SPSS170在生物统计学中的应用实验七卡方检验汇总
SPSS卡方检验具体操作
SPSS卡方检验具体操作SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,它包含了许多常用的统计方法,包括卡方检验。
卡方检验是一种经典的假设检验方法,用于检验两个分类变量之间是否存在显著的关联性。
下面将介绍SPSS中进行卡方检验的具体操作步骤。
步骤一:导入数据在SPSS软件中,点击“文件(File)”菜单,然后选择“打开(Open)”选项,找到所需分析的数据文件,点击“打开”。
然后通过哪个方式导入数据,可以选择加载文本文件、Excel文件、数据库等不同的方式。
导入数据后,SPSS会将数据显示在主窗口的数据视图中。
步骤二:设置变量属性在进行卡方检验之前,需要设置变量的属性,告诉SPSS每个变量的测量尺度。
例如,在分析两个分类变量之间的关联性时,需要将这两个变量都设置为“标称(Nominal)”尺度。
步骤三:执行卡方检验在SPSS软件中,点击“分析(Analyse)”菜单,然后选择“描述统计(Descriptive Statistics)”选项,再选择“交叉表(Crosstabs)”。
在弹出的对话框中,将需要分析的两个变量分别选择到“行(Rows)”和“列(Columns)”框中。
然后点击“Statistics”按钮,选中“卡方(Chi-square)”复选框,然后点击“Continue”按钮。
最后,点击“OK”按钮,SPSS将进行卡方检验并生成结果报告。
步骤四:解读结果在SPSS生成的结果报告中,主要包括卡方检验统计量、自由度、卡方值、显著性水平以及卡方检验的判定结果等内容。
卡方检验统计量用于判断两个分类变量之间是否存在显著的关联性。
如果卡方值较大且显著性水平(p值)小于设定的显著性水平(通常为0.05),则说明两个变量之间存在显著的关联性。
如果卡方检验的判定结果为显著,可以进一步进行后续分析,如计算关联性指数(如Cramer's V或Phi系数)来了解两个变量之间的关联性程度。
卡方检验SPSS操作
卡方检验SPSS操作卡方检验是一种统计方法,用于比较观察频数与期望频数之间的差异是否显著。
它适用于比较两个或多个分类变量之间的关系,并确定这些变量是否相互独立。
在SPSS中,可以使用交叉表和卡方检验命令来执行卡方检验。
首先,打开SPSS软件并导入待分析的数据文件。
然后,选择“数据”菜单中的“交叉表”选项。
在弹出的交叉表对话框中,将要分析的变量拖拽到“行”和“列”的方框中。
假设我们要比较性别和喜好电影类型之间的关系,那么将性别拖拽到“行”,将电影类型拖拽到“列”。
接下来,在交叉表对话框中,点击“统计”按钮。
在弹出的统计对话框中,选择“卡方”选项,并点击“继续”按钮。
然后,点击“确定”按钮生成交叉表。
SPSS将显示交叉表的结果,包括观察频数、期望频数、卡方值和p值等。
在卡方检验中,我们通过观察频数和期望频数之间的差异来判断两个变量是否相关。
如果差异较大,卡方值较大,p值较小,则说明两个变量之间存在显著关系。
不管是使用交叉表还是描述统计方法进行卡方检验,都需要注意以下几点:1.样本数据应该是随机抽取的,并且足够大。
2.对于交叉表中的每个单元格,期望频数应当大于等于5,以确保卡方检验的可靠性。
3.卡方检验只能检验两个或多个分类变量之间的关系,不能用于比较连续变量。
4.如果卡方检验结果显著,表明两个变量之间存在关联,但不能确定关联的性质或因果关系。
卡方检验在数据分析中有着广泛的应用,可以用于医学研究、市场调查、社会科学等领域。
通过SPSS软件的操作,可以便捷地进行卡方检验,并获取检验结果。
SPSS17.0在生物统计学中的应用-实验五、方差分析---六、简单相关及回归分析
SPSS在生物统计学中的应用——试验指导手册试验五:方差分析一、试验目标与要求1.帮助学生深化了解方差及方差分析的基本概念,驾驭方差分析的基本思想和原理2.驾驭方差分析的过程。
3.增加学生的实践实力,使学生能够利用SPSS统计软件,娴熟进行单因素方差分析、两因素方差分析等操作,激发学生的学习爱好,增加自我学习和探讨的实力。
二、试验原理在现实的生产和经营管理过程中,影响产品质量、数量或销量的因素往往很多。
例如,农作物的产量受作物的品种、施肥的多少及种类等的影响;某种商品的销量受商品价格、质量、广告等的影响。
为此引入方差分析的方法。
方差分析也是一种假设检验,它是对全部样本观测值的变动进行分解,将某种限制因素下各组样本观测值之间可能存在的由该因素导致的系统性误差与随即误差加以比较,据以推断各组样本之间是否存在显著差异。
若存在显著差异,则说明该因素对各总体的影响是显著的。
方差分析有3个基本的概念:观测变量、因素和水平。
●观测变量是进行方差分析所探讨的对象;●因素是影响观测变量改变的客观或人为条件;●因素的不同类别或不通取值则称为因素的不同水平。
在上面的例子中,农作物的产量和商品的销量就是观测变量,作物的品种、施肥种类、商品价格、广告等就是因素。
在方差分析中,因素经常是某一个或多个离散型的分类变量。
