第九章:数模和模数转换器

合集下载

数模转换讲解

数模转换讲解

本章的难点:
本章的难点在一些A/D转换器内部电路结构和详细工作 过程上,但这不是本章学习的重点。
1
第九章 数模和模数转换 第一节 概述
数模转换:将数字量 (Digital)转换为模拟量(Analog)。 简称D/A 转换。 模数转换:将模拟量(Analog)转换为数字量(Digital)。 简称A/D转换。 传感器 计算机 被控对象 A/D转换器
驱动电路
D/A转换器
2
主要指标:转换精度;转换速度。
分类:
权电阻网络D/A转换器 倒T型电阻网络D/A转换器 权电流型D/A转换器 权电容网络D/A转换器 开关树型D/A转换器 并联比较型 A/D 转 换 器 直接转换型 反馈比较型 计数型 逐次渐进型
D/A 转 换 器
间接转换型
双积分型(V-T变换型)
转换时间
TTR (max) ts
V0 (max) SRபைடு நூலகம்
输出模拟电 压最大值 运放输出转 换速率
17
第三节 A/D转换器 一、A/D转换的基本原理 在A/D转换器中,由于输入 模拟信号在时间上是连续的, 而输出数字信号是离散的,所 以转换只能在一系列选定的瞬 间对输入模拟信号采样,然后 再把这些采样值转换成输出数 字量。
公式化简过程请 同学自己解决。
26
2.反馈比较型A/D转换器
思路:将一数字量加到D/A转换器上,再把D/A转换器输出的 模拟电压与输入模拟电压相比较。若不相等,则修改数字量,直 到两模拟电压相等,此时对应的数字量就是转换结果。
(1)计数型A/D转换器 数字量由计数 器提供。
B =
1 0
I O
I REF RB 2 2R
B

第9章-DAC和ADC

第9章-DAC和ADC

图9.2.6
DAC——CB7520电路原理图
【例1】 下图是用CB7520和74LS161组成的波形发生器电路。已 知CB7520的VREF=-10V,试画出输出电压V0的波形,并标出波形图 上各点电压的幅度。
9.2.7
DAC——CB7520应用举例
§9.2.3 权电流型D/A转换器
在权电阻网络DAC和倒T形电阻网络DAC中的模拟开关在实 际应用中,总存在一定的导通电阻和导通压降,而且每个开关的 情况又不完全相同,所以它们的存在无疑会引起转换误差,影响 转换精度。 权电流型DAC可有效的解决这一问题。其示意图如下:
n
其中: X X n 2
n 1
X n 1 2
n2
X 1 2 Dn
0
一般的数模转换器的基本组成可分为四部分,即:电 阻译码网络、模拟开关、基准电压源和求和运算放大器。
图9.2.2 数模转换器原理图
目前使用最广泛的D/A转换技术有两种:权电阻网络 D/A转换和T形电阻网络D/A转换。
本章主要内容
第一节
概述
第二节
D/A转换器
第三节 A/D转换器
§9.1 概述
DAC和ADC的应用举例:
DAC和ADC的应用举例——MP3播放器:
DAC和ADC的应用举例——数字温度计:
DAC和ADC的应用举例——数字血压计:
在过程控制和信息处理中,经常会遇到一些连续变化的 物理量,如话音、温度、压力、流量等,它们的量值都是 随时间连续变化的。为了能使用数字电路处理模拟信号, 必须把模拟信号转换成相应的数字信号,方能送入数字系 统进行处理。同时,还往往要求将处理后得到的数字信号 再转换为相应的模拟信号作为最后的输出。 图9.1.1所示即为一个典型的数字控制系统框图:

