高层建筑地下室结构设计实例分析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高层建筑地下室结构设计实例分析

高层建筑地下室结构设计实例分析

摘要:结合工程实例,笔者从地下室基础、顶板、侧壁、底板四方面介绍高层建筑地下室的结构设计,可供相关专业技术人员参考。

关键词:高层建筑、地下室、结构设计、基础、顶板、侧壁、底板

中图分类号:[TU208.3] 文献标识码:A 文章编号:

1 工程概况

某住宅建筑高度为 53.6m,主体结构为18 层,采用钢筋混凝土框架剪力墙结构,地下室为 1 层,主要当车库使用。该工程采用了预应力管桩,持力层为强风化岩或中风化岩,单桩承载力特征值为1700kN,地下室底板采用平板式筏,抗浮水头 5m。该建筑的抗震设计类别为丙类,抗震设防烈度为 7 度,设计基本地震加速度值为0.10g。主体结构中框架和剪力墙的抗震等级都是三级,框支柱、框支梁为二级抗震等级。地下室平时用于车库使用,战时可为人防工程,人防设计等级为6级。

2 地下室结构设计

2. 1 地下室基础设计

根据本工程地质报告的情况,本工程采用预应力管桩基础,持力层为强风化岩或中风化岩,500mm直径管桩单桩承载力特征值

1700kN,岩层承载力较高,可满足沉降的要求。

2. 2 地下室顶板设计

本工程地下室顶板上设计了园林景观,需覆土0.5m,同时考虑到设备管线的高度及其保护土层厚度,最后确定覆土厚度为1.1m。

1)主楼室内部分地下室顶板设计

主楼室内部分的地下室顶板适宜考虑施工阶段的承载力验算,因此考虑施工荷载后楼板荷载取为5kN/m2。

2)园林景观顶板设计

园林景观部分除考虑覆土的重量外,尚需考虑景观、道路及附属设施的荷载;本工程景观部分荷载取值为 4kN/m2,消防车道部分荷载较大,按照规范的要求应为 35kN/m2,但考虑到本工程地下室顶板上有1.1m 的覆土,荷载经过扩散后实际传导到梁板上的荷载已大大减小,经计算扩散后消防荷载取值可按 20kN/m2考虑。

3)人防地下室的荷载取值

由地下室一层为人防地下室,所以对于本工程中的露天顶板要考虑到爆动荷载影响,但鉴于人防地下室顶板的爆动等效荷载要比消防车作用的板面等效荷载大,因此人防地下室顶板的荷载按照六级人防顶板的等效荷载考虑,取750kN/m2,但在设计中不同时考虑这两种荷载的组合,仅需按人防爆动等效荷载进行地下室顶板计算。

2. 3 地下室侧壁设计

1)进行地下室侧壁设计时,侧壁主要考虑的荷载有:结构自重、地面堆载及活载、防核爆等效静荷载、侧向土压力、地下水压力等,由于侧壁受有多种荷载共同作用,受力较为复杂,为了简化计算,在设计中可作如图 1 所示的合理的简化。

本工程地面活荷载取为q=10kN/m2,则折算土的厚度应为h=

10/18=0.56m,等代土压力采用公式σ0=γ1h1ka计算。侧向土压力对于地下水位以上的土压力采用公式σs1=γh2ka,对于地下水位以下的土压力则采用公式σs2=γh3ka计算。经计算地下室 1 层的侧壁板厚取为 350mm。

2)侧壁的构造要求是,在与土壤接触的侧壁混凝土保护层取为40mm,地下室内部的混凝土则取为 15mm。把地下室侧壁的水平钢筋配置在外侧,而竖向钢筋配置在侧壁内侧。为了有效控制本地下室的侧壁混凝土开裂,混凝土强度等级并不宜取得高,以减小混凝土的收缩应力,工程混凝土强度等级取为 C30。同时,本工程还设置了多道后浇带,有效的减小了地下室混凝土开裂。

2. 4 地下室底板设计

1)地下室底板主要以抗渗和抗浮计算为主,地下水位按50a 一遇考虑取在室外地坪,抗浮水头 5m,抗渗等级 P6。地下室底板所处土层为淤泥及淤泥质土,承载力较低不能作为持力层,故本次设计地