⏹依据观测变量的个数,可将方差分析分为单变量方差分析和多变量方差分析;⏹依据因素个数,可分为单因素方差分析和多因素方差分析。
在SPSS中,有One-way ANOV A(单变量-单因素方差分析)、GLM Univariate(单变量多因素方差分析);GLM Multivariate (多变量多因素方差分析),不同的方差分析方法适用于不同的实际状况。
本节仅练习最为常用的单变量方差分析。
三、试验演示内容与步骤㈠单变量-单因素方差分析单因素方差分析也称一维方差分析,对两组以上的均值加以比较。
检验由单一因素影响的一个分析变量由因素各水平分组的均值之间的差异是否有统计意义。
SPSS卡方检验的详细解读
SPSS卡方检验的详细解读一、基本概念:卡方检验(一)定义卡方检验主要用于研究定类与定类数据之间的差异关系。
一般使用卡方检验进行分析的目的是比较差异性。
例如研究人员想知道两组学生对于手机品牌的偏好差异情况。
(二)卡方值卡方值表示观察值与理论值之间的偏离程度。
卡方值的大小与样本量(自由度)有关。
一般来说,卡方值越大越好,但并不准确。
比如5000和5010的差异为10;40和50的差异为10,明显后者差异更大。
最终查看卡方值对应的p 值更准确。
二、卡方检验分类(一)方法分类SPSSAU系统中,卡方检验分为【通用方法】中的交叉卡方,以及【医学/研究】模块中的卡方检验、配对卡方、卡方拟合优度、分层卡方五类。
(二)方法对比(1)交叉卡方适用于大部分场景之中,满足大部分用户需求,使用频率高,仅使用Pearson卡方,不支持加权数据。
交叉卡方仅输出一个交叉卡方分析结果如下图:可以看到卡方值为16.667,p =0.000<0.01,所以不同地区的饮食习惯情况呈现出显著性差异。
(2)卡方检验适用于实验医学研究方向,专业性更强,使用频率高。
从上表可知,利用卡方检验(交叉分析)去研究减肥方式对于胆固醇水平共1项的差异关系【独立性】,不同减肥方式样本对于胆固醇水平共1项呈现出显著性(p <0.05)。
总结可知:不同减肥方式样本对于胆固醇水平全部均呈现出显著性差异。
①Pearson卡方、yates校正卡方、Fisher卡方三类卡方,具体选择标准如下图上表格为卡方检验的中间过程值,由于本案例数据为3*2格式,且1 <=E<5 格子的比例大于20%(此处为33.33%),因而最终选择使用yates校正卡方值。
【特别备注: Pearson卡方和yates校正卡方完全相同是正常现象,多数情况下二者完全相等】②加权数据数据格式如下③效应量指标(研究差异幅度情况,效应量值越大说明差异幅度越大,通常情况下效应量小、中、大的区分临界点分别是 0.20,0.50 和 0.80)卡方检验时,通常有5个指标均可表示效应量大小,区别在于使用场合不一样,选择标准如下图:上表格为效应量指标,由于本案例数据为3*2格式,所以使用Cramer V 研究差异幅度情况。
SPSS中的卡方检验、t检验和方差分析
SPSS中的卡⽅检验、t检验和⽅差分析
⾸先要明⽩两个概念:
计数资料和计量资料
(1)计数资料⼜称为定性资料:是分类型的,统计每个类型有多少数量。
(2)计量资料⼜称为定量资料:⽐如年龄,是有具体的数值。
根据数据的类型,使⽤不同的⽅法:
(1)对于计量资料。
秩和检验在国内的⽂章中很少见到。
当数据只有两组进⾏对⽐的时候,使⽤t检验和⽅差分析都可以。
但是有两组或者两组以上的时候,使⽤⽅差检验。
(2)对于计数资料,使⽤卡⽅分析,卡⽅分析⽤于⽐较,不同组之间,不同数量是否有差异。
⽐如,⽐较两组,男⽣⼈数和⼥⽣⼈数是否有差距。
独⽴样本t检验:两独⽴样本t检验就是根据样本数据对两个样本来⾃的两独⽴总体的均值是否有显著差异进⾏推断;进⾏两独⽴样本t检验的条件是,两样本的总体相互独⽴且符合正态分布;
⽐如:A组和B组,⽐较A组⼈的⾝⾼和B组⼈的⾝⾼是否有差异。
配对样本t检验-:配对样本是指对同⼀样本进⾏两次测试所获得的两组数据,或对两个完全的样本在不同条件下进⾏测试所得到的两组数据;两独⽴样本t检验就是根据样本数据对两个配对样本来⾃的两配对总体的均值是否有显著差异进⾏推断;两配对样本t检验的前提条件:两样本是配对的(数量⼀样,顺序不能变),服从正态分布。
⽐如:实验组A组中,实验前后,变化的对⽐。
spss卡方检验
spss卡方检验SPSS卡方检验SPSS(统计软件包 for the Social Sciences)是一种功能强大的统计软件,在社会科学、商业智能和市场调研等领域得到广泛应用。
其中,卡方检验是SPSS中常用的统计方法之一。
本文将介绍SPSS 中使用卡方检验进行数据分析的基本步骤、原理和注意事项。
一、卡方检验的基本概念卡方检验,又称为卡方拟合优度检验,用于比较观察样本与理论预期分布之间的差异。
它基于卡方统计量,可以用于分析分类数据的关联性和独立性。
卡方检验的结果可以帮助研究人员判断观察数据与理论模型之间的差异程度以及独立性。
二、SPSS中进行卡方检验的步骤1. 收集数据并导入到SPSS中。
2. 在SPSS中选择“分析”菜单,点击“描述统计”下的“交叉表”。