数字电子技术基础第九章模数与数模转换

数字电子技术基础第九章模数与数模转换

vo
+
I=IREF
=
VREF R1
S3
S2
S1
S0
I
I
I
I
I
VREF
R1 VR+
Tr A2
2
T3
T2
4
8
16
16
T1
T0
Tc
VR— +
IREF
IE3
IE2
IE1
IE0
IEC
R
2R
2R
2R
2R 2R
IBB
偏置 电流
VEE
R
R
R
IE3=I/2,IE2=I/4,IE1=I/8,IE0=I/16
电流的参 考方向
i0
二. 倒T形电阻网络D/A转换器(4位)
图中S0~S3为模拟电子开关,由输入数码Di控制, 当Di=1时,Si接运算放大器反相输入端(虚地),电流Ii流入求和电路; 当Di=0时,Si将电阻2R接地。 所以,无论Si处于何种位置,与Si相连的2R电阻均接“地”(地或虚地)。
电流的参 考方向
电流的真 实方向也 如此
参考电压源VREF、运算放大器A2、R1、Tr、R与VEE组成基准电 流IREF产生电路,A2和R1、Tr的cb结组成电压并联负反馈电路 ,以稳定输出电压,即Tr的基极电压。Tr的集电结,电阻R到 VEE为反馈电路的负载,由于电路处于深度负反馈,根据虚短 的原理,其基准电流为:
I I REF
VREF R1
000 001 010 011 100 101 110 111 D
根据解码网络的不同,D/A转换器分不同类型,常见的 有: 倒T型电阻网络D/A转换 权电阻网络D/A转换 权电流型D/A转换等

大学电子技术基础课后习题答案第9章-数模与模数转换器

大学电子技术基础课后习题答案第9章-数模与模数转换器

9 数模与模数转换器9.1 D/A 转换器9.1.1 10位倒T 形电阻网络D/A 转换器如图题9.1.1所示。

(1)试求出输出电压的取值范围。

(2)若要求电路输入数字量为200H 时输出电压v o =5V ,试问V REF 应取何值?解:(1)由式(9.1.6)可知,10位D/A 转换器输出电压O v 为910022f REFOii i R R v R D ==-⋅⋅∑当98D D …0D =00…0时 O v =0 V当98D D …0D =11…1时,REFO R v R=-,已知f R R =,所以O REF v R =-于是可得到输出电压的取值范围为:0REF V V -。

(2)根据式(1) 109212O REFifii R v V R D =⋅⋅=-⋅⋅∑将98D D …0D =1000000000代入上式,的REF V =﹣10V 。

9.1.2 在图9.1.8所示的4位权电流D/A 转换器中,已知REF V =6V ,1R =48k Ω,当输入3210D D D D =1100时,O v =1.5V ,试确定f R 的值。

解:n 位权电流D/A 转换器的输出电压为1122n fiREF O i n i R R v D R -==⋅⋅∑于是,有11022n O f n iREF i i R v R V D -=⋅⋅=⋅⋅∑依题意,已知n=4,REF V =6V ,1R =48k Ω,3210D D D D =1100,O v =1.5V,代入上式得f R =16k Ω。

9.1.5 可编程放大器(数控可变增益放大器)电路如图题9.1.5所示。

(1)推导电路电压放大倍数/V O I A v v =的表达式。

(2)当输入编码为(001H )和(3FFH )时,电压放大倍数V A 分别为多少? (3)试问当输入编码为(000H )时,运放1A 处于什么状态?解:(1)图题9.1.5中运放3A 组成电压增益为﹣1的反相比例放大器,O v =﹣REF V 。

