七年级数学下册 8.4 三元一次方程组解法举例学案(无答案)(新版)新人教版

合集下载

三元一次方程组解法举例教学设计

三元一次方程组解法举例教学设计

教学课时建议:教学课时建议:本小节新授课可分为二学时,其中第一学时为三元一次方程组的概念及解三元一次方程组的思想和方法;第二学时灵活的运用代入和加减消元法解三元一次方程组.具体的教学设计如下:8.4 三元一次方程组解法举例教学设计一、教学目标知识技能:能够列方程组解决实际问题;掌握代入消元法和加减消元法解三元一次方程组;掌握解三元一次方程组的思想和一般步骤.进一步运用三元一次方程组解决实际问题.数学思考:在运用三元一次方程组解决实际问题过程中进一步体会数学建模思想,培养学生的数学应用意识,并进行归纳,感受方程对解决实际问题的作用.问题解决:能够根据具体问题列出三元一次方程组并顺利运用三元一次方程组解决实际问题;清楚地表达解决问题的过程,并解释合理性.能够对三元一次方程组的解法进行归纳和总结.情感态度:渗透方程思想,培养学生的方程意识;在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣.在探索解决问题的过程中,敢于发表自己的见解,理解他人的看法并与他人交流.二、重难点分析教学重点:让学生经历和体验把实际问题转化为三元一次方程组的过程,用三元一次方程组解决实际问题.进一步体会“消元”的基本思想.从本节的标题不难看出,本节侧重通过具体的三元一次方程组说明它的解法.痛二元一次方程组的解法一样,三元一次方程组的解法也是消元.通过消元,把三元一次方程组转化为二元一次方程组,进而转化为一元一次方程,最后得到三元一次防尘组的解.例题的选取也是从实际出发,让学生初步体会到数学与人们的日常生活的密切关系,并体会数学在社会生活中所起的作用,激发学生对数学的学习兴趣,使学生学会从数学的角度去分析和解决简单的实际问题.在突出重点时,主要在学生已有知识经验方程的基础上,让学生通过实际问题列三元一次方程组.教师在学生小组讨论过程中进行个别的指导,通过典型例题进行讲解,以明确学生的认识.在由实际问题列三元一次方程组的教学活动中,教师要让学生充分地进行思考和探究,让学生有自主探讨的过程,帮助学生掌握解三元一次方程组的消元方法,进一步体会“消元”的基本思想.然后教师再利用多媒体教学手段进行演示,加深学生的理解.教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.本课的重点是让学生根据多种实际问题中的数量关系,找出等量关系,感受方程就是将众多实际问题“数学化”的一个重要模型的意义,列出方程,解出结果归纳出用三元一次方程组解应用题的方法和步骤.单纯考查解三元一次方程组的题目非常少,但将解三元一次方程组融入求二次函数解析式的综合性命题中则比较常见,尤其是代入消元法和加减消元法的应用在很多问题中都有所体现,所以同学们必须熟练掌握,并能灵活运用.三元一次方程组的应用,是在学习了二元一次方程组解法的基础上进行的,在生活实践和数学领域里有着非常广泛的应用.考察的难点是代入、加减消元法的灵活应用,所以在教学过程中,应提醒学生注意,在消去一个未知数得出比原方程组少一个未知数的二元一次方程组的过程中,原方程组的每一个方程一般都至少要用到一次.三、学习者学习特征分析在上一节的学习过程中,学生已经知道怎样解二元一次方程组.在实际生活中也是比较常见二元一次方程组的应用的.教师在授课时应先让学生有一定的感性认识,之后再引出运用三元一次方程组解应用题. 学生能比较熟练的解二元一次方程组,所以只要把三元一次方程组转化为二元一次方程组,学生也就不会感觉到困难了.所以怎样灵活运用代入或者是加减消元法把“三元”转化为“二元”是学生的难点.四、教学过程(一)创设情境,引入新课前面我们学习了二元一次方程组及其解法——消元法.有些有两个未知数的问题,可以列出二元一次方程组来解决.实际上,有不少问题含有更多未知数,我们来看下面的问题.【引例】(教师用PPT给出)小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?【列表分析】(师生共同完成)(三个量关系)每张面值×张数=钱数1元x x2元y 2y5元z 5z 合计12 22注1元纸币的数量是2元纸币数量的4倍,即x=4y 解:(学生叙述个人想法,教师板书)设1元,2元,5元的张数为x张,y张,z张.根据题意列方程组为:【得出概念】(师生共同总结概括)这个方程组有三个相同[本文由361学习网搜集整理,小学教案]的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.(二)合作交流,探索新知问题1:怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?学生活动:(展开思路,畅所欲言)例1 .解方程组分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.解法1:消x②-①得y+4z=10 . ④③代人①得5y+z=12 . ⑤由④、⑤得解得把y=2,代入③,得x=8.∴是原方程组的解.分析2:方程③是关于x的表达式,确定“消x”的目标.解法2:消x由③代入①②得解得把y=2代入③,得x=8.∴是原方程组的解.规律:根据方程组的特点,由学生归纳出此类方程组为:类型一:有表达式,用代入法.针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.解法3:消z①×5得5x+5y+5z=60,④x+2y+5z=22,②④-②得4x+3y=38 ⑤由③、⑤得解得把x=8,y=2代入①,得z=2.∴是原方程组的解.根据方程组的特点,由学生归纳出此类方程组为:类型二:缺某元,消某元.教师活动:可以告诉学生还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.在例题中,如果先确定消去,那么这三个方程两两分组的方法有3种;①与②,①与③,②与③.我们可以从中任选2种消去.这里特别要注意选定2种后,必须消去同一个未知数.如果违背了这一点,所得的两个新方程虽然各含两个未知数,但由它们组成的方程组仍然含有三个未知数,这在实际上没有消元.问题2:例2 解方程组分析:(1)比较此三元一次方程组与以前学过的有什么不同?(三个方程都含三元)(2)三个方程中哪个未知数的系数最简单?()(3)考虑用加减法消,消的方案有哪几种?(方案:①+③;②+③×2;①×2-②)我们选择最简单的两种方案①+③和②+③×2,消同一个未知数,就可以得到关于、的二元一次方程组.学生活动:独立解例2,一个学生板演.教师巡视进行纠正、指导.解:①+③,得④②+③×2,得⑤④与⑤组成解这个方程组,得把,代入①,得∴∴此题用代入法消元,如何进行?学生活动:思考、说出思想,选择系数最简单的方程③变形后代入①和②.此题用加减法比用代入法简单,我们在解三元一次方程组时,要认真观察题目特点,选取恰当的方法进行消元,而且一定要选准消元对象.【教法说明】以提问的形式分析例题,能让学生充分展开思维活动,既突出了本节课的重点,又对难点有所突破,培养了学生分析问题、解决问题的能力,体会到解方程组时“消元”思想的重要性.变式训练,培养能力(1)解方程组(2)一个三位数,个位、百位上的数的和等于十位上的数,百位上的数的7倍比个位、十位上的数的和大2,个位、十位、百位上的数的和是14,求这个三位数.【教法说明】①第(1)题的技巧性较强,把其中每两个方程相加,就可以求出一个未知数的值.这道题能增强学生的学习兴趣,培养学生善于发现规律、总结规律的能力.②第(2)题能培养学生分析问题的能力和运用所学知识解决实际问题的能力,能使学生体会到数学知识的实用性.(三)应用新知,体验成功利用多媒体素材中的“典型例题”进行教学.(四)课堂小结,体验收获(PPT显示)这堂课你学会了哪些知识?有何体会?(学生小结)1.学生自由发言,这节课我们应该掌握哪些知识?2.教师归纳总结:①解三元一次方程组的基本方法是代入法和加减法,其中加减法比较常用.②解三元一次方程组的基本思想是消元,关键也是消元,我们一定要根据方程组的特点,选准消元对象,定好消元方案.③解完后要代入原方程组的三个方程中进行检验.(五)拓展延伸,布置作业(1)必做题:解三元一次方程组.(2)选做题:解方程组.(3)思考题:有这样一个丢番图问题:今有四数,取其三个而相加,其和分别为22,22,26和20,求此四数各几何?五、学习评价(一)选择题1.以下方程组,不属于三元一次方程组的是( )(A).(B).(C).(D).2. 以下各方程组中,以为解的是( )(A). (B). (C). (D).3.解三元一次方程组,若要使运算简便,应( )(A)先消.(B)先消.(C)先消.(D)先消常数项.4.三元一次方程组的解是( )(A). (B). (C). (D).5.三元一次方程组的解的个数为( )(A)无数多. (B)1. (C)2.(D)0.6.已知,同时满足下列三个等式:,,,则的值为( )(A)-2.(B)-1. (C)1. (D)2.(二)填空题7.满足方程的,,的值分别为:___________.8.已知三元一次方程,若用含,的代数式表示,则_________.9.请你写出一个解是的三元一次方程组___________.10.当_____时,方程组的解满足.11.若三元一次方程有两组解和,则_______,_______.12.解方程组时,宜先消去未知数_____,得到关于_______的二元一次方程组_______.解这个方程组得_______,故原方程组的解为_______.(三)解答题13.解方程组:(1) ,(2) .14.在等式中,当时,;当时,;当时,,求a、b、c的值.15.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.16.一种饮料大小包装有3种,1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角;大、中、小各买1瓶,需9元6角.3种包装的饮料每瓶各多少元?答案与提示(一)选择题1.D ;2.D ;3.A ;4.B ;5.A ;6. C .(二)填空题7. ,,;8. ;9.(答案不唯一);10.1;11. -1 ,1;12. ,和,,,.(三)解答题13.(1) ,(2).14.,,提示:根据题意得.15. 10,9,7 提示:设甲、乙、丙三数分别为,,,根据题意得,解得.16. 5元,3元,1.6元提示:设大、中、小3种包装饮料每瓶分别为元,元,元,根据题意得,解得.。

