数理统计的基本概念知识点
概率论与数理统计各章重点知识点汇总--最新版
第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2 (n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
根据数理统计知识点归纳总结(精华版)
根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。
2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。
通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。
以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。
如需深入了解各个知识点的具体内容,请参考相关教材或课程。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
数理统计知识点总结
数理统计知识点总结一、概述数理统计是一门研究收集、整理、分析和解释数据的学科。
它在各个领域中发挥着重要作用,包括科学研究、经济学、社会学等。
二、基本概念1. 数据:指收集到的观察结果或实验结果,是进行统计分析的基础。
2. 总体和样本:总体指研究对象的全体,样本是从总体中选取的一部分。
3. 变量:指研究对象的性质或特征,分为定性变量和定量变量。
4. 频数和频率:频数是某一数值在样本中出现的次数,频率是某一数值在样本中出现的相对次数。
三、数据的整理与描述1. 数据的收集:可以通过实验、调查或观察等方式获取数据。
2. 数据的整理:包括数据的分类、排序和归纳等处理。
3. 数据的描述:使用统计指标如均值、方差、标准差等来描述数据分布的中心趋势和变异程度。
四、概率与概率分布1. 概率:指事件发生的可能性,可通过频率或理论推导计算得到。
2. 概率分布:描述随机变量取值与其概率之间的关系,包括离散概率分布和连续概率分布。
五、统计推断1. 参数估计:根据样本数据估计总体的参数,如均值、比例等。
2. 假设检验:根据样本数据判断总体参数是否符合某个假设。
3. 置信区间:给出总体参数的估计范围。
六、相关性与回归分析1. 相关性:描述两个变量之间的关联程度,可以通过相关系数来度量。
2. 简单线性回归:通过一条直线描述两个变量之间的函数关系。
3. 多元线性回归:通过多个变量来描述一个变量的线性关系。
七、抽样与实验设计1. 抽样方法:包括随机抽样、分层抽样等,确保样本具有代表性。
2. 实验设计:设计合理的实验方案,控制其他因素对结果的影响。
以上是数理统计的一些基本知识点总结,希望对您有所帮助。
数理统计主要知识点
《数理统计》的主要知识点 一.统计量及其抽样分布 (一)统计量的概念1. 统计量的定义: 简单地说,统计量就是样本i x 的函数,它除i x 外不含其它未知参数。
2. 简单随机抽样:从总体中抽取样本n x x x 21,若它们相互独立同分布 ,且分布与总体相同,则称其为简单随机抽样。
3. 常见的统计量:(1)样本均值: ∑==n i i x n x 11 (2)样本方差:()21211∑=--=n i i x x n s (3)样本k 阶原点距: ∑==n i k i k x n a 11 (4)样本k 阶中心距: ()∑=-=ni k i k x x n b 11(二)抽样分布的结构和性质1. 2χ分布: 若 n X X X ,,21 是来自总体X 的简单随机抽样,且X ~()1,0N ,则随机变量2χ=22221n X X X +++ ,此时称其分布为自由度为n 的2χ分布,记2χ~()n 2χ性质: ①()n E =2χ② ()n D 22=χ2.F 分布:若X ~()n 2χ,Y ~()m 2χ,且Y X 与相互独立,记随机变量F mY n X=,称其分布为自由度为n 与m 的F 分布,记 F ~F ()m n ,性质:()()n m F m n F ,1,1αα-=3.t 分布:设随机变量Y X 与相互独立,且X ~()1,0N ,Y ~()n 2χ,则称 nY X t =的分布为自由度为n 的t 分布,记t ~t ()n性质:①自由度为1的t 分布是标准柯西分布,它的均值不存在;②1>n 时,t 分布的数学期望存在且为0;③1>n 时,t 分布的方差存在且为2-n n ④当自由度较大时,t 分布可以用()1,0N 近似。