数模和模数转换

数模和模数转换
通过模数转换,将模拟信号转换为数字信号, 实现过程控制和反馈控制。
自动控制系统
通过模数转换,实现模拟信号与数字信号之 间的转换,构建自动控制系统。
05
数模和模数转换的挑战与未 来发展
精度和分辨率的提高
总结词
随着技术的发展,对数模和模数转换 的精度和分辨率的要求越来越高。
详细描述
为了满足高精度和分辨率的需求,需 要采用先进的工艺、算法和校准技术, 以提高转换器的性能。这涉及到对噪 声抑制、非线性校正等方面的深入研 究和技术创新。
重要性
实现数字信号和模拟信号之间的相互转换,使得数字系统和模拟系统能够进行有效 的信息交互。
在信号处理中,数模和模数转换是实现信号滤波、放大、调制解调等操作的基础。
在通信中,数模和模数转换是实现信号传输、编解码、调制解调等操作的关键环节。
历史背景
早期的数模和模数转换器主要依 赖于机械和电子元件,精度和稳
于长距离传输和低功耗应用。
Σ-Δ DAC
03
Σ-Δ DAC采用过采样和噪声整形技术,具有高分辨率和低噪声
的特点,适用于音频和其他高精度应用。
DAC的应用
音频处理
DAC可将数字音频信号转换为模拟音频信号,用 于音频播放和处理。
仪器仪表
DAC可用于将数字信号转换为模拟信号,实现各 种物理量的测量和输出。
测量仪器
ADC在测量仪器中应用广泛,如电压表、电 流表、温度计等。
控制系统
ADC在控制系统中用于实时监测和调节系统 参数,如工业控制、汽车电子等。
音频处理
ADC在音频处理中用于将模拟音频信号转换 为数字信号,便于存储、传输和处理。
04
数模和模数转换的应用场景
音频处理

数-模与模-数转换

数-模与模-数转换

4)转换时间。完成一次A/D所需的时间称为转换时间。各类A/D转换 器的转换时间有很大差别,取决于A/D转换的类型和转换位数。速度 最快的达到ns级,慢的约几百ms。
直接A/D型快,间接A/D型慢。并联比较型A/D最快,约几十ns;逐次 渐近式A/D其次,约几十μs;双积分型A/D最慢,约几十ms~几百ms 。
模拟电子开关的导通压降、导通电阻和电阻网络中电阻的误差等因素 有关。
2021/8/13
5
3)温度系数。在输入不变的情况下,输出模拟电压随温度 变化而变化的量,称压变化的值。
4)建立时间。完成一次D/A转换所需时间。一般小于1μs 。
功能。当采样脉冲us到来后,采样管VT导通,输入的模拟 信号uA经过VT管向电容C充电。在采样脉冲结束后,采样 管VT截止,若电容和场效应管的漏电都很小,运算放大器
的输入阻抗又很高,那么两次采样之间的时间内,电容没
有泄漏电荷,其电压基本保持不变。
2021/8/13
10
3)量化与编码。所谓量化就是将采样/保持后得到的样本值在幅值上以一定的 级数离散化,用最小量化单位的倍数来表示采样保持阶梯波离散电平的过程。
例如,对于一个8位D/A转换器,其分辨率为:1/(281)=1/255≈0.00392=0.392%
2)转换精度。转换精度是指输出模拟电压实际值与理论值之差,即最 大静态误差。
转换精度与D/A转换器的分辨率、非线性转换误差、比例系数误差和温
度系数等参数有关。这些参数与基准电压UREF的稳定、运放的零漂、
电子技术基础与技能
数/模与模/数转换
2021/8/13
1. 数模转换和模数转换基本概念 数字电路和计算机只能处理数字信号,不能处理模拟信号。若

数模和模数转换

数模和模数转换
详细ห้องสมุดไป่ตู้述
按位数分类,数模转换器可分为二进制数模转换器和十进制 数模转换器。按工作方式分类,数模转换器可分为静态数模 转换器和动态数模转换器。按输入/输出接口分类,数模转换 器可分为独立式和并联式数模转换器等。
02
模数转换器(ADC)
定义
模数转换器(ADC)是一种将模拟信 号转换为数字信号的电子设备。它通 过一系列的电子和逻辑电路,将连续 的模拟信号转换为离散的数字信号。
04
数模和模数转换的挑战与解 决方案
量化误差
要点一
总结词
量化误差是由于数模转换器(DAC) 或模数转换器(ADC)的有限分辨率 和动态范围引起的误差。
要点二
详细描述
量化误差是由于数模转换器或模数转 换器的有限分辨率和动态范围引起的 误差。在数模转换中,量化误差表现 为输出模拟信号的不连续性,而在模 数转换中,量化误差表现为输入模拟 信号的失真。
像。
图像识别与处理
02
通过数模转换将图像从模拟信号转换为数字信号,进行图像识
别、分析和处理。
图像压缩与传输
03
利用数模转换技术对图像数据进行压缩和传输,提高传输效率
和降低存储成本。
通信系统
01
02
03
数字信号传输
数模转换将数字信号转换 为模拟信号,用于调制解 调器进行数据传输。
频分复用
通过模数转换将不同频率 的模拟信号转换为数字信 号,实现频分复用,提高 通信容量。
逐次逼近型ADC
逐次逼近型ADC采用一个比较器和逐位逼近的方法,通过 逐步调整参考电压来逼近输入电压,最终得到数字输出。 它的分辨率较高,但转换速率相对较慢。
积分型ADC
积分型ADC通过测量输入电压引起的电容充电时间来得到 数字输出。它的分辨率较高,但受限于积分器的线性度和 稳定性。