8.4三元一次方程组的解法教案 2021—2022学年人教版数学七年级下册

8.4三元一次方程组的解法教案 2021—2022学年人教版数学七年级下册

《8.4三元一次方程组的解法》教学设计一、教学目标(一)知识技能:了解三元一次方程组及其解法,进一步体会消元思想,能根据三元一次方程组的具体形式,选择适当的解法.(二)数学思考:在运用三元一次方程组解决实际问题的过程中,进一步体会数学建模思想,培养学生的数学应用意识,感受方程对解决实际问题的作用.(三)问题解决:能根据具体问题列出三元一次方程组,并顺利运用三元一次方程组解决实际问题,能够对三元一次方程组的解法进行归纳和总结.(四)情感态度:渗透方程思想,培养学生的方程意识,在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣,在探索解决问题的过程中,敢于发表自己的见解.二、教学重点让学生经历和体验,把实际问题转化成三元一次方程组的过程,用三元一次方程组解决实际问题,进一步体会消元的基本思想.三、教学难点针对方程组的特点,灵活使用代入法,加减法等重要方法四、教法与学法分析教法:情境教学法、比较教学法,讲练结合法学法:比较,小组合作,自主探究的学习方式.五、教学过程(一)情境引入创设情境,引入课题.问题:2022年,北京成功举办了第24届冬季奥运会,中国健儿顽强拼搏,奋勇争先,取得了非常亮眼的“中国成绩”,中国共获得15奖牌,其中银牌数量是铜牌数量的2倍,银牌数量的2倍与铜牌数量的和比金牌的数量还多了1枚,你知道中国获得金牌、银牌、铜牌的数量各是多少吗?师:冬奥会上,中国运动健儿取得了亮眼的成绩,那么中国分别获得多少枚金牌、银牌、铜牌呢?(1)题目中有几个未知量?师:可以设3个未知数吗?(2)题目中有哪些等量关系?师:这个问题能用一元一次方程,二元一次方程解决吗?(3)如何用方程表示这些等量关系?解:设中国获得金牌、银牌、铜牌分别为x枚、y枚和z枚.可列出方程_______________________________________________________师:对于所列出来的三个方程,前面两个你觉的是二元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗?从而揭示课题.(二)探究新知1、概念思辩,认识三元一次方程组师:观察这个方程组有什么特点?(学生思考后回答)①含有三个未知数②含未知数的项的次数都是1③一共有三个整式方程归纳总结:含有三个未知数,每个方程中含未知数的项的次数都是1, 并且一共有三个方程,像这样的方程组叫做三元一次方程组.师:组成三元一次方程组的某个方程一定是三元一次方程吗?(学生通过观察已经列出的方程组,交流讨论,得出结论)注意:组成三元一次方程组的某个方程,可以是一元一次方程或二元一次方程或三元一次方程.只要保证方程组一共有三个未知数即可.师:你认识三元一次方程组了吗?即学即练:下列方程组是三元一次方程组的是( )(设计意图:通过观察列出的的3个方程,寻找共同特点,在已经学过二元一次方程的概念的基础上,引导学生类比给出三元一次方程和三元一次方程组的概念.即学即练着重引导学生正确辨析概念,加深对概念的理解.)2、类比迁移,探究三元一次方程组解法师:二元一次方程组是如何来解的?(学生独立思考,回答问题)师:那么能否用同样的思路,用代入法或加减法消去三元一次方程组的一个或两个未知数,把它转化成二元一次方程组或一元一次方程来解呢?(学生独立分析、思考,回答思路)仿照前面学过的代入法,可以把③分别带入①②,得到两个只含x ,z 的方程:得到二元一次方程组之后,就不难求出x 和z ,进而可求出y .师:解三元一次方程组的基本思路是什么?(先让学生独立思考,然后在学生充分思考的前提下进行小组讨论.在此基础上,由学生代表回答教师适时的引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点)归纳总结: 通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.)(设计意图:结合情境问题中列出的方程组,类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路——消元,并找到相应的消元方法——代入法,让学生充分理解解三元一次方程组的思想与方法.)3、典例精析,解三元一次方程组例1 解三元一次方程组 三元一次方程组组二元一次方程组一元一次方程消元 消元⎪⎩⎪⎨⎧8795932743=+-=++=+z y x z y x z x ③②①师:对于这个方程组,消哪个元比较方便?为什么?(学生小组讨论,代表发言)方程①只含 x 、z ,因此,可以由②③消去 y ,得到的方程可与①组成一个二元一次方程组.教师板书加减法消元的求解过程,强调解题的格式. 师:你能总结一下解三元一次方程组的一般步骤吗?(学生交流讨论,代表发言,教师加以规范) 归纳总结:解三元一次方程组的一般步骤:(1)消元:利用代入法或加减法,把方程组中的一个方程与另外两个方程分别组成方程组,消去两个方程组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)求解:解这个二元一次方程组,求出两个未知数的值;(3)回代:将求得的两个未知数的值代入原方程组中系数比较简单的方程,得到一个一元一次方程;(4)求解:解这个一元一次方程,求出第三个未知数的值;(5)写解:将求得的三个未知数的值用“{”写在一起.(设计意图:一是引导学生发现这一类方程组的一般解法:例1方程组的特点是方程①中不含y ,②③中y 的系数为整数倍数关系,因此用加减法从②③中消去y 后,再与①组成二元一次方程组最为合理,简言之,可以总结为“缺谁消谁”;二是通过例题的示范作用,归纳解三元一次方程组的一般步骤,培养学生举一反三的数学品质)例2 在等式c bx ax y ++=2中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60.求a ,b ,c 的值. 师:分析已知条件,你能得到什么?把c b a ,,看作三个未知数,分别把已知的y x ,值代入原等式,就可以得到一个三元一次方程组. ⎪⎩⎪⎨⎧=++=++=+-605253240c b a c b a c b a教师带领学生列出方程组,分析如何学生独立完成解方程组,学生板演.师:(1)可以消去a 吗?如何操作?(2)可以消去b 吗?如何操作?教师选择几名消“元”不同的同学的过程给大家展示.归纳总结:解三元一次方程组时,先观察三个方程中各未知数系数的特点及整个式子的特点,然后确定先消去的未知数,再灵活选择代入消元法或加减消元法将“三元”化为“二元”.4.巩固练习,深化解方程组的方法与技巧即学即练:解下列三元一次方程组:(1)⎪⎩⎪⎨⎧=+=--=-472392x z z y y x (2)⎪⎩⎪⎨⎧=++=-+=+-6123243z y x z y x z y x(设计意图:通过练习,可以使同学们进一步体会消元的思想,通过观察方程中各未知数系数的特点及整个式子的特点,确定先消去的未知数,再灵活选择代入消元法或加减消元法将“三元”化为“二元”,从而降低运算的难度,提高准确性)(三)课堂小结本节课你有收获吗?能和大家说说你的感想吗?(四)随堂检测1.对于方程组 ⎪⎩⎪⎨⎧-=--=++=+22362532z y x z y x y x , 此二元一次方程组的最优的解法是先消去( )转化为二元一次方程组.A.xB.yC.zD.都一样2.若x +2y +3z =10,4x +3y +2z =15,则x +y +z 的值为( )A.2B.3C.4D.53.甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的31等于丙数的21,求这三个数. (设计意图:通过进一步的练习,达到检测学生掌握情况的目的.针对三元一次方程组的解法进一步加强练习.不仅可以开阔学生的思维,培养学生的兴趣,而且通过类比,让学生在解题时归纳题目的特点,找到最基本解题方法,更有助于学生探索方法,掌握解题技巧.)(五)作业布置必做题:课本作业题2、3、4选做题:请同学们发挥想象,编辑一道与我们生活息息相关的应用题,其中x,y,z 满足下列条件:⎪⎩⎪⎨⎧=+=+=+201610z y z x y x ,并解答出来.。