二.参数估计: (一)点估计:1. 矩估计:(替换原理)一般地:①用样本均值估计总体均值;即 ()x X E =②用样本二阶中心矩估计总体方差;()()2121∑=-==n i i n x x n s X D③用事件A 出现的频率估计事件A 发生的概率。
数理统计主要知识点
数理统计主要知识点数理统计是统计学的重要分支,旨在通过对概率论和数学方法的研究和应用,解决实际问题上的不确定性和随机性。
本文将介绍数理统计中的主要知识点,包括概率分布、参数估计、假设检验和回归分析。
一、概率分布概率分布是数理统计的基础。
它描述了一个随机变量所有可能的取值及其对应的概率。
常见的概率分布包括:1. 均匀分布:假设一个随机变量在某一区间内取值的概率是相等的,则该随机变量服从均匀分布。
2. 正态分布:正态分布是最常见的连续型概率分布,其概率密度函数呈钟形曲线,具有均值和标准差两个参数。
3. 泊松分布:泊松分布描述了在一定时间内发生某个事件的次数的概率分布,例如在一天内发生交通事故的次数。
4. 二项分布:二项分布描述了进行一系列独立实验,每次实验成功的概率为p时,实验成功的次数在n次内取特定值的概率。
二、参数估计参数估计是根据样本数据来推断随机变量的参数值。
常见的参数估计方法包括:1. 最大似然估计:假设数据服从某种分布,最大似然估计方法寻找最能“解释”数据的那个分布,计算出分布的参数值。
2. 矩估计:矩估计方法利用样本矩来估计分布的参数值,例如用样本均值估计正态分布的均值,样本方差估计正态分布的方差。
三、假设检验假设检验是为了判断一个统计假设是否成立而进行的一种统计方法。
它包括假设、检验统计量和显著性水平三个重要概念。
1. 假设:假设指的是要进行验证的观察结果,分为零假设和备择假设两种。
2. 检验统计量:检验统计量是为了检验零假设而构造的统计量,其值代表目标样本符合零假设的程度。
3. 显著性水平:显著性水平是用来决定是否拒绝零假设的标准,通常为0.01或0.05。
四、回归分析回归分析是用来研究和描述两个或多个变量之间关系的统计方法。
它可以帮助人们了解因果关系,做出预测和控制因素的效果。
1. 简单线性回归:简单线性回归是一种简单的回归分析方法,它描述一个因变量和一个自变量之间的线性关系。
2. 多元线性回归:多元线性回归描述多个自变量和一个因变量之间的关系,通过多元回归模型可以找到最佳的回归系数,从而用来预测未来的结果。
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
数理统计关键知识点汇总
数理统计关键知识点汇总数理统计(Statistical Mathematics)是数学的一个分支,研究的是收集、分析和解释数据的方法。
在实际应用中,统计学被广泛运用于各个领域,包括经济学、社会学、医学和环境科学等。
本文将汇总并介绍数理统计的几个关键知识点。
一、总体和样本在统计学中,我们需要区分总体(Population)和样本(Sample)这两个概念。
总体是研究对象的全体,而样本是从总体中抽取的一部分。
通过对样本的研究,我们可以推断出总体的特征。
在实际应用中,由于总体往往过于庞大,难以直接进行统计分析,因此常常采用样本来代表总体。
二、概率分布概率分布是用来描述随机变量可能取值的概率的函数。
常见的概率分布包括正态分布、泊松分布和二项分布等。
正态分布是最重要的分布之一,它在自然界中广泛存在,被广泛应用于描述实验结果、人口统计数据和观测误差等。
三、抽样分布抽样分布是样本统计量的分布。
样本统计量是根据抽取的样本计算得到的数值指标,如样本均值和样本方差等。
抽样分布的中心极限定理表明,当样本容量足够大时,抽样分布可以近似地服从正态分布。
这对于进行统计推断提供了基础。
四、参数估计参数估计是根据样本数据来估计总体参数值的方法。
常见的参数估计方法包括点估计和区间估计。
点估计是根据样本估计得到总体参数的一个点估计值,如样本均值是对总体均值的一个点估计。
区间估计是根据样本数据构造一个总体参数的区间估计范围,如置信区间。
五、假设检验假设检验是用来检验关于总体参数的假设的方法。
通常,我们会提出一个原假设和一个备择假设,并进行假设检验来判断哪个假设更为合理。