第9章 数模转换和模数转换

第9章 数模转换和模数转换


数字电路与逻辑设计
Rf
(2)求和放大器A:为 一个接成负反馈的理想 运算放大器。即:AV= ∞,iI=0,Ro=0。由于 负反馈,存在虚短和虚 断,即V-≈V+=0, iI= 0。
I A vO
VREF
输入数字Di=1时,开关Si将电阻23-iR接到基准电压VREF上, 在23-iR上的电流为
Ii VREF VREF i D = D 2 i i 23 i R 23 R
2
i
VREF ()
注意:该电路转换精度较高,
虑的是恒流源特性问题。
RI f4 2
但电路结构较复杂,主要考 vo I Rf Rf4I (20 D0 21 D1 22 D2 23 D3 )
2 D
i 0
3
i
数字电路与逻辑设计
改进:采用具有电流负 反馈的BJT恒流源电路 的权电流D/A转换器:
数字电路与逻辑设计
第9章 数模转换和模数转换
本章要点 本章分别讲授了数模转换和模数转换的基本原理和常 见的典型电路。文中主要介绍数模转换的基本原理,数模 转换器的转换精度和转换速度,分别介绍了权电阻网络数 模转换器,倒 T型电阻网络数模转换器和权电流型数模转 换器;然后介绍了模数转换的一般原理和步骤,分别介绍 了并联比较型模数转换器,逐次逼近型和双积分型模数转 换器的工作原理。
Rf VREF 3 2Rf VREF 3 i i vO I Rf Rf I i ( D 2 ) ( D 2 ) i i 3 4 R 2 i 0 R 2 i 0 i 0
3
若取反馈电阻Rf=R/2,则输出模拟电压表达式为
VREF 3 vO I Rf 4 ( Di 2i ) 2 i 0

第九章:数模和模数转换器

第九章:数模和模数转换器

第九章:数模和模数转换器一、单选题1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。

A 逐次逼近型B 双积分型C 并联比较型D 不能确定2:下面抑制电网公频干扰能力强的A/D转换器是()。

A 逐次逼近型B 双积分型C 并联比较型D 不能确定3:不适合对高频信号进行A/D转换的是()。

A 并联比较型B 逐次逼近型C 双积分型D 不能确定4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。

A 一样大B 前者大于后者C 后者大于前者D 不确定5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。

A 一样大B 前者大于后者C 后者大于前者D 不确定6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。

A 一样大B 前者大于后者C 后者大于前者D 不确定7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。

A 并联比较型B 逐次逼近型C 双积分型D 不能确定8.一个无符号8位数字量输入的DAC,其分辨率为位。

9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。

A.采样B.量化C.保持D.编码10.以下四种转换器,是A/D转换器且转换速度最高。

A.并联比较型B.逐次逼近型C.双积分型D.施密特触发器二、判断题1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。