人教版七年数学下册8.4三元一次方程组解法举例教案

人教版七年数学下册8.4三元一次方程组解法举例教案
人教版七年数学下册8.4三元一次方程组解法举例教案
一、教学内容
人教版七年数学下册8.4节主要围绕三元一次方程组的解法进行举例教学。本节课内容涵盖了以下三个方面:
1.通过实际问题的引入,让学生理解三元一次方程组的实际意义,如行程问题、价格问题等。
2.介绍三元一次方程组的解法,包括代入法、加减法和高斯消元法,并分析各种方法的优缺点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三元一次方程组的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对各种解法的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.培养学生的逻辑思维能力和团队合作意识,通过三元一次方程组解法的学习,让学生在探讨、分析、解决问题的过程中,形成严密的逻辑思维,学会与他人合作交流。
3.培养学生的创新意识,鼓励学生在掌握基本解法的基础上,尝试探索新的解题思路,提高解题效率,从而培养创新精神和实践能力。
这些核心素养目标将贯穿于整个教学过程,旨在帮助学生全面提升数学学科素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三元一次方程组的基本概念。三元一次方程组是由三个一次方程构成的,它们共同拥有三个未知数。它在解决实际问题中起着重要作用,能够帮助我们找到多个未知数的具体数值。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将实际问题转化为三元一次方程组,并通过解方程组找到答案。
3.通过具体例题,让学生掌握如何运用以上三种方法求解三元一次方程组,并能够熟练运用到实际问题中。

人教版七年级数学下第8章二元一次方程组8.4 三元一次方程组的解法习题课件

人教版七年级数学下第8章二元一次方程组8.4 三元一次方程组的解法习题课件

脐橙品种
ABC
每辆汽车运载量/吨 6 5 4
每吨脐橙获利/百元 12 16 10
如何安排三种脐橙装运,才能使此次销售获利达到 14.08 万元?
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
解:设装运 A,B,C 三种脐橙的车辆数分别为 x,y,z 辆,
x+y+z=20,
依题意,得6x+5y+4z=100, 72x+80y+40z=1 408.
3
7
=__2__;将 x 的值代入变形得到的二元一次方程组中,求得 y=__6__;最
5
后将 x 和 y 的值同时代入①得 z=__6__.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
x=-2,
y=2,
y=2,
3.方程组x+y=0,
的解是___z_=__4______.
x-y+z=0
x=2, 解由①、④组成的方程组,得z=1.
x=2, 将z=1 代入③,得 y=4.
x=2,
∴原方程组的解为y=4, z=1.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
15.已知x+5 y=y+6 z=z+7 x,且 xyz≠0,求 x∶y∶z 的值.
解:设x+5 y=y+6 z=z+7 x=k
七年级 数学 下册 人教版
*8.4 三元一次方程组的解法
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
1.三元一次方程组的解法 (1)解三元一次方程组的基本思想仍是消元.一般地,应利用代入法 或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方 程组,求出两个未知数,最后再求出另一个未知数.