3. 在交叉表对话框中,选择需要比较的两个变量。
4. 点击“统计”按钮,选择“卡方”选项。
5. 点击“继续”按钮,然后点击“OK”按钮生成交叉表结果。
三、SPSS卡方检验的原理SPSS中的卡方检验基于卡方统计量,该统计量用于衡量观察值与理论期望值之间的差异。
卡方统计量的计算公式如下:\\[ X^2 = \\sum \\frac{(O-E)^2}{E} \\]其中,O表示观察值,E表示理论期望值。
卡方统计量服从自由度为(k-1) × (m-1)的卡方分布,其中k表示列数,m表示行数。
通过计算卡方统计量,可以得到卡方值和P值。
如果P值小于设定的显著性水平(通常为0.05),则认为观察值与理论期望值存在显著差异,拒绝原假设。
四、卡方检验的应用场景卡方检验通常用于以下几种情况:1. 检验分类变量之间的关联性。
例如,研究某一地区的居民性别与吸烟习惯之间的关系。
2. 检验分类变量与某一特定属性的关联性。
例如,研究某个产品的用户满意度与不同年龄段之间的关系。
3. 检验分类变量的分布是否服从某一特定的理论分布。
例如,研究某一地区的选民支持率是否符合某个政党的预期。
论文格式设置 卡方检验方法17.0
利用SPSS17.0软件进行卡方检验[日期:2012-12-06] 来源:检验科作者:胡佰胜[字体:大中小] 在医学论文写作中,通常要用到Pearson卡方检验。
用途:用于检验两个或多个率或构成比的差别有无统计学意义的方法。
它常用于四格表和行列资料的分析,基于无效假设成立时理论频数与实际频数的差别不大的思想进行假设检验。
它对样本量有一定的要求,样本量条件不满足时,需使用其他方法如校正卡方或确切概率法检验。
对下面一组数据分别进行卡方检验。
2005-2007年高一新生HBSAg检测结果1.分组1=男生 2=女生;类别 1=阳性人数 2=阴性人数2.打开SPSS界面:3.编辑菜单,插入变量→类别、分组、频数。
4.在类别、分组、频数中输入相应数值。
5.数据菜单,个案加权→选中频数→单击确定。
6.分析菜单→描述统计→交叉表→把分组加入到行,把类别加入到列, 单击统计量,选中卡方,单击继续,单击确定。
7. 卡方检验(X2)结果显示如下:8.依照上述方法可以对2006年及2007年进行卡方检验(X2)结果,其结果分别为15.2、16.9。
一、文字样式部分文章有很多种字体格式,一个一个的修改很麻烦,所以在工作之前先要设置一下。
一般分为:正文、图片表格标题、大标题(目录级别)等,首先点菜单栏(是这么叫吧)上的格式,点格式和样式在右侧出现格式和样式,点新样式,出现新建样式对话框,根据要求设置格式。
然后选中需要更改的文字,点击右面设置的样式即可。
二、如何加入目录目录不可少,教给大家一个我用的方法吧,有别的简单方法,我分享过,注意修改格式。
现在说说我这个方法:1.一般目录分为n个级别,一般有3个级别(根据报告不同而不同)如图2.设置标题级别:选中需要设置级别(目录)的标题,右击选“段落”,如图。
3.出现段落后设置级别:大纲级别选择1级,如图。
同理,各个级别也这样选择。
4.注意:每个标题写的文字格式最好一样,如1.1(空格)球墨铸铁概况那么下一个如1.2(空格)球墨铸铁概况,2.1(空格)球墨铸铁概况也同样有空格,而且需要注意标点符号是英文点还是中文圈。
最新SPSS17.0在生物统计学中的应用-实验七-卡方检验汇总
S P S S17.0在生物统计学中的应用-实验七-卡方检验汇总SPSS在生物统计学中的应用——实验指导手册实验七:卡方检验一、实验目标与要求1.帮助学生深入了解卡方检验的基本概念,掌握卡方检验的基本思想和原理2.掌握卡方检验的过程。
二、实验原理卡方检验适用于次数分布的检验,比如次数分布是否与某种理想的分布一致,或者不同样本同类测量分数次数分布是否一致。
对于前者,先要确定一个理想的次数分布比例,然后将观测的某一次数分布与其比较,确定二者的差异性,并用X2来反映。
X2 越小,则差异越小,该样本的观测分布越有可能适合于理想分布;X2 越大,则差异越大,其服从于理想分布的可能性就越小。
当服从理想分布的伴随概率小于0.05时,就认为该次数分布与理想的分布有显著性差异。
不同样本中测量分数的次数分布使用卡方检验时,如果卡方足够大,该观测在两个样本中的次数分布服从于同一总体的概率小于0.05时,则认为样本间存在显著性差异。
三、实验演示内容与步骤㈠适合性检验比较观测数与理论数是否符合的假设检验(compatibility test),也称吻合性检验或拟合优度检验(goodness of fit test).。