()2:D/A转换器的转换精度等于D/A转换器的分辨率。

()3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。

()4:在A/D转换过程中量化误差是可以避免的。

()5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。

()6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。

()7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。

数模转换和模数转换

数模转换和模数转换
• 常用的D/A转换器有T型(倒T型)电阻网络D/A转换器、权电阻网络D/A 转换器、权电流D/A转换器及电容型D/A转换器等等。这里只介绍一 下倒T型电阻网络D/A转换器。
• 1.倒T型电阻网络D/A转换器 • 如图9-1-2所示为一个4位倒T型电阻网络D/A转换器(按同样结构可将
它扩展到任意位),它由数据锁存器(图中未画)、模拟电子开关 (S0~S3) , R~ 2R倒T型电阻网络、运算放大器(A)及基准电压U REF组 成。
上一页 下一页 返回
9. 2 模数转换电路
• 3. ADC0809应用说明 • (1)ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。 • (2)初始化时,使ST和OE信号全为低电平。 • (3)送要转换的那一通道的地址到A,B,C端口上。 • (4)在ST端给出一个至少有100ns宽的正脉冲信号。 • (5)是否转换完毕,可以根据EOC信号来判断。 • (6)当EOC变为高电平时,这时给GE为高电平,转换的数据就输出给
的取样频率由取样定理确定。 • 根据采样定理,用数字方法传递和处理模拟信号,并不需要信号在整
个作用时间内的数值,只需要采样点的数值。所以,在前后两次采样 之间可把采样所得的模拟信号暂时存储起来以便将其进行量化和编码。 • 2.量化和编码 • 经过采样、保持后的模拟电压是一个个离散的电压值。对这么多离散 电压直接进行数字化(即用有限个。
• 1.集成D/A转换器DA7520 • 常用的集成D/A转换器有DA7520,DAC0832,DA00808 , DA01230,
MC1408、AD7524等,这里只对DA7520做介绍。 • DA7520的外引线排列及连接电路如图9-1-3所示. • DA7520的主要性能参数如下: • (1)分辨率:十位; • (2)线性误差 • (3)转换速度

数模模数转换

数模模数转换

能分解的最小量。
图中为
1 2n
1 ,要减少量化误差,只要增
16
加数字编码信号的位数。
图9-3 D/A转换器输出特性
15
0 0000
1111
例如:输入二进制代码为千位数码,其输 出电压可能的最小变化为等值输出的1/1024。
下图为一个n位D/A转换器的方框图。
D0 数 字 D1 输 入
Dn-1
D/A转换器可以看作是一个译码器,它是将 输入的二进制数字信号器(或称编码信号)转换(翻 译)成模拟信号,并以电压或电流形式输出。
图9-3表示了4位二进制代码的数字信号经
过D/A转换器后的输出模拟信号电压的对应关
系。每一个二进制代码的编码数字信号,都可以
翻译成一个相对应的十进制数值。
例如:(1010)2→(10)10 ,量化级到信息所
二、数据传输系统 目前在通信(例如移动数字电话)、遥控、遥
测、数据广播、数字电视等,需要进行远距离传 送,采用数字信号比模拟信号抗干扰性强、保密 性强。其系统方框图如下:
9.2 数模(D/A)转换器
一、基本原理 所谓D/A(数模)转换器就是将离散的数字
量转换为连续变化模拟量的数模转换器,又称为 D/A转换器或DAC。
运算放大器A1、三极管TR、电阻RR、R组 成了基准电流发生电路。基准电流IREF是由外加 的基准电压VREF和电阻RR决定。由于T3和TR具 有相同的VBE,而发射极回路电阻相差一倍,所 以它们的发射极电流也必然相差一倍。故有:
IREF
2IE3

VREF RR

VREF RR
I
将式(9-4)代入式(9-3)得:
当代码为0时,对应的恒流源接地。 故输出电压为:

康华光《电子技术基础-数字部分》配套题库-章节题库(数模与模数转换器)

康华光《电子技术基础-数字部分》配套题库-章节题库(数模与模数转换器)