【人教版】七年级数学下册:专题8.4 三元一次方程组的解法(解析版)

【人教版】七年级数学下册:专题8.4 三元一次方程组的解法(解析版)

1.(2021春•青龙县期末)三元一次方程组116x yy zx z的解是()A.234xyzB.243xyzC.324xyzD.432xyz【分析】方程组利用加减消元法求出解即可.【解答】解:116x yy zx z①②③,② ③得:7x y④,① ④得:28x ,即4x ,把4x 代入①得:3y ,把4x 代入③得:2z ,则方程组的解为432xyz,故选:D.2.(2021春•龙山县期末)方程组347293372x zx y zx y z的解是()A .512x y zB .512x y zC .512x y zD .403x y z【分析】②3 ③得出91025x z ④,由①和④组成一个二元一次方程组,求出方程组的解,再把52x z代入②求出y即可.【解答】解:347293372x z x y z x y z①②③,②3 ③,得91025x z ④,由①和④组成一个二元一次方程组:34791025x z x z,解得:52x z,把52x z代入②,得1029y ,解得:1y,所以方程组的解是512x y z,故选:B .3.(2021春•长寿区期末)若实数x ,y,z 满足41233x y z x y z,则6(x y z )A .3B .0C .3D .不能确定值【分析】把z 看做已知数表示出方程组的解,代入原式计算即可求出值.【解答】解:14233x y z x y z①②,① ②得:2yz ,把2yz 代入①得:214x z z ,解得:15x z ,把15x z ,2yz 代入得:615263x y z z z z .故选:A .4.(2021春•饶平县校级期末)观察方程组543122511726x y z x y z x z的系数特征,若要使求解简便,消元的方法应选取()A .先消去xB .先消去yC .先消去zD .以上说法都不对【分析】经观察发现,3个方程中先消去y,即可得到一个关于x 、z 的二元一次方程组,再用加减消元法和代入法解方程即可.【解答】解:方程① ②2 可直接消去未知数y,即可得到一个关于x 、z 的二元一次方程组, 要使运算简便,消元的方法应选取先消去y ,故选:B .5.(2021春•江都区校级期中)若233a b c ,5675a b c ,则68a b c 的值是()A .2B .2C .0D .1【分析】先把方程233a b c 的左右两边同乘以3得到3699a b c ,然后再同方程5675a b c 相减即可得到答案.【解答】解:233a b c ,3699a b c ①,又5675a b c ②,② ①得:212164a b c .682a b c ,故选:A .6.(2021春•西湖区校级期中)为确保信息安全,信息需要加密传输,发送方由明文 密文(加密),接收方由密文 明文(解密),已知加密规则为:明文a ,b ,c ,对应密文1a ,24a b ,39b c ,如果接收方收到密文7,12,22,则解密得到的明文为()A .6,2,7B .2,6,7C .6,7,2D .7,2,6【分析】根据“加密规则为:明文a ,b ,c ,对应密文1a ,24a b ,39b c ”,即可得出关于a ,b,c 的三元一次方程组,解之即可得出结论.【解答】解:依题意得:1724123922a a b b c,解得:672a b c.故选:C .7.(2020秋•光明区期末)解三元一次方程组3,21,0,x y z x y z x y①②③要使解法较为简便,首先应进行的变形为()A .① ②B .① ②C .① ③D .② ③【分析】观察发现:第三个方程不含z ,故前两个方程相加消去z ,可将三元一次方程组转化为二元一次方程组来求解.【解答】解:解三元一次方程组3210x y z x y z x y①②③要使解法较为简便,首先应进行的变形为① ②.故选:A .8.(2021春•嘉祥县期末)有甲、乙、丙三种文具,若购买甲1件,乙2件比购买丙1件,多花9元;若购甲2件,丙8件比购买乙1件多花18元.现在购买甲、乙、丙各一件文具,则共需费用()A .7元B .8元C .9元D .10元【分析】设甲文具的单价为x 元,乙文具的单价为y 元,丙文具的单价为z 元,根据“若购买甲1件,乙2件比购买丙1件,多花9元;若购甲2件,丙8件比购买乙1件多花18元”,即可得出关于x ,y,z 的三元一次方程组,利用(3 ① ②)5 ,即可求出购买甲、乙、丙各一件文具所需的费用.【解答】解:设甲文具的单价为x 元,乙文具的单价为y元,丙文具的单价为z 元,依题意,得:292818x y z x z y ①②,(3 ① ②)5 ,得:9x y z .故选:C .9.(2021春•裕华区校级期末)一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三种客房共8间,且每个客房都住满,那么租房方案有()A .4种B .3种C .2种D .1种【分析】首先设宾馆有客房:二人间x 间、三人间y间、四人间z 间,根据题意可得方程组,解方程组可得28yz ,又由x ,y,z 是非负整数,即可求得答案.【解答】解:设宾馆有客房:二人间x 间、三人间y间、四人间z 间,根据题意得:234248x y z x y z,解得:28y z ,82yz ,x ,y,z 是正整数,当1z 时,6y ,1x ;当2z 时,4y ,2x ;当3z 时,2y ,3x ;当4z 时,0y,4x ;(不符合题意,舍去)租房方案有3种.故选:B .10.(2021春•广安区校级期末)已知4520(0)430x y z xyz x y z,则::x y z的值为()A .1:2:3B .3:2:1C .2:1:3D .不能确定【分析】把原方程组看作为关于x 、y的二元一次方程组,先利用加减消元法解得23yz,再利用代入消元法解得13x z,然后计算::x y z.【解答】解:4520430x y z x y z①②,① ②4 得5162120y y z z ,解得23yz,把23y z代入②得8303x zz,解得13x z,所以12::::1:2:333x y z z z z.故选:A .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.已知方程组567x y y z z x,则x y z9.【分析】三个方程左、右两边相加求出222x y z ,两边都除以2即可得到答案.【解答】解:567x y y z z x①②③,① ② ③得:22218x y z ,9x y z .故答案为:9.12.已知212222x y y z x z,则x y z 的值是53.【分析】方程组三个方程相加即可求出x y z 的值.【解答】解:212222x y y z x z①②③,① ② ③得:3335x y z ,解得:53x y z .故答案为:53.13.判断5,10,15x y z 是否是三元一次方程组0,215,240x y z x y z x y z的解:是.【分析】方程组利用加减消元法求出解即可判断.【解答】解:0215240x y z x y z x y z①②③② ①得:215x y ④③ ①得:2340x y ⑤,④2 ⑤得:10y,把10y代入④得:5x ,把5x ,10y代入①得:15z ,则方程组的解为51015x y z,故答案为:是.14.(2020春•津南区校级月考)三元一次方程组102040x y y z z x的解是15525x y z.【分析】将方程组三方程相加求出x y z 的值,即可确定出解.【解答】解:102040x y y z z x①②③,① ② ③得:2()70x y z ,即35x y z ④,把①、②、③分别代入④得:25z ,15x ,5y,则方程组的解为15525x y z,故答案为:15525x y z.15.(2020春•临颍县期末)在等式2yax bx c 中,当1x 时,0y ;当2x 时,3y ;当5x 时,60y.则a b c4 .