【例】有一鲤鱼遗传试验,以红色和青灰色杂交,其F2代获得不同分离尾数,问观测值是否符合孟德尔3:1遗传定律.体色青灰色红色总数F2观测尾数1503 99 16021. 定义变量:2. 输入变量值3. 选择菜单1:点击菜单【数据】→【加权个案】→弹出“加权个案”对话框→4. 选择菜单2:点击菜单【分析】→【非参数检验】→【卡方】→弹出“卡方检验”对话框点击【选项】按钮,弹出“卡方检验:选项”对话框,选择“描述性”,点击【继续】点击【确定】在输出结果视图中看分析结果基本统计量Descriptive StatisticsN Mean Std. Deviation Minimum Maximum 观测尾数1602 1416.24 338.172 99 1503观测尾数Observed N 实测频数Expected N理论频数Residual偏差99 99 400.5 -301.5 1503 1503 1201.5 301.5 Total 1602Test Statistics观测尾数Chi-Square 卡方值302.629adf 1Asymp. Sig. .000a. 0 cells (.0%) have expectedfrequencies less than 5. The minimumexpected cell frequency is 400.5.㈡独立性检验又叫列联表(contigency table)χ2检验,它是研究两个或两个以上因子彼此之间是独立还是相互影响的一类统计方法。
卡方检验的SPSS实现
卡方检验的SPSS实现简介卡方检验是一种统计方法,用于检验两个或多个分类变量之间是否存在相关性。
它基于观察值与期望值之间的差异,判断两个变量是否独立。
SPSS是一款常用的统计分析软件,提供了强大的功能来执行卡方检验以及其他统计分析任务。
本文将介绍如何使用SPSS进行卡方检验,并提供详细的步骤和示例。
步骤步骤一:导入数据在SPSS软件中,首先需要导入包含要进行卡方检验的数据集。
数据集可以是以.csv、.xlsx或者其他常用格式保存的文件。
1.打开SPSS软件。
2.选择“文件”菜单,然后点击“打开”选项。
3.在弹出的文件选择框中,找到并选择要导入的数据文件。
4.点击“打开”按钮,导入数据文件。
步骤二:选择变量在执行卡方检验之前,需要选择要分析的变量。
1.在SPSS软件中,选择“数据视图”选项卡,显示数据集的表格视图。
2.找到包含要分析的变量的列,将其选中。
可以按住Ctrl键选择多个变量。
3.点击菜单中的“分析”选项,然后选择“描述统计”子菜单。
4.在弹出的描述统计对话框中,选择“交叉表”选项,然后点击“统计量”按钮。
5.在统计量对话框中,选中“卡方”复选框,然后点击“确定”按钮。
步骤三:执行卡方检验选择变量之后,可以执行卡方检验。
1.在描述统计对话框中,点击“OK”按钮,开始执行卡方检验。
2.SPSS将生成一个交叉表,显示各个变量之间的交叉频数和期望频数。
3.检查交叉表中的卡方值和p值。
卡方值表示观察值与期望值之间的差异程度,p值表示该差异是否显著。
4.如果p值小于设定的显著性水平(通常为0.05),则拒绝原假设,即认为两个变量之间存在相关性。
步骤四:解读结果根据执行卡方检验的结果,可以得出一些结论。
1.如果卡方值较小,且p值较大,说明观察值与期望值之间的差异较小,两个变量之间可能独立。
2.如果卡方值较大,且p值较小,说明观察值与期望值之间的差异较大,存在一定程度的相关性。
需要注意的是,卡方检验只能判断两个变量之间是否存在相关性,不能说明变量之间的因果关系。
SPSS170在生物统计学中的应用实验七卡方检验汇总
SPSS170在生物统计学中的应用实验七卡方检验汇总在生物统计学中,卡方检验(Chi-square test)被广泛应用于分析分类数据,特别是用于比较观察到的频数与期望频数之间的差异。
该检验可以用于研究不同组群的差异、评估变量之间的关系,以及分析遗传数据等。
下面将概述生物统计学中卡方检验的应用,并举例说明其在实验七中的具体应用。
卡方检验的基本假设是观察到的频数与期望频数之间没有显著差异。
在生物统计学中,卡方检验可以用于比较不同组群之间的离散变量,例如比较不同亚型的基因分布、不同药物治疗组的治疗效果等。
此外,卡方检验也可以用于分析遗传数据,例如遗传比例和基因型分布之间的差异。
在实验七中,我们可以运用卡方检验来分析两种不同的遗传特性之间是否存在关联。
例如,我们可以研究在果蝇种群中,翅膀颜色(黄色或灰色)与眼睛颜色(红色或白色)之间的关系。
我们可以观察到不同翅膀颜色和眼睛颜色组合的频数,并与期望频数进行比较。
如果观察到的频数与期望频数之间存在显著差异,则说明翅膀颜色和眼睛颜色之间存在关联。
下面是实验七中对卡方检验的具体步骤和操作:1.设定零假设和备择假设:-零假设(H0):翅膀颜色和眼睛颜色之间不存在关联。
-备择假设(H1):翅膀颜色和眼睛颜色之间存在关联。
2.收集数据:-记录不同翅膀颜色和眼睛颜色组合的频数。
3.计算期望频数:-根据零假设计算期望频数,期望频数等于每个组合的行边际频数乘以列边际频数,然后除以总频数。
4.计算卡方统计量:-计算卡方统计量,它衡量了观察到的频数与期望频数之间的差异程度。
5.计算自由度:-自由度等于(行数-1)乘以(列数-1)。
6.查找卡方分布表:-使用自由度找到相应的临界值,该值可以帮助我们决定是否拒绝零假设。
7.进行假设检验:-比较计算得到的卡方统计量和临界值,如果卡方统计量大于临界值,则拒绝零假设,否则不拒绝零假设。