第9章数模与模数转换器一、选择题1.数/模转换器的分辨率取决于()。

A.输入数字量的位数,位数越多分辨率越高;B.输出模拟电压U O的大小,U O越大,分辨率越高;C.参考电压U REF的大小,U REF越大,分辨率越高;D.运放中反馈电阻的大小,电阻越大,分辨率越高【答案】A【解析】分辨率以输出二进制数或十进制数的位数表示,它表明A/D转换器对输入信号的分辨能力。

n位二进制数字输出的A/D转换器应能区分输入模拟电压的2n个不同等级大小,能区分输入电压的最小差异为满量程输入的1/2n。

2.不适合对高频信号进行A/D转换的是()。

A.并联比较型B.逐次逼近型C.双积分型D.不能确定【答案】C【解析】双积分型A/D转换器的原理是运用RC对时间进行积分,当有高频信号时,会影响RC积分器固定频率的时钟脉冲计数,影响结果。

3.一个八位D/A转换器的最小输出电压增量为0.02V,当输入代码为01001101时,输出电压为()。

A .1.54VB .1.04VC .2.00VD .1.80V【答案】A【解析】V O =(01001101)2×0.02V =(26+23+22+20)×0.02V =77×0.02V =1.54V 。

4.在双积分A/D 转换器中,输入电压在取样时间T 1内的平均值V I 与参考电压V REF应满足的条件是( )。

A .|V I |≥|V REF |B .|V I |≤|V REF |C .|V I |=|V REF |D .无任何要求【答案】B【解析】双积分A/D 转换器的原理是将输入的模拟电压信号转换成与之成正比的时间宽度信号,然后在这个时间宽度里对固定频率的时钟脉冲计数,计数的结果就是正比于输入模拟电压的数字信号。

如果输入电压在取样时间T 1内的平均值V I >参考电压V REF ,当计数第一次就截止,无法测出比例,无法测出电压。

5.一个12位的逐次近式A/D 转换器,参考电压为4.096V ,其量化单位为( )。

第九章数模(DA)和模数(AD)转换电路

第九章数模(DA)和模数(AD)转换电路

第九章 数模(D/A )和模数(A/D )转换电路一、 内容提要模拟信号到数字信号的转换称为模—数转换,或称为A/D (Analog to Digital ),把实现A/D 转换的电路称为A/D 转换器(Analog Digital Converter ADC );从数字信号到模拟信号的转换称为D/A (Digital to Analog )转换,把实现D/A 转换的电路称为D/A 转换器( Digital Analog Converter DAC )。

ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。

二、 重点难点本章重点内容有:1、D/A 转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;2、A/D 转换器的主要类型(并联比较型、逐次逼近型、双积分型),他们的基本工作原理和综合性能的比较;3、D/A 、A/D 转换器的转换速度与转换精度及影响他们的主要因素。

三、本章习题类型与解题方法 DAC网络DAC 权电阻 ADC 直接ADC间接ADC权电流型DAC权电容型DAC开关树型DAC输入/输出方式 并行 串行 倒梯形电阻网络DAC这一章的习题可大致分为三种类型。

第一种类型是关于A/D 、D/A 转换的基本概念、转换电路基本工作原理和特点的题目,其中包括D/A 转换器输出电压的定量计算这样基本练习的题目。

第二种类型是D/A 转换器应用的题目,这种类型的题目数量最大。

第三种类型的题目是D/A 转换器和A/D 转换器中参考电压V REF 稳定度的计算,这种题目虽然数量不大,但是概念性比较强,而且有实用意义。

(一)D/A 转换器输出电压的定量计算【例9 -1】图9 -1是用DAC0830接成的D/A 转换电路。

DAC0830是8位二进制输入的倒T 形电阻网络D/A 转换器,若REF V =5 V ,试写出输出电压2O V 的计算公式,并计算当输人数字量为0、12n - (72)和2n -1(82-1)时的输出电压。