【分析】把x 与y的值代入已知等式得到方程组,求出方程组的解得到a ,b ,c 的值,代入原式计算即可求出值.【解答】解:把1x ,0y;2x ,3y;5x ,60y代入得:042325560a b c a b c a b c,解得:325a b c,则3254a b c .故答案为:4 .16.(2020春•惠安县期末)某顾客到商场购买甲、乙、丙三种款式服装.若购买甲4件,乙7件,丙1件共需450元;若购买甲5件,乙9件,丙1件共需520元,则该顾客购买甲、乙、丙各一件共需240元.【分析】等量关系为:甲4件的总价 乙7件的总价 丙1件的总价450 ,甲5件的总价 乙9件的总价 丙1件的总价520 ,把相关数值代入,都整理为等式左边为x y z 的等式,设法消去等号右边含未知数的项,可得甲、乙、丙各1件共需的费用.【解答】解:设购买甲、乙、丙各1件分别需要x ,y,z 元,依题意得,4745059520x y z x y z①②,由①4 ②3 得,240x y z ,即现在购买甲、乙、丙各1件,共需240元.故答案为:240.17.(2021春•奉化区校级期末)为防控新冠疫情,做好个人防护,小君去药店购买口罩.若买6个平面口罩和4个95K N 口罩,则她所带的钱还剩下10元;若买4个平面口罩和6个95K N 口罩,则她所带的钱还缺8元.若只买10个95K N 口罩,则她所带的钱还缺44元.【分析】设平面口罩的单价为x 元,95K N 口罩的单价为y元,小君带的钱数为a 元,根据“若买6个平面口罩和4个95K N 口罩,则她所带的钱还剩下10元;若买4个平面口罩和6个95K N 口罩,则她所带的钱还缺8元”,即可得出关于x ,y ,a 的三元一次方程组,利用(6 ②4 ①)2 可得出1044y a ,移项后即可得出结论.【解答】解:设平面口罩的单价为x 元,95K N 口罩的单价为y元,小君带的钱数为a 元,依题意,得:6410468x y a x y a①②,(6 ②4①)2 ,得:1044y a ,1044y a .故答案为:44.18.(2020春•遂宁期末)若x 、y、z 满足2421x y z x y z,则x y 的值为3.【分析】方程组利用加减消元法求出x y 的值即可.【解答】解:2421x y z x y z①②,①2 ②得:339x y ,则3x y.故答案为:3.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•崇川区校级期中)解下列方程组:(1)32316x y x y;(2)234229x y z x y z.【分析】(1)方程组利用加减消元法求出解即可;(2)利用设k 法求出方程组的解即可.【解答】解:(1)32316x y x y②②,①3 ②得:525x ,解得:5x ,把5x 代入①得:2y,则方程组的解为52x y ;(2)234229x y zx y z ①②,由①设234xyzk,可得2x k ,3yk ,4z k ,代入②得:4389k k k ,解得:1k ,即2x ,3y,4z ,则方程组的解为234x y z.20.(1)解方程组:15(2)312226x y x y(2)解三元一次方程组:042325560x y z x y z x y z【分析】(1)方程组整理后,利用加减消元法求出解即可.(2)先由② ①,③ ②,得到关于x 和y的二元一次方程组,求得x 和y的值,并代入①式,求得z 的值即可.【解答】解:(1)方程组整理得:59316x y x y①②,①3 ②得:1442y ,即3y,把3y代入①得:6x ,则方程组的解为63x y.042325560x y z x y z x y z①②③② ①得,1x y④③ ②得,719x y⑤,⑤ ④,得,618x解得3x 把3x 代入④,得31y,解得2y把3x ,2y代入①,得320z 解得5z 所以原方程组的解为325x y z.21.(2020春•海安市期末)在等式2yax bx c 中,当0x 时,5y ;当2x 时,3y ;当2x 时,11y.(1)求a ,b ,c 的值;(2)小苏发现:当1x 或53x时,y的值相等.请分析“小苏发现”是否正确?【分析】(1)由“当0x 时,5y ;当2x 时,3y ;当2x 时,11y ”即可得出关于a 、b 、c 的三元一次方程组,解方程组即可得出结论;(2)把1x ,53x分别代入等式求得y的值,即可判断.【解答】解:(1)根据题意,得54234211c a b c a b c①②③,② ③,得48b ,解得2b ;把2b ,5c 代入②得4453a ,解得3a ,因此325a b c;(2)“小苏发现”是正确的,由(1)可知等式为2325yx x ,当1x 时,3250y;当53x时,25105033y,所以当1x 或53x时,y的值相等.22.(2021春•漳平市月考)已知2yax bx c ,当1x 时,0y ;当2x 时,5y ;当3x 时,0y ,求a ,b ,c 的值.【分析】把x 与y的值代入2yax bx c 得到方程组,求出方程组的解即可.【解答】解:由题意,得0425930a b c a b c a b c①②③,② ①得:35a b ④,③ ①得:840a b ,即20a b ⑤,④ ⑤得:55a ,解得:1a ,把1a 代入④得:35b ,解得:2b ,把1a ,2b 代入①得:120c ,解得:3c ,则方程组的解123a b c.23.(2021•安徽模拟)某超市在促销活动中准备了三种小礼品共16件,16件礼品的总价为50元,三种小礼品的单价分别为2元/件、4元/件和10元/件,每种小礼品至少准备1件.已知价格为2元的小礼品a 件.(1)请用含a 的代数式分别表示准备的另外两种小礼品的件数;(2)如果准备单价为2元的小礼品的数量正好是单价为4元的小礼品的2倍,分别求出准备的三种单价小礼品的件数.【分析】(1)根据所买数量之和为16,总价钱为50列出方程组,把m 当成已知数,求得另外两种食品的件数即可;(2)根据单价为2元的小礼品的数量正好是单价为4元的小礼品的2倍,列方程求解即可.【解答】解:(1)设价格为4元的小礼品b 件,价格为10元的小礼品c 件,由题意得:16241050a b c a b c.解得:5543ab,73ac,答:价格为4元的小礼品5543a件,价格为10元的小礼品73a件;(2)由题意得:55423aa ,解得:10a ,则55453ab,713ac,答:价格为2元的小礼品10件,价格为4元的小礼,5件,价格为10元的小礼品1件.24.(2021春•西乡塘区期末)[阅读理解]在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化繁为简.(1)解方程组 231x x y x y①②解:(1)把②代入①得:213x 把1x 代入②得:y所以方程组的解为1x y(2)已知353097510x y z x y z①②,求x y z 的值.解:(2)① ②得:10101040x y z ③③4 得4x y z [类比迁移](1)直接写出方程组3()422a b aa b 的解.(2)若658234x y z x y z,求x y z 的值.[实际应用]打折前,买36件A 商品,12件B 商品用了960元.打折后,买45件A 商品,15件B 商品用了1100元,比不打折少花了多少钱?【分析】(1)把②代入①中即可求出答案;(2)用① ②即可得出答案;[实际应用]设打折前A 商品每件x 元,B 商品每件y元,由题意可得关于x ,y 的二元一次方程,变形可得45151200x y ,用原价减现价即可得少花钱数.【解答】解:(1) 3422a b a a b①②,把②代入①中,得:3242a ,解得:5a ,把5a 代入②中,得3b , 方程组的解为53a b .(2)658234x y z x y z①②,① ②得:4444x y z ,1x y z .[实际应用]设打折前A 商品每件x 元,B 商品每件y元,根据题意得:3612960x y ,两边同时乘以54,得:45151200x y ,12001100100 (元),答:比不打折少花了100元.。