8.解释结果:-如果拒绝零假设,说明翅膀颜色和眼睛颜色之间存在关联;如果不拒绝零假设,说明翅膀颜色和眼睛颜色之间没有关联。
SPSS数据分析—卡方检验
SPSS数据分析—卡方检验卡方统计量是基于卡方分布的一种检验方法,根据频数值来构造统计量,是一种非参数检验方法。
SPSS中在交叉表和非参数检验中,都可调用卡方检验。
卡方检验的主要有两类应用一、拟合度检验1.检验单个无序分类变量各分类的实际观察次数和理论次数是否一致此类问题为单变量检验,首先要明确理论次数,这个理论次数是根据专业或经验已知的,原假设为观察次数与理论次数一致例】:随机抽取60名高一学生,问他们文理要不要分科,回答赞成的39人,反对的21人,问对分科的意见是否有显著的差异。
分析:如果意见没有差异,那么赞成反对的人数应该各半,即30次,因此理论次数为30例】:一周内各日患忧郁症的人数漫衍如下表所示,请检验一周内各日人们忧郁数是否满足1:1:2:2:1:1:1例】:一个骰子投掷120次,记录掷得每个点数的次数,问该骰子是否存在问题如果骰子是正常的,那么每个点数掷得的概率应该相等,操作方法和前面一样,也使用非参数检验过程,选择默认的所有类别相等卡方检验主要用于分类变量,但是也可以用于对连续变量的拟合度检验上,此类问题的基本思想是:将总体X的取值范围分成k个互不重叠的小区间A1.A2.Ak,把落入第i个小区间的样本值个数作为实际频数,所有实际频数之和等于样本容量,根据理论分布,可以算出总体X的值落入每个小区间Ai的概率Pi,于是nPi就是落入Ai的样本值的理论频数。
有了实际频数和理论频数,就可以计算卡方统计量并进行卡方检验了。
二、独立性检验独立性检验分析两变量之间是否相互独立或有无分歧,也可以在控制某种因素之后,分析两变量之间是否相互独立或有无分歧。
原假设为两变量相互独立或两变量间的相互作用没有分歧。
对于两变量一般采用列联表的形式记录观察数据,分为四格表和R*C列联表,根据卡方统计量和分类变量的类型,又衍生出一些相关系数,这在相关分析中已经讲过。
例】:为了解男女在公开场合禁烟上的态度,随机调查100名男性和80名女性。
SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景
SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景一、T检验1.1 样本均值比较T检验的使用前提1.正态性;(单样本、独立样本、配对样本T检验都需要)2.连续变量;(单样本、独立样本、配对样本T检验都需要)3.独立性;(独立样本T检验要求)4.方差齐性;(独立样本T检验要求)1.2 样本均值比较T检验的适用场景1.单样本T检验(比较样本均数和总体均数);2.操作:打开分析—比较均值—单样本t检验要求:正态性(可以用K-S检验法,在SPSS中的“分析”–“非参数检验”—“单样本”中;或者直接根据直方图、P-P图,Q-Q图来观察或根据偏度峰度法来分析)说明:由中心极限定理可知,即使原数据不符合正态分布,只要样本量足够大时样本均数分布仍然是正态的。
只要数据不是强烈的偏正态,没有明显的极端值,一般而言单样本t检验都是可以使用的,分析结果都是稳定的。
3.独立样本T检验(比较成组设计的两个样本);4.操作:打开分析—比较均值—独立样本t检验5.我们输入数据的时候,两个样本的数据是要在一列变量里的,另外还有一列二分类变量为这列因变量做标注。
要求:独立性、正态性(对正态性有耐受性)、方差齐性(影响大,检验更有必要,使用Levene’s检验,两样本T检验中提供Levene’s检验,如需更详细的检验结果可在“分析”–“描述统计”–“探索”中进行)说明:各样本相互独立,且均来自于正态分布的样本,各样本所在总体的方差相等;* 疑问:独立性怎么检验?有些数据可以根据现实环境判断;*6.配对样本T检验(如用药前和用药后的两个人群的样本、同一样品用两种方法的比较)7.操作:打开分析—比较均值—配对样本t检验要求:正态性(配对样本等价于单样本T检验,检验的是两个样本对应的差值,初始假设为差值等于0)二、单因素方差分析2.1 单因素方差分析的基本思想•基本思想:变异分解,总变异=随机变异+处理因素导致的变异,又可以分解为总变异=组内变异+组间变异,F=组间变异/组内变异,F 的值越大,处理因素的影响越大。
SPSS的实战应用之 卡方检验
三、配对计数卡方检验SPSS实现
步骤四:卡方检验结果解读
两种测量方法吻合度有统计学 意义,但吻合度一般。
江西省儿童医院
Jiangxi Provincial Children’s Hospital
四、行ⅹ列表资料检验SPSS实现
江西省儿童医院
Jiangxi Provincial Children’s Hospital
SPSS的实战应用 ——卡方检验 简单
主讲人:雷佳芳
2017年1月
主要内容
一、卡方检验概述 二、两独立样本率2检验SPSS实现 三、配对计数资料2检验SPSS实现 四、行ⅹ列表资料2检验SPSS实现
五、课堂实践及解析
步骤三:卡方检验
分 析