模数和数模转换

模数和数模转换
1. 分辨率 DAC 指 的最小输出电压变化量, D/A 转换器模拟输出所能产生的最 也即 DAC 的最小输出电压值 小电压变化量与满刻度输出电压之比。
U LSB 1 分辨率 n U FSR 2 - 1
表示满度输出电压值,FSR 即 Full Scale Range
UFSR = 例如,一个 uO|D = 11 1 = 10 ( 2n – 1 )DAC ULSB 位的 ,分辨率为 0.000 978。 DAC 的位数越多,分辨率值就越小, 能分辨的最小输出电压值也越小。
3. 转换时间 指 ADC 完成一次转换所需要的时间,即从转换 开始到输出端出现稳定的数字信号所需要的时间。
转换时间越小,转换速度越高。
转换速度比较:并联比较型 > 逐次逼近型 > 双积分型 数十 ns
数十 s
数十 ms
本章小结
D/A 转换是将输入的数字量转换为与之成正比
的模拟电量。常用的 DAC 主要有权电阻网络
[例] 右图为 CDA7524 的单极性 D7 输出应用电路。图 D6 中电位器 R1 用于调 D5 整运放增益,电容 D4 C 用以消除运放的 D3 D2 自激。已知 ULSB = D1 VREF / 256,试求满 D0 度输出电压及满度 CS 输出时所需的输入 WR 信号。
VDD VREF = 10V 4 14 15 2 k 5 R1 6 16 7 1 k 8 C 15 pF 9 CDA7524 OUT1 10 ∞ 1 11 OUT2 - + u O 12 2 + 13 3
n 位均为 1
2.
转换精度
指 DAC 实际输出模拟电压与理 想输出模拟电压间的最大误差。
它是一个综合指标,不仅与 DAC 中元件参数的精 度有关,而且与环境温度、求和运算放大器的温度漂 移以及转换器的位数有关。 要获得较高精度的 D/A 转换结果,除了正确选用 DAC 的位数外,还要选用低漂移高精度的求和运算放 大器。 通常要求 DAC的误差小于 ULSB / 2。

《数字电子技术(第二版)》 第9章 模拟量与数字量的转换

《数字电子技术(第二版)》  第9章 模拟量与数字量的转换

9.1.1 D/A转换器的基本原理
基 本 原 理
将输入的每一位二进制代码按其权的大小转 换成相应的模拟量,然后将代表各位的模拟 量相加,所得的总模拟量就与数字量成正比, 这样便实现了从数字量到模拟量的转换。
d0 输入 d1

dn -1
D/A
uo 或 io 输出
转 换 特 性
D/A转换器的转换特性,是指其输出模拟量和输入数字量之 间的转换关系。图示是输入为3位二进制数时的D/A转换器的 转换特性。理想的 D/A转换器的转换特性,应是输出模拟量 与输入数字量成正比。即:输出模拟电压 uo=Ku×D或输出模 拟电流io=Ki×D。其中Ku或Ki为电压或电流转换比例系数,D 为输入二进制数所代表的十进制数。如果输入为 n 位二进制 数dn-1dn-2…d1d0,则输出模拟电压为:
9.1.2 T型电阻网络数模转换器
数码di=1(i=0、1、2、3),即为高电平时,则由其控制的 模拟电子开关Si自动接通左边触点,即接到基准电压UR上; 而当di=0,即为低电平时,则由其控制的模拟电子开关Si自 动接通右边触点,即接到地。
d3d2d1d0=0001时的电路:
用戴维南定理从 左至右逐级对各 虚线处进行等效。
由图可得输出电Байду номын сангаас为:
由于d0=1、 d3=d2=d1=0,所以上式又可写为:
同理,当d3d2d1d0=0010时的输出电压为: 当d3d2d1d0=0100时的输出电压为: 当d3d2d1d0=1000时的输出电压为:
应用叠加原理将上面4个电压分量叠加,即得T形电阻网络数 模转换器的输出电压为:
4位逐次逼近型A/D转换器
工作原理 为了分析方便,设D/A转换器的参考电压为UR=8V,输入的模拟 电压为ui=4.52V。 转换开始前,先将逐次逼近寄存器的4个触发器FA~FD清0,并 把环形计数器的状态置为Q1Q2Q3Q4Q5=00001。 第1个时钟脉冲C的上升沿到来时,环形计数器右移一位,其 状态变为10000。由于Q1=1,Q2、Q3、Q4、Q5均为0,于是触 发器FA被置1,FB、FC和FD被置0。所以,这时加到D/A转换器 输入端的代码为d3d2d1d0=1000 ,D/A转换器的输出电压为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章:数模和模数转换器
一、单选题
1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。