人教版七年级数学下册_8.4三元一次方程组的解法

人教版七年级数学下册_8.4三元一次方程组的解法

农作物 每公顷需 每公顷需投入 品种 劳动力 的设备资金
水稻 4人
1 万元
棉花 8人
1 万元
蔬菜 5人
2 万元
感悟新知
知3-练
已知该农场计划投入设备资金67 万元,应该怎样安排 这三种农作物的种植面积,才能使所有职工有工作, 而且投入的设备资金正好够用?
感悟新知
知3-练
解:设种植水稻 x 公顷,棉花 y 公顷,蔬菜 z 公顷.
③与④组成二元一次方程组
2 5
x-y x+8
7, y 7.
解得
把x=3,y=-1 代入①,得3+3×(-1)+2z=2,
x y
3, -1.
所以z=1.
x 3,
所以这个三元一次方程组的解为
y
-1,
z 1.
感悟新知
(2)① + ③,得3x+5y=11;④
知2-讲
③ ×2+ ②,得3x+3y=9,即x+y=3. ⑤
解:A 选项中,方程x2-y=1 与xz=2 中有含未知数的项
的次数为2 的,不符合三元一次方程组的定义,故A 选
项不是;B
选项中,1
x
,1
y
,1
z
不是整式,故B
选项不是;
C 选项中,方程组含有四个未知数,故C 选项不是;
D 选项符合三元一次方程组的定义.
感悟新知
知1-练
1-1. 下列方程组不是三元一次方程组的是( B )
将 z=2 代入方程②,得 y=53.
x=-34, 故这个三元一次方程组的解为y=53,
z=2.
感悟新知
(3)②×2-③,得 5x+27z=34.④ ①和④组成方程组45xx-+92z7=z=173,4,解得xz==135.,

8.4 三元一次方程组的解法(课件)七年级数学下册(人教版)

8.4 三元一次方程组的解法(课件)七年级数学下册(人教版)
所以x=2,y=4,z=10.
所以x=9,y=12,z=15.
=2
因此,这个方程组的解为 = 4
= 10
=9
因此,这个方程组的解为 = 12
= 15
考点解析
重点
例5.在等式y=ax2+bx+c中,当x=-1时,y=1;当x=2时,y=22;当x=3和x=5时,
y的值相等.求a,b,c的值.
(2)在(1)的情况下,运费最少是_____元.
解:(1)设甲型车有x辆,乙型车有y辆,
丙型车有z辆.
+ + = 16
根据题意,得
5 + 8 + 10 = 120
5
消去z,得5x+2y=40.所以x=8- y.
2
考点解析
重点
(1)为了节约运费,可以调用甲、乙、丙三种车型参与运送,每辆车均满载,
8 + = 0
③与④组成方程组
+ =7
= −1
解这个方程组,得
=8
把a=-1,b=8代入①,得-1-8+c=1,解得c=10.
所以a,b,c的值分别为-1,8,10.
迁移应用
1.已知 − +
1

2
− +(x+2)2=20,则x+y+z=_____.
-5
2.已知单项式-8a3x+y+zb12cx+y+z与-2a42b2x-yc4x是同类项,求x,y,z的值.
自学导航
小明手头有12张面额分别为10元、20元、50元的纸币,共计220元,其中10
元纸币的数量是20元纸币数量的4倍.求10元、20元、50元纸币各多少张.

《三元一次方程组的解法》教学设计2

《三元一次方程组的解法》教学设计2

《8.4三元一次方程组解法举例(2)》教学设计
活动三 变式运用,巩固新知 题组一:1、解方程组
若要使运算简便,消元的方法应选取(
)
(A)先消去x ; (B)先消去y ; (C)先消去z ; (D)以上说法都不对
解方程组
323231112x y z x y z x y z -+=⎧⎪
+-=⎨⎪++=⎩
①②③
题组二:甲、乙、丙三人一起去集邮市场,甲买入A 种邮票3张,B 种邮票2张,C 种邮票1张,按票值付款13元。