描述统计 交叉表
江西省儿童医院
Jiangxi Provincial Children’s Hospital
二、两独立样本率卡方检验SPSS实现
步骤三:卡方检验
江西省儿童医院
Jiangxi Provincial Children’s Hospital
二、两独立样本率卡方检验SPSS实现
江西省儿童医院
Jiangxi Provincial Children’s Hospital
二、卡方检验概述
江西省儿童医院
Jiangxi Provincial Children’s Hospital
一、卡方检验概述
卡方检验的应用: 1、检验两个样本率之间差别的显著性;
2、配对计数资料的比较;
3、检验多个样本率或构成比之间差别的显著性;
行ⅹ列表资料:
江西省儿童医院
Jiangxi Provincial Children’s Hospital
卡方检验的SPSS应用
卡方检验的SPSS应用院系:基础医学院班级:10级生物技术1班姓名:学号:卡方检验的SPSS 应用1.卡方检验:卡方检验是一种用于判断样本是否来自于特定分布的总体的检验方法,其根据样本的频数来推断总体分布与理论分布是否有显著差异。
2.卡方检验的基本原理与方法:2.1卡方检验的基本原理:卡方检验的零假设为:样本所属的总体的分布与理论分布无显著差异。
卡方检验的检验统计量公式为:()∑=E E -O =ki ii i 122χ其中i O 表示观测频数,i E 表示理论频数。
2χ值越小,表示观测频数与理论频数越接近,该2χ统计量在大样本条件下渐进服从于自由度为k-1的卡方分布。
如果该2χ统计量小于由显著性水平和自由度确定的临界值,则认为样本所属的总体的分布与理论分布无显著差异。
2.2卡方检验的步骤:(1)提出无效假设0H :观测值与理论值的差异由抽样误差引起,即观测值=理论值。
同时给出相应的备择假设A H :观测值与理论值的差值不等于0,即观测值≠理论值。
(2)确定显著水平α。
一般可确定为0.05或0.01。
(3)计算样本的2χ。
求得各个理论次数i E ,并根据各实际次数i O ,带入卡方检验的检验统计量公式,计算样本的2χ。
(4)进行统计推断。
由于df=k-1,从表中查出2αχ值,如果实得2χ<2αχ,即表明P>α,应接受0H ,否定A H ,则说明在α显著水平下理论值与实际值差异不显著,二者之间的差异系由抽样误差引起;如果实得2χ>2αχ,即表明P<α,应否定0H ,接受A H ,则说明在α显著水平下理论值与实际值差异是显著的,二者之间的差异是真实存在的。
由于2χ分布是连续的,而计数资料或属性资料是离散的,故所得的2χ值是一个近似值。
为了使离散型变量的计算结果与连续型变量2χ分布的概率相吻合,在计算2χ时应注意以下两个问题:(1)任何一组的理论次数i E 都必须大于5,如果iE ≤5,统计量会明显偏离2χ分布,则需要并组或增大样本容量,以满足i E >5。
SPSS卡方检验步骤
SPSS卡方检验步骤
1.打开数据集:在SPSS中打开包含要进行卡方检验的数据的数据集。
确保数据集中包含分类变量的数据。
2. 创建交叉表:选择"分析"菜单中的“描述性统计”选项,然后选
择“交叉表”。
将一个或多个分类变量移动到"Row(s)"和"Column(s)"框中,以创建交叉表。
3.运行卡方检验:在交叉表创建好后,选择“统计”按钮。
在弹出的
对话框中,勾选“卡方”复选框。
4.设置期望频数:默认情况下,SPSS使用观察到的频数计算期望频数。
如果需要自定义期望频数,可以选择“卡方”对话框中的“期望频数”选项,并在弹出的对话框中进行设置。
5.查看结果:点击“确定”按钮后,SPSS将计算卡方统计量,并在
输出窗口中显示结果。
通过查看卡方检验的结果,可以确定观察到的频数
与期望频数之间是否存在显著差异。
6.解释结果:卡方检验的结果通常包括卡方统计量、自由度和P值。
卡方统计量越大,意味着观察到的频数与期望频数之间的差异越大。
P值
表示观察到的差异是由于抽取误差而不是真正的相关性引起的概率。
如果
P值小于显著性水平(通常为0.05),则可以拒绝原假设,即认为两个变
量之间存在显著相关性。
7.建立交叉表图:在结果显示后,可以选择将结果导出为交叉表图。
在输出窗口中选择“图形”菜单,并选择适当的交叉表图类型。
总之,SPSS卡方检验可以通过计算卡方统计量和P值来确定分类变量之间是否存在显著关联。
通过遵循上述步骤,可以在SPSS中进行卡方检验,并解释其结果。
卡方检验在生物统计学中的应用
卡方检验在生物统计学中的应用卡方检验是一种常用的统计方法,广泛应用于医学、生物学等领域研究中,特别是在生物统计学中应用得较为广泛。
本文将围绕着卡方检验在生物统计学中的应用展开探讨。
一、卡方检验的概念及基本原理卡方检验是一种基于数据频数对比的统计检验方法,基本原理是将观察到的数据与预期的数据进行比较来检验研究数据是否符合某种理论分布。
通常,卡方检验的情况分为两种:单样本卡方检验和独立样本卡方检验。
单样本卡方检验是将实际观测结果与预期频数的差别进行比较。