A 逐次逼近型
B 双积分型
C 并联比较型
D 不能确定
2:下面抑制电网公频干扰能力强的A/D转换器是()。

A 逐次逼近型
B 双积分型
C 并联比较型
D 不能确定
3:不适合对高频信号进行A/D转换的是()。

A 并联比较型
B 逐次逼近型
C 双积分型
D 不能确定
4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。

A 一样大
B 前者大于后者
C 后者大于前者
D 不确定
5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。

A 一样大
B 前者大于后者
C 后者大于前者
D 不确定
6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。

A 一样大
B 前者大于后者
C 后者大于前者
D 不确定
7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。

A 并联比较型
B 逐次逼近型
C 双积分型
D 不能确定
8.一个无符号8位数字量输入的DAC,其分辨率为位。

A.1
B.3
C.4
D.8
9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。

A.采样
B.量化
C.保持
D.编码
10.以下四种转换器,是A/D转换器且转换速度最高。

A.并联比较型
B.逐次逼近型
C.双积分型
D.施密特触发器
二、判断题
1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。

()2:D/A转换器的转换精度等于D/A转换器的分辨率。

()
3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。

()
4:在A/D转换过程中量化误差是可以避免的。

()
5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。

()
6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。

()
7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。

()
8.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。

()9.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。

()
10.A/D转换过程中,必然会出现量化误差。

()
三、填空题
1:对于D/A转换器,其转换位数越多,转换精度会越 ( ) 。

2:一个n 位的R-2R 倒T 型D/A 转换器的分辨率是 ( )。

3:四舍五入和只舍不入两种量化方法中,量化误差小的方法是( )。

4:n位权电阻D/A 转换器需要( )种不同阻值的电阻,N位R—2R倒T型D/A 转换器需要( ) 种不同阻值的电阻。

5:D/A 转换器产生误差的主要原因有 ( )、( )、( )。

6:A/D转换器是将 ( ) 转换为 ( )。

将数字量转换为模拟量,采用 ( ) 转换器。

7:在A/D转换中,输入模拟信号中最高频率是10kHz,则最低采样频率是 ( )。

8:一般来说,A/D转换需经( )、( )、( )、( )四步才能完成。

9:一个十位A/D转换器,其分辨率是 ( )。

四、计算分析题
1:已知R-2R 倒T 型D/A转换器,已知其最小输出电压为5mV, 满刻度输出电压为10V,计算该D/A转换器的分辨率。

2:一个四位的权电阻D/A转换器如图8201所示,当输入数字量为0001时,对应的输出模拟电压为0.02V,试计算当数字量为1101时输出电压为多少伏?
图号:8201
3:四位R-2R 倒T 型D/A 转换器,已知参考电压V REF = -10V,R F=R,计算该D/A转换器的输出电压范围。

见图号:8202
图号:8202
4:一个R-2R 倒T 型D/A 转换器可分辨0.0025v电压, 其满刻度输出电压为9.9976v,求该转换器至少是多少位。

5:设R-2R 倒T 型D/A转换的参考电压为V REF-10mV, R F=R,如要求最小输出电压为0.1mV,试问至少需二进制位数是多少。

6:对于一个三位的并联比较型A/D转换器,参考电压为10V,试问电路的最小量化单位是多少?当输入电压为5.6V时,输出数字量D2D1D0=? 此时的转化误差 为多少?
7:对于一个八位的逐次逼近型A/D转换器,时钟频率为1MHZ时,试问完成一次转换所需要的时间是多少?
8:一个八位的双积分型A/D转换器,时钟频率为2MHZ,试问完成一次转换所需要的时间?
9:已知一个A/D转换器,若最大模拟输入电压为5V,试问要能分辨5mv的输入电压至少需要的转换位数是多少?
10:在双积分型A/D转换器中,输入模拟电压是否可以大于参考电压,并说明你的理由。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档