假设检验的基本思想是计算一个统计量,并将其与一个临界值进行比较,从而得出对原假设的统计结论。
六、相关与回归分析相关和回归分析是用来研究变量之间关系的方法。
相关分析用于描述两个变量之间的相关程度,可以通过计算相关系数来衡量变量间的线性关系强度。
回归分析则用于建立一个变量与多个自变量之间的关系模型,从而进行预测和解释。
考研数学数理统计基础知识点总结
考研数学数理统计基础知识点总结在准备考研数学的过程中,掌握数理统计基础知识是非常重要的。
本文将为您总结一些常见的数理统计基础知识点,帮助您更好地备考。
一、概率论基础知识1. 事件与样本空间:事件是指样本空间中的某个子集,样本空间则是指随机试验的所有可能结果的集合。
2. 概率的定义:概率是指事件发生的可能性大小,其取值范围在0到1之间。
3. 概率的运算:包括加法公式和乘法公式。
加法公式适用于互斥事件的概率计算,乘法公式则适用于独立事件的概率计算。
4. 条件概率:指在已知某一事件发生的条件下,另一事件发生的概率。
5. 贝叶斯定理:用于计算事件的后验概率,在已经得到一些信息的情况下,通过先验概率和条件概率计算出事件的后验概率。
二、随机变量与概率分布1. 随机变量的概念:随机变量是指随机试验结果的某个函数,可以是离散的或连续的。
2. 概率质量函数与概率密度函数:对于离散型随机变量,其概率可以通过概率质量函数来描述;对于连续型随机变量,则需要使用概率密度函数。
3. 常见的离散型随机变量:包括伯努利分布、二项分布、泊松分布等。
4. 常见的连续型随机变量:包括均匀分布、正态分布、指数分布等。
三、统计推断1. 抽样与抽样分布:抽样是指从总体中选取一部分个体进行研究,抽样分布则是指统计量在大量抽样下的分布情况。
2. 参数估计:根据样本数据对总体的某个参数进行估计,可以使用点估计和区间估计两种方法。
3. 假设检验:对总体参数的某个假设进行检验,包括设置原假设和备择假设,以及计算检验统计量和判断拒绝域。
4. 方差分析:一种用于比较两个或多个总体均值是否有显著差异的统计方法,适用于独立样本、配对样本和重复测量样本。
四、相关与回归分析1. 相关分析:用于判断两个变量之间的相关性强弱,包括计算相关系数和进行假设检验。
2. 简单线性回归分析:用于建立一个自变量与因变量之间的线性关系模型,通过最小二乘法来估计回归系数。
3. 多元线性回归分析:在简单线性回归的基础上,将多个自变量引入回归模型中进行分析,以探究多个变量对因变量的影响。
概率论与数理统计考点归纳
以下是概率论与数理统计的一些常见考点归纳:
概率论:
1. 概率的基本概念:样本空间、事件、随机变量等。
2. 概率运算:并、交、差、补等运算规则。
3. 条件概率与独立性:条件概率的定义与计算、独立事件的判定与计算。
4. 随机变量:离散和连续随机变量的概念、概率质量函数(PMF)和概率密度函数(PDF)、期望、方差等。
5. 常见离散分布:伯努利分布、二项分布、泊松分布等。
6. 常见连续分布:均匀分布、正态分布、指数分布等。
7. 两个随机变量的关系:协方差、相关系数等。
数理统计:
1. 抽样与抽样分布:简单随机抽样、抽样分布、中心极限定理等。
2. 参数估计:点估计和区间估计、最大似然估计、置信区间等。
3. 假设检验:假设检验的基本步骤、显著性水平、p值等。
4. 单样本参数检验:均值检验、比例检验等。
5. 两样本参数检验:两样本均值检验、两样本比例检验等。
6. 方差分析:单因素方差分析、多因素方差分析等。
7. 相关与回归分析:相关系数、简单线性回归模型等。
这只是概率论与数理统计的一些常见考点归纳,实际考试中可能还会涉及更多细分知识点。
在复习过程中,建议根据自己的学习进度和重点,深入学习和掌握这些知识点,并进行大量的练习题来加深理解和提高解题能力。
(完整版)概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
数学的数理统计学
数学的数理统计学数理统计学是一门应用数学的分支学科,旨在研究数据的收集、分析和解释。
它是现代科学、工程和社会科学中必不可少的工具之一。
本文将从数学的角度出发,介绍数理统计学的基本概念、方法和应用。
一、基本概念数理统计学的基本概念包括总体、样本、随机变量和概率分布等。
总体是指研究对象的全体,样本则是从总体中选取的一部分个体。
随机变量是描述随机现象的数值特征,概率分布则描述了随机变量的取值规律。