通常用于分析一个样本的程度是否与理论分布相符。
独立样本卡方检验是将两个或多个独立的样本的频数进行比较。
通常用于检验两个或多个样本所属的总体是否具有相同的特征。
卡方检验的核心思想是基于卡方分布的性质和统计学公式,利用观测与理论的差异性来进行研究。
卡方检验能够对数据进行比较,并对检验结果判断是否有显著性差异,从而得出结论。
二、卡方检验在生物统计学中的应用卡方检验可以在生物统计学中应用于许多场合。
以下列举其中一些:1. 遗传学领域生物学中一个重要的课题是遗传学,卡方检验在遗传学领域中得到广泛应用。
例如,在观察某个基因位点的基因型频率时,使用卡方检验可以检验该位点遗传性状的符合程度。
2. 流行病学领域流行病学研究经常涉及到新型疾病的爆发或者感染率的变化趋势等问题,卡方检验可以提供一种有效的方式来检验不同感染组之间存在的显著性差异。
3. 医学领域医学研究中,卡方检验也得到了广泛应用。
例如,检验某种疾病的治疗方法是否有效、不同治疗方法的治疗效果是否存在显著性差异等方面卡方检验都可以提供统计学支持。
4. 生态学领域生态学在生物学中也有重要地位,卡方检验在生态学研究中也扮演了重要角色。
例如,检测某些类群在不同生境中出现频率的变化,卡方检验可以帮助研究者得到有效的结果。
三、卡方检验的局限性卡方检验能够有效地处理离散的数据,但对于连续性或分类型数据,通常情况下需要考虑其他的检验方法。
SPSS卡方检验操作大全
四格表卡方检验
浙江大学医学院流行病与卫生统计学教研室
沈毅
四格表卡方检验
浙江大学医学院流行病与卫生统计学教研室
沈毅
四格表卡方检验
浙江大学医学院流行病与卫生统计学教研室
沈毅
四格表卡方检验
浙江大学医学院流行病与卫生统计学教研室
沈毅
四格表卡方检验
浙江大学医学院流行病与卫生统计学教研室
沈毅
四格表卡方检验
配对卡方检验
配对卡方检验公式:
若b+c>40,则用公式:
χ
2
(b − c ) = b + c
2
若b+c≤40,则用公式:
χ =
2
( b − c − 1) b+c
2
浙江大学医学院流行病与卫生统计学教研室
沈毅
配对卡方检验
例2 某实验室分别用乳胶凝集法和免疫荧光法对58名
可疑系统性红斑狼疮患者血清中抗核抗体进行测定,结 果见下表,问两种方法的检测结果有无差别?(数据见 McNemar.sav)
浙江大学医学院流行病与卫生统计学教研室
沈毅
两分类变量间关联程度的度量 χ2检验可以从定性的角度说明两个变量是否存在关联,当
拒绝原假设时,在统计上有把握认为两个变量存在相关。 但接下来的问题是,如果两变量之间存在相关性,它们之 间的关联程度有多大?针对不同的变量类型,在SPSS中可 以计算各种各样的相关指标,而且Crosstabs过程也对此提 供了完整的支持,此处只涉及两分类变量间关联程度的指 标,更系统的相关程度指标见相关与回归一章。
一致性检验
结果分析
如果在crosstab过程的 statistics子对话框中勾选上Kappa 复选框,则有以下结果:
07用SPSS进行卡方检验
③单击
,打开图6-5所示对话框,选中“卡方”,
单击
,返回图6-4所示对话框,再单击
,输出
表6-2和表6-3所示结果。
图6-4 行×列分析对话框
图6-5选择统计方法(卡方检验) 对话框
表6-2 灭螨剂A和灭螨剂B杀灭大蜂螨效果
表6-3 2 检验结果表
3.结果说明
表6-2 灭螨剂A和灭螨剂B杀灭大蜂螨效果
图6-2 例6.1数据输入格式
2. 统计分析 (1)简明分析步骤
数据 → 加权个案 加权个案 频率变量:计数 确定
分析→描述统计→交叉表 行:组别 列:效果 统计量: √ 卡方 继续 确定
频率变量为计数
行变量 列变量 要求进行卡方检验
(2)分析过程说明 ①单击“数据 → 加权个案 ”,打开图6-3对话框,选中
总和
34
46
80
◆ 具体步骤: 1.数据输入 (1)点击数据编辑窗口底部的“变量视图”标签,进入 “变量视图”窗口,分别命名3个变量:“组别”、“效果” 和“计数”。“组别”和“效果”两变量的类型选择为 “字符串”,变量“计数”小数位数定义为0,如图6-1。
图6-1 例6.1资料的变量命名
(2)点击数据编辑窗口底部的“数据视图”标签,进入“数据 视窗”界面,按图6-2格式输入数据资料。
五、用SPSS进行卡方检验
内容
一、2×2列联表的独立性检验 二、R×K列联表的独立性检验 三、适合性检验
一、教学目的、要求: 1. 掌握SPSS中进行X2检验分析的基本命令与操作; 2. 理解用SPSS进行X2检验分析所得结果的含义; 3. 了解X2检验的基本原理。
二、本节重点、难点: 1. SPSS中进行X2检验分析的基本命令与操作; 2. SPSS进行X2检验分析所得结果的含义。
SPSS卡方检验具体操作
2021/10/10
15
二、确切概率法:指定频数计算
2021/10/10
17
二、确切概率法:概率计算方法选择
2021/10/10
18
二、确切概率法:统计方法选择
2021/10/10
19
二、确切概率法:结果解读
2021/10/10
20
二、确切概率法:这么计算对吗?