乙买入A 种邮票1张,B 种邮票1张,C 种邮票2张,按票值付款7元。

丙买入A 种邮票2张,B 种邮票3张,并卖出C 种邮票1张,按票值结算还需付12元。

问A 、B 、C 三种邮票面值各是多少?
课外探究:有15枚硬币共7元,且由1元、5角、1角的硬币个多少枚?
⎪⎩

⎨⎧=-+=-+=+-.15711423
23z y x z y x z y x
板书设计:。

《三元一次方程组的解法》人教版七年级数学下册导学案

《三元一次方程组的解法》人教版七年级数学下册导学案

8.4 三元一次方程组的解法【总结解题方法提升解题能力】【知识点梳理】一、三元一次方程及三元一次方程组的概念1、三元一次方程的定义含有三个未知数, 并且含有未知数的项的次数都是1的整式方程.如x+y-z=1, 2a-3b+4c=5等都是三元一次方程.2、三元一次方程组的定义一般地, 由几个一次方程组成, 并且含有三个未知数的方程组, 叫做三元一次方程组.二、三元一次方程组的解法1、解三元一次方程组的一般步骤〔1〕利用代入法或加减法, 把方程组中一个方程与另两个方程分别组成两组, 消去两组中的同一个未知数, 得到关于另外两个未知数的二元一次方程组;〔2〕解这个二元一次方程组, 求出两个未知数的值;〔3〕将求得的两个未知数的值代入原方程组中的一个系数比拟简单的方程, 得到一个一元一次方程;〔4〕解这个一元一次方程, 求出最后一个未知数的值;〔5〕将求得的三个未知数的值用“{〞合写在一起.要点诠释:〔1〕解三元一次方程组的根本思路是:通过“代入〞或“加减〞消元, 把“三元〞化为“二元〞.使解三元一次方程组转化为解二元一次方程组, 进而转化为解一元一次方程.其思想方法是:〔2〕有些特殊的方程组可用特殊的消元法, 解题时要根据各方程特点寻求其较简单的解法.三、三元一次方程组的应用1、列三元一次方程组解应用题的一般步骤〔1〕弄清题意和题目中的数量关系, 用字母(如x, y, z)表示题目中的两个(或三个)未知数;〔2〕找出能够表达应用题全部含义的相等关系;〔3〕根据这些相等关系列出需要的代数式, 从而列出方程并组成方程组;〔4〕解这个方程组, 求出未知数的值;〔5〕写出答案(包括单位名称).一、三元一次方程及三元一次方程组的概念 1、以下方程组不是三元一次方程组的是〔 〕. A 、12236x y y z y +=⎧⎪+=-⎨⎪=⎩ B 、24013x y x xy z ⎧-=⎪+=⎨⎪-=-⎩C 、2231x y x z =⎧⎪=-⎨⎪-=⎩D 、1321y x x z y z -=-⎧⎪+=⎨⎪-=⎩2、以下方程组中是三元一次方程组的是( ).A 、B 、111216y x z y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C 、123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D 、18120m n n t t m +=⎧⎪+=⎨⎪+=⎩3、以下方程组中是三元一次方程组的是〔 〕.A 、111xy yz xz =⎧⎪=⎨⎪=⎩B 、222x y y z x z +=⎧⎪+=⎨⎪+=⎩C 、111111x y z x⎧+=⎪⎪⎨⎪+=⎪⎩D 、23121x y x z x y z ⎧+=⎪+=⎨⎪--=⎩ 二、三元一次方程组的解法1、在等式y=ax 2+bx+c 中, 当x=﹣1时, y=0;当x=2时, y=3;当x=5时, y=60.求a, b, c 的值.2、解方程组:3、解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②4、方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10, 求a 的值.三、三元一次方程组的应用1、购置铅笔7支, 作业本3本, 圆珠笔1支共需3元;购置铅笔10支, 作业本4本, 圆珠笔1支共需4元, 那么购置铅笔11支、作业本5本圆珠笔2支共需元.2、现有面值为2元、1元和5角的人民币共24张, 币值共计29元, 其中面值为2元的比1元的少6张, 求三种人民币各多少张?【稳固练习】一、填空题.1、以下方程组中是三元一次方程组的是〔 〕.A 、2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B 、2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C 、1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D 、::3:4:524x y z x y z =⎧⎨++=⎩ 2、以下四组数值中, 为方程组的解是〔 〕.A 、B 、C 、D 、3、方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩, 那么a+b+c 的值为〔 〕.A 、6B 、-6C 、5D 、-54、532y x y z x a b c ++-与254x y a b c -是同类项, 那么x-y+z 的值为 ( ) .A 、1B 、2C 、3D 、45、代数式2ax bx c ++, 当x =-1时, 其值为4;当x =1时, 其值为8;当x =2时, 其值为25;那么当x =3时, 其值为 〔 〕.A 、4B 、8C 、62D 、526、方程组35204522x y x y z ax by z -=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩有相同的解, 那么a 、b 、c 的值为〔 〕.A 、231a b c =-⎧⎪=-⎨⎪=⎩B 、231a b c =-⎧⎪=⎨⎪=⎩C 、231a b c =⎧⎪=-⎨⎪=-⎩D 、231a b c =⎧⎪=⎨⎪=-⎩7、xyz ≠0, 且4520430x y z x y z -+=⎧⎨+-=⎩, 那么x ∶y ∶z 等于〔 〕. A 、3∶2∶1B 、1∶2∶3C 、4∶5∶3D 、3∶4∶5 8、关于x, y 的方程组的解是方程3x+2y=10的解, 那么a 的值为〔 〕.A 、﹣2B 、2C 、﹣1D 、1149、甲、乙、丙三个人各有一些钱, 其中甲的钱是乙的2倍, 乙比丙多1元, 丙比甲少11元, 那么三人共有〔 〕.A 、30元B 、33元C 、36元D 、39元 10、为了奖励进步较大的学生, 某班决定购置甲、乙、丙三种钢笔作为奖品, 其单价分别为4元、5元、6元, 购置这些钢笔需要花60元;经过协商, 每种钢笔单价下降1元, 结果只花了48元, 那么甲种钢笔可能购置( ) .A 、11支B 、9支C 、7支D 、5支二、填空题.11、方程组的解为.12、, 那么=.13、方程组2345216x y z x y z ⎧==⎪⎨⎪-+=⎩, 假设设=234x y z k ==, 那么k =__________. 14、某车间共有86名工人, 每人平均每天可以加工甲种部件15个, 乙种部件12个或丙种部件9个, 要使加工后的部件按3个甲种部件, 2个乙种部件和1个丙种部件配套, 那么应安排__________人加工甲种部件, __________人加工乙种部件, __________人加工丙种部件.15、甲、乙、丙三数的和是26, 甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18, 那么甲、乙、丙三个数分别是__________.三、解以下方程组.16、〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩ 〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩ 〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩四、应用题.1、新定义对有理数x, y 定义新运算x △y=ax+by+c, 其中a, b, c 是常数, 等式右边是通常的加法与乘法运算.1△2=9, 〔-3〕△3=6, 0△1=2, 求〔-2〕△5的值.2、在等式y =ax 2+bx +c 中, 当x =-1时, y =4;当x =2时, y =4;当x =1时, y =2.〔1〕求a , b , c 的值;〔2〕当x =-2时, 求y 的值.3、某单位职工在植树节当天去植树, 甲、乙、丙三个小组共植树50棵, 乙组植树的棵数是甲、丙两组和的 , 甲组植树的棵数恰好是乙组和丙组的和, 那么每组各植树多少棵?4、2003年全国足球甲A 联赛的前12轮(场)比赛后, 前三名比赛成绩如下表.胜〔场〕 平〔场〕 负〔场〕 积分问每队胜一场、平一场、负一场各得多少分?5、某工程由甲、乙两队合作需6天完成, 厂家需付甲、乙两队共8700元, 乙、丙两队合作需10天完成, 厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23, 此时厂家需付甲、丙两队共5500元. (1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)假设要不超过15天完成全部工程, 问由哪队单独完成此项工程花钱最少?请说明理由. 