二、数据的收集与描述在数理统计学中,收集和描述数据是关键的一步。
常见的数据收集方法包括抽样调查、实验和观测等。
而对数据进行描述的手段主要有集中趋势度量和离散程度度量。
集中趋势度量包括均值、中位数和众数等,用于反映数据的中心位置;离散程度度量包括方差、标准差和变异系数等,用于反映数据的离散程度。
三、概率与概率分布概率是数理统计学的重要概念之一,用来描述随机现象发生的可能性。
概率分布则用于描述随机变量的取值规律。
常见的概率分布包括正态分布、二项分布和泊松分布等。
正态分布是一种重要的连续型概率分布,其以钟形曲线为特征,广泛应用于自然科学和社会科学领域。
二项分布和泊松分布则常用于描述离散型随机变量的概率分布。
四、参数估计与假设检验参数估计与假设检验是数理统计学中的核心内容。
参数估计是根据样本数据对总体参数进行估计,常用的方法包括点估计和区间估计。
假设检验则是用于判断总体参数是否满足某个假设,常用的方法包括单样本假设检验、双样本假设检验和方差分析等。
五、回归与相关分析回归分析是研究两个或多个变量之间关系的统计方法。
简单线性回归分析用于描述两个变量之间的线性关系,多元线性回归分析则考虑多个自变量对因变量的影响。
相关分析则用于描述两个变量之间的相关程度,常用的是皮尔逊相关系数。
六、应用领域数理统计学在各个领域都有广泛的应用。
在自然科学方面,数理统计学可以帮助分析实验数据,验证理论模型。
在工程领域,数理统计学可以应用于质量控制、可靠性分析等。
数理统计知识点总结(总22页)
数理统计知识点总结(总22页)一、基本概念1、统计学:统计学是一门研究人群或事物特性及变化规律的学科,是应用数理统计方法研究某种规律的学科,是整理、综合和分析统计资料的学科。
2、统计资料:统计资料是从实际中收集的有关统计对象的数据,也可以称为实验资料。
3、变量:历史的发展过程中,统计中的变量可分为定量变量和定性变量。
前者是指可以用数字表示的变量,又被称为被观察变量或解释变量;后者多由文字描述,不能量化,又被称为因变量或行为变量。
4、分类变量:又称为分类统计数据,是指按照一定的范围将变量等分,主要用于描述变量的构成状况。
5、样本:样本是用于做统计分析的一部分数据,它按照一定的要求从某种群体中抽取出来,它是统计资料的简写总结。
样本本身并非具有代表性,但在发现规律方面与总体相比,它有许多独特的优势。
二、数理统计方法1、数据描述:数据描述是指用定量和定性的方式把统计对象描述出来,也就是用汇总统计和分类统计的方法研究统计资料的特征。
2、分布类型:经过研究的统计资料各变量的分布可分为三种基本形式:正态分布、对数分布和正玄分布。
3、抽样技术:抽样是指在随机或不完全随机的情况下,从一个总体中抽出一定数量的抽样单位,用它们反映整体的一般特性的科学方法。
4、统计推断:统计推断是指借助于统计技术去评价样本资料与总体资料之间的联系,并借以判断在一定概率水平上总体参数的取值情况,并对总体参数做出推断。
5、回归分析:回归分析是利用统计方法,探索两个或多个变量之间存在的关系,及掌握这种关系的参数。
三、统计推断1、假设检验:假设检验是统计推断的基本方法,是统计方法求出的取值所处位置在参数特定范围内的概率,通常用统计量在假设下把允许的概率建模出来。
2、置信区间:置信区间是统计学中定量评价事物变化范围的一种分析方法,其作用是加以比较研究结果,以及让相应的概率参数可以被确定的概率范围的压缩,使数据更有说服力。
3、方差分析:方差分析是检验研究变量之间是否存在显著的差异性的统计分析方法,其研究的是变量的变异程度。
概率论与数理统计知识点总结
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为
;
在已知X=x的条件下,Y的条件分布密度为
(7)独立性
一般型
F(X,Y)=FX(x)FY(y)
离散型
有零不独立
连续型
f(x,y)=fX(x)fY(y)
直接判断,充要条件:
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为
,
的分布列( 互不相等)如下:
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2)≥F(x,y1);
(3)F(x,y)分别对x和y是右连续的,即
(4)
(5)对于
.
