦
点 F。
x2 y2
2
9【. 2017 山东,理 21】在平面直角坐标系 xOy 中,椭圆 E :a2
b2
1 a b 0 的离心率为
, 2
焦距为 .
(Ⅰ)求椭圆 E的方程;
7
其中 O 为原点,为椭圆的离心率 .
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点 A 的直线与椭圆交于点 B ( B 不在 x 轴上),垂直于的直线与交于点 M , 与 y 轴交于点 H ,若 BF HF ,且 MOA MAO ,求直线的斜率的取值范围 .
【答案】(Ⅰ) x2 y2 1 (Ⅱ) ( , 6 ] [ 6 , )