参考答案一、三元一次方程及三元一次方程组的概念1、以下方程组不是三元一次方程组的是〔 〕.A 、12236x y y z y +=⎧⎪+=-⎨⎪=⎩B 、24013x y x xy z ⎧-=⎪+=⎨⎪-=-⎩C 、2231x y x z =⎧⎪=-⎨⎪-=⎩D 、1321y x x z y z -=-⎧⎪+=⎨⎪-=⎩【答案】B 【解析】解:由题意知, 含有三个相同的未知数, 每个方程中含未知数的项的次数都是1次, 并且一共有三个方程, 叫做三元一次方程组.A 、满足三元一次方程组的定义, 故A 选项错误;B 、x 2-4=0, 未知量x 的次数为2次, ∴不是三元一次方程, 故B 选项正确;C 、满足三元一次方程组的定义, 故C 选项错误;D 、满足三元一次方程组的定义, 故D 选项错误; 应选B .2、以下方程组中是三元一次方程组的是( ).A 、2102x y y z xz ⎧-=⎪+=⎨⎪=⎩B 、111216y xz y x z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ C 、123a b c d a c b d +++=⎧⎪-=⎨⎪-=⎩ D 、18120m n n t t m +=⎧⎪+=⎨⎪+=⎩【答案】D【解析】A 选项中21x y -=与2xz =中未知数项的次数为2次, 故A 选项不是;B 选项中1x , 1y , 1z 不是整式, 故B 选项不是;C 选项中有四个未知数, 故C 选项不是;D 项符合三元一次方程组的定义.3、以下方程组中是三元一次方程组的是〔 〕.A 、111xy yz xz =⎧⎪=⎨⎪=⎩B 、222x y y z x z +=⎧⎪+=⎨⎪+=⎩C 、111111x y z x⎧+=⎪⎪⎨⎪+=⎪⎩D 、23121x y x z x y z ⎧+=⎪+=⎨⎪--=⎩【答案】B【解析】A 、含有三个未知数, 但不是一次方程, 故该选项错误;B 、是三元一次方程组, 故该选项正确;C 、不是整式方程, 故该选项错误;D 、不是一次方程组, 故该选项错误, 应选B .二、三元一次方程组的解法1、在等式y=ax 2+bx+c 中, 当x=﹣1时, y=0;当x=2时, y=3;当x=5时, y=60.求a, b, c 的值. 【解析】解:根据题意, 得,②﹣①, 得a+b=1④;③﹣①, 得4a+b=10 ⑤.④与⑤组成二元一次方程组, 解这个方程组, 得,把代入①, 得c=﹣5. 因此, 即a, b, c 的值分别为3, ﹣2, ﹣5.2、解方程组: 【答案】解:①+②得:5311x y +=④ ①×2+③得:53x y -=⑤由此可得方程组:531153x y x y +=⎧⎨-=⎩④⑤④-⑤得:48y =, 2y =;将2y =代入⑤知:1x =将1x =, 2y =代入①得:3z =所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③3、解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②【解析】解法一:原方程可化为:253520x z y z x y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③ 由①③得:25x z =, 35y z =④ 将④代入②得:232055z z z ++=, 得:10z =⑤ 将⑤代入④中两式, 得:2210455x z ==⨯=, 3310655y z ==⨯= 所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y z t ===, 那么2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=, 2t =将2t =代入③得:2224x t ==⨯=, 3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩4、方程组354x y a y z a z x a +=⎧⎪+=⎨⎪+=⎩①②③的解使得代数式x-2y+3z 的值等于-10, 求a 的值.【解析】解法一:②-①, 得z-x =2a ④③+④, 得2z =6a, z =3a把z =3a 分别代入②和③, 得y =2a, x =a .∴23x a y a z a =⎧⎪=⎨⎪=⎩.把x =a, y =2a, z =3a 代入x-2y+3z =10得:a-2×2a+3×3a =-10. 解得53a =-. 解法二:①+②+③, 得2(x+y+z)=12a ;即x+y+z=6a ④④-①, 得z =3a, ④-②, 得x =a, ④-③, 得y =2a .∴23x a y a z a =⎧⎪=⎨⎪=⎩,把x =a, y =2a, z =3a 代入x-2y+3z =10得:a-2×2a+3×3a =-10. 解得53a =-. 三、三元一次方程组的应用1、购置铅笔7支, 作业本3本, 圆珠笔1支共需3元;购置铅笔10支, 作业本4本, 圆珠笔1支共需4元, 那么购置铅笔11支、作业本5本圆珠笔2支共需元.【答案】5.【解析】解:设铅笔的单价是x 元, 作业本的单价是y 元, 圆珠笔的单价是z 元.购置铅笔11支, 作业本5本, 圆珠笔2支共需a 元.那么由题意得:,由②﹣①得3x+y=1, ④由②+①得17x+7y+2z=7, ⑤由⑤﹣④×2﹣③得0=5﹣a, 解得:a=5.2、现有面值为2元、1元和5角的人民币共24张, 币值共计29元, 其中面值为2元的比1元的少6张, 求三种人民币各多少张?【答案】解:设面值为2元、1元和5角的人民币分别为x 张、y 张和z 张.依题意, 得24122926x y z x y z x y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③ 把③分别代入①和②, 得21813232x z x z +=⎧⎪⎨+=⎪⎩④⑤ ⑤×2, 得6x+z =46 ⑥⑥-④, 得4x =28, x =7;把x =7代入③, 得y =13;把x =7, y =13代入①, 得z =4.∴方程组的解是7134x y z =⎧⎪=⎨⎪=⎩.答:面值为2元、l 元和5角的人民币分别为7张、13张和4张.【稳固练习】一、填空题.1、以下方程组中是三元一次方程组的是〔 〕.A 、2258232a b c a b c ++=⎧⎪=⎨⎪+=⎩B 、2222225810x y y z x z ⎧+=⎪+=⎨⎪+=⎩C 、1141171110x y y z z x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ D 、::3:4:524x y z x y z =⎧⎨++=⎩ 【答案】D ;2、以下四组数值中, 为方程组的解是〔 〕.A 、B 、C 、D 、【答案】D .【解析】,①+②得:3x+y=1④,①+③得:4x+y=2⑤,⑤﹣④得:x=1, 将x=1代入④得:y=﹣2, 将x=1, y=﹣2代入①得:z=3,那么方程组的解为.3、方程组329a b b c a c +=⎧⎪+=-⎨⎪+=⎩, 那么a+b+c 的值为〔 〕.A 、6B 、-6C 、5D 、-5【答案】C ;【解析】将方程组中的三个方程左右分别相加, 得2()10a b c ++=, 两边同除以2便得答案.4、532y x y z x a b c ++-与254x y a b c -是同类项, 那么x-y+z 的值为 ( ) .A 、1B 、2C 、3D 、4【答案】D ;【解析】由同类项的定义得:5235y x x y z x y +=⎧⎪+=⎨⎪-=⎩, 解得:211x y z =⎧⎪=-⎨⎪=⎩, 所以4x y z -+=.5、代数式2ax bx c ++, 当x =-1时, 其值为4;当x =1时, 其值为8;当x =2时, 其值为25;那么当x =3时, 其值为 〔 〕.A 、4B 、8C 、62D 、52【答案】D ;【解析】由条件知484225a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩, 解得521a b c =⎧⎪=⎨⎪=⎩.当x =3时, 2252152ax bx c x x ++=++=.6、方程组35204522x y x y z ax by z -=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by z x y z c x y -+=⎧⎪++=⎨⎪+=-⎩有相同的解, 那么a 、b 、c 的值为〔 〕.A 、231a b c =-⎧⎪=-⎨⎪=⎩B 、231a b c =-⎧⎪=⎨⎪=⎩C 、231a b c =⎧⎪=-⎨⎪=-⎩D 、231a b c =⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组35202934x y x y z x y -=⎧⎪+-=⎨⎪+=-⎩, 解得120x y z =⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a b a b c -⎧⎪+=⎨⎪-=⎩=-, 解得231a b c =⎧⎪=⎨⎪=-⎩, 应选D .7、xyz ≠0, 且4520430x y z x y z -+=⎧⎨+-=⎩, 那么x ∶y ∶z 等于〔 〕.A 、3∶2∶1B 、1∶2∶3C 、4∶5∶3D 、3∶4∶5【答案】B 【解析】∵4520430x y z x y z -+=⎧⎨+-=⎩①②,∴①×3+②×2, 得2x =y , ①×4+②×5