SPSS进行卡方检验具体操作 ——SPSS在医学统计中的应用
2021/10/10
定性资料的统计分析 行×列表分析
1
2021/10/10
定性资料的统计分析
主要内容
一、四格表卡方检验 二、确切概率的计算 三、配对卡方检验 四、分层卡方检验
2
定性资料的统计分析
统计推断:用样本信息推论总体特征的过程。
包括: 参数估计: 运用统计学原理,用从样本计算出来的统计指
2021/10/10
28
三、配对卡方检验:统计结果2
2021/10/10
29
四、分层卡方检验:实例
实例:国外某病例对照研究调查口服避孕 药与心肌梗死的情况,考虑到年龄是一个 可能混杂的因素,故也将其纳入调查,结 果如下:
2021/10/10
病例 对照 合计
年龄<40
服用OC
未服OC
21
26
17
2021/10/10
35
四、分层卡方检验:结果解读(二)
2021/10/10
36
四、分层卡方检验:结果解读(三)
2021/10/10
37
结束语
行列表卡方检验要求理论频数不宜太小, 否则就会导致分析的偏倚。
一般认为行列表中不宜有1/5以上的理论频 数小于5或有一个理念频数小于1。
(参考资料)SPSS卡方检验教程
(三)完全随机设计的多个样本率比较的假设检验
例6
患龋率
Pearson
P值
卡方值
(二)配对设计的两样本率比较的假设检验
例4 方法一 (SPSS菜单:Crosstabs)
交叉表
(二)配对设计的两样本率比较的假设检验
例4 方法一 (SPSS菜单:Crosstabs)
行 列
(二)配对设计的两样本率比较的假设检验
例4 方法一 (SPSS菜单:Crosstabs)
McNemar
(二)配对设计的两样本率比较的假设检验
实习五
分类变量资料的统计推断 第226~235页
一、率的抽样误差与标准误
(一)定义
在抽样研究中,由于抽样造成的样本率与总体率之间的 差异或者样本率之间的差异,称为率的抽样误差。
(二)计算:率的抽样误差大小用率的标准误来衡量。
σp =
π (1 − π )
n
一般情况下,由于我们研究的是样本,π未知,所以常用p 代替π ,得到率的标准误的估计值:
例4 方法一 (SPSS菜单:Crosstabs)
精确概率法
(二)配对设计的两样本率比较的假设检验
例4 方法二 (SPSS菜单:Nonparametric Tests)推荐
2个相关 样本
(二)配对设计的两样本率比较的假设检验
例4 方法二 (SPSS菜单:Nonparametric Tests)推荐
(一)完全随机设计的两样本率比较的假设检验
例2 见第544页计算分析题1。group:组别,1=新防护衣, 2=旧防护衣;effect:患病情况,1=患病,0=未患病;freq: 频数 。(SPSS软件操作步骤同例1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS在生物统计学中的应用
——实验指导手册
实验七:卡方检验
一、实验目标与要求
1.帮助学生深入了解卡方检验的基本概念,掌握卡方检验的基本思想和原理
2.掌握卡方检验的过程。
二、实验原理
卡方检验适用于次数分布的检验,比如次数分布是否与某种理想的分布一致,或者不同样本同类测量分数次数分布是否一致。
对于前者,先要确定一个理想的次数分布比例,然后将观测的某一次数分布与其比较,确定二者的差异性,并用X2来反映。
X2 越小,则差异越小,该样本的观测分布越有可能适合于理想分布;X2 越大,则差异越大,其服从于理想分布的可能性就越小。
当服从理想分布的伴随概率小于0.05时,就认为该次数分布与理想的分布有显著性差异。
不同样本中测量分数的次数分布使用卡方检验时,如果卡方足够大,该观测在两个样本中的次数分布服从于同一总体的概率小于0.05时,则认为样本间存在显著性差异。
三、实验演示内容与步骤
㈠适合性检验
比较观测数与理论数是否符合的假设检验(compatibility test),也称吻合性检验或拟合优度检验(goodness of fit test).。
【例】有一鲤鱼遗传试验,以红色和青灰色杂交,其F2代获得不同分离尾数,问观测值是否符合孟德尔3:1遗传定律.
1. 定义变量:
2. 输入变量值
3. 选择菜单1:点击菜单【数据】→【加权个案】→弹出“加权个案”对话框
→
4. 选择菜单2:点击菜单【分析】→【非参数检验】→【卡方】→弹出“卡方检验”对话框
点击【选项】按钮,弹出“卡方检验:选项”对话框,选择“描述性”,点击【继续】
点击【确定】在输出结果视图中看分析结果
㈡独立性检验
又叫列联表(contigency table)χ2检验,它是研究两个或两个以上因子彼此之间是独立还是相互影响的一类统计方法。
【例】考察不同灌溉方式对水稻叶子衰老是否有影响。
几种灌溉方式下的叶态表现调查结果
先将水稻分为3组,第一组用采用深水灌溉,第二组采用浅水灌溉,第三组采用湿润灌溉,然后统计每种灌溉方式下,水稻三种叶子(绿叶、黄叶、枯叶)出现的频数。
这时需要分析灌溉方式与叶态表现是否相关,若两者彼此相关,表明叶态表现因灌溉方式不同而异,即三种灌溉方式对叶态表现的影响不相同;若两者相互独立,表明三种灌溉方式对叶态表现的影响相同。
这种根据频数资料判断两类因子彼此相关或相互独立的假设检验就是独立性检验。
独立性检验实际上是基于频数资料对因子间相关性的研究。
根据概率乘法法则,若事件A和事件A是独立的,或者说它们之间无关联,这时事件A和事件B同时出现的概率等于它们分别出现时概率的乘积。
1、数据格式
2、选择菜单1:点击菜单【数据】→【加权个案】→弹出“加权个案”对话框
2、选择菜单2:点击菜单【分析】→【描述统计】→【交叉表】→弹出“交叉表”对话框
点击【统计量】按钮,弹出“交叉表:统计量”对话框,选择“卡方”,点击【继续】
点击【确定】在输出结果视图中看分析结果
㈢两个率的比较【课本例题13.11
与课本第202页的结果进行比较
【例题】某养猪场第一年养猪225头,死亡23头;第二年养猪368头,死亡28头。
试检验这两年
㈣单个率的检验(样本率与总体率的比较)
【例】有一批蔬菜种子的平均发芽率P O=0.85,现随机抽取500粒,有种衣剂进行浸种处理,结果有445粒发芽,试检验种衣剂对种子发芽率有无效果。
因平均发芽率P O=0.85,检验比例输入0.85
卡方检验:。