下室底板按倒楼盖设计,采用无梁楼盖的方法计算,采用经验法,经计算地下室底板厚 600mm。

2)地下室底板的钢筋布置要合理。地下室底板同一方向的梁板面筋应布置在相同标高上,没必要把两个方向的板面筋布置在梁面筋以下。这是由于基础梁两个方向的面筋本身就存在高差,而若把底板双向的面筋都布置在基础面筋下,则会造成底板面筋的面筋保护层过大,造成窝顶情况出现。

3)抗浮桩的验算与设计

抗浮计算无统一的计算公式,该工程抗浮计算按下式:

G+nRa>1.1Fw

式中,G 为柱底传来恒载标准值即建筑物自重包括覆土自重(向下);n 为柱下抗浮桩的桩数;Ra 为抗浮桩的单桩抗浮承载力特征值;Fw为与柱对应的受荷范围内地下水浮力标准值(向上)。

该公式中荷载标准值对应于桩的特征值,相当于基础地耐力计算式,概念较为明确,且在验算建筑物之抗浮能力时不应考虑建筑物上的活荷载。水浮力标准值Fw= Hw×10×A,Hw为水头高度,即抗浮设计水位与地下室底板底之间的高度;A 为水浮力的作用面积。因地下室抗浮是一个十分重要的问题,若考虑不当将会带来严重的后果,且补救较为困难,所以抗浮验算时安全系数取 1.1。另外,在设计中有许多对抗浮有利的因素在公式计算中无法体现,且均未予以考虑。如黏性土的阻水作用,地下室侧壁的侧阻作用,底板与土壤的粘结力和吸力均未记入,上部建筑物及地下室的整体刚度很大,上部建筑物的压重在地下室部分的扩散作用均未考虑,这些有利因素均可作为安全储备。

该工程桩基抗浮验算时分两种情况,一种为柱下抗浮桩,另一种为非柱下抗浮桩。对于柱下抗浮桩(取⑥轴交 F 轴处柱下桩计算)建筑物自重及覆土自重的标准值 G=1755kN,而该处承受的向上的水浮力标准值Fw=1037kN,G>1.1Fw,说明在有柱子的情况下,建筑物的自重及覆土自重比受到的水浮力大很多,足以满足抗浮要求而无需抗浮桩。因此,对于柱下桩可不考虑抗浮要求,仅需满足竖向抗压承载力就可以了。对于非柱下抗浮桩 (取⑥轴~⑦轴交 F 轴~G 轴中间

处非柱下桩计算),由于其承受的建筑物自重较小,G=489kN,Fw =1037kN,G>1.1Fw。因此,非柱下桩必须考虑抗浮要求。根据工程地质勘察报告提供的数据及土层情况,经计算确定该工程抗浮桩的单桩竖向抗浮承载力特征值Ra=680kN。因此,根据上述抗浮计算公式G+nRa>1.1Fw,89kN+680kN=1169kN>1.1×1037kN,满足抗浮要求。

3结语

地下室作为整个建筑结构的重要组成部分,其决定着整个建筑结构是否具有稳固的基础,在一些高层建筑中,地下工程的造价甚至还比上部结构造价要高。而由于地下室的特殊位置,其结构设计是较复杂的设计问题,要考虑以及涉及的内容繁多,甚至对于一些关于地下室结构的设计问题目前还没得到思想一致,如基础与地基的相互作用、上部结构刚度对地基基础的影响程度等。鉴于地下室的复杂设计因素,这要求我们设计人员在进行地下室结构设计时应把握安全可靠、经济合理的协调原则,从技术以及经济方面去深入研究地下室结构的设计技术问题。

参考文献:

[1] 顾晓鹏.SATWE 计算软件在地下室结构设计中的应用[J].山西建筑,2008,34(15):53-54.

[2] 都军花,梁丽芳.建筑工程中地下室结构设计探讨[J].中国高新技术企业,2009,25(9):179-180.

[3] 杨照夫.金马同盛大厦地下室结构设计分析[J].科技创新导报,2009,18(24):28-29.

[4] 文华.论述地下室结构设计存在的问题[J].建材与装饰,2008,(6):10-12.

------------最新【精品】范文

相关文档
最新文档