(4)离散型与连续型的关系
(5)边缘分布
离散型
X的边缘分布为
;
Y的边缘分布为
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
考研数学《概率论与数理统计》知识点总结
考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
大学数理统计的基本概念
大学数理统计的基本概念数理统计是一门应用数学学科,研究如何收集数据、分析数据并进行推断的方法和理论。
在大学的数学统计课程中,学生将学习一系列核心的基本概念,如样本、总体、概率、随机变量等等。
本文将介绍大学数理统计中的基本概念,并探讨它们在实际问题中的应用。
一、样本与总体在数理统计中,样本和总体是两个基本概念。
样本是从总体中选取的一部分个体或观测值的集合,而总体是研究对象的全体个体或观测值的集合。
样本的选择通常通过随机抽样来保证代表性。
二、概率与概率分布概率是描述随机事件发生可能性的数值,通常用0到1的数字表示。
在数理统计中,我们使用概率来描述随机变量的可能取值。
概率分布是随机变量取值的可能性分布,常见的概率分布包括均匀分布、正态分布等等。
概率和概率分布对于研究和预测随机事件至关重要。
三、随机变量与参数估计随机变量是在一个随机试验中可能取到的各种值,可以分为离散随机变量和连续随机变量。
参数估计是通过样本数据对总体参数进行估计的过程,主要包括点估计和区间估计两种方法。
参数估计是统计学的核心内容之一,对于从样本数据中推断总体特征非常重要。
四、假设检验与统计推断假设检验是判断关于总体参数的假设是否成立的一种方法。
在假设检验中,我们需要提出一个原假设和一个备择假设,并根据样本数据进行推断和判断。
统计推断是根据样本数据对总体进行推断和预测的过程,常用的方法包括参数估计和假设检验。
五、回归与方差分析回归分析是研究自变量和因变量之间关系的一种统计方法,用于建立数学模型并进行预测和解释。
方差分析是用于比较多个总体均值是否有显著性差异的统计方法,常用于实验设计和数据分析。
六、抽样调查与统计图表抽样调查是经济、社会和科学研究中常用的一种数据收集方法,通过从总体中选取样本进行调查和分析,得出对总体的推断。
统计图表是用来直观展示数据分布、关系和趋势的图形工具,包括条形图、折线图、饼图等等。
总结:大学数理统计的基本概念包括样本与总体、概率与概率分布、随机变量与参数估计、假设检验与统计推断、回归与方差分析以及抽样调查与统计图表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 06 数理统计的基本概念
知识网络图
正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭
⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧
主要内容
一、样本
我们把从总体中抽取的部分样品n x x x ,,,21Λ称为样本。
样本中所含的样品数称为样本容量,一般用n 表示。
在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。
在泛指任一次抽取的结果时,n x x x ,,,21Λ表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21Λ表示n 个具体的数值(样本值)。
我们称之为样本的两重性。
二、.统计量
1.定义:称不含未知参数的样本的函数),,,(21n X X X f Λ为统计量
2.常用统计量
样本均值 .11
∑==n
i i x n x 样本方差
∑=--=n i i x x n S 122.)(11 样本标准差 .)(111
2∑=--=n
i i x x n S 样本k 阶原点矩
∑===n i k i k k x n A 1
.,2,1,1Λ 样本k 阶中心矩
∑==-=n
i k i k k x x n B 1
.,3,2,)(1Λ μ=)(X E ,n X D 2
)(σ=,
22)(σ=S E ,221)(σn
n B E -=, 其中∑=-=n
i i X X n B 1
22)(1,为二阶中心矩。
三、抽样分布
1.常用统计量分布
(1)设n X X X ,,,21Λ是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212n n X X X X Λ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ.
(2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n Y
X
T =服从自由度为n 的-t 分
布,记为()n t T ~.
(3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1
22
1n n Y X n Y n X
F ⋅==。
服从自由度为()21,n n 的-F 分布,记为()21,~n n F F
2.正态总体场合
设n X X X ,,,21Λ是从正态总体()2,σμN 中抽取的一个样本,记
()2
1211,1∑∑==-==n i i n n i i X X n S X n X ,则 (1);,~2⎪⎪⎭
⎫ ⎝⎛n N X σμ (2)X 与2
n S 相互独立. (3)()()1~1222
--n S n χσ;或()1~)(2212
--∑=n X X n i i χσ
(4)()n X
n i i 2212
~)(χσμ∑=-
(5)()1~/-=-=n t n
S X T μ
(6)若n X X X ,,,21Λ,2,,21n Y Y Y Λ这21n n +个随机变量相互独立,且都服从正态分布()2,σμN ,则
()()
()1,1~11112112212121------=∑∑==n n F Y Y n X X n F n i i n i i . 即()1,1~2122
21--=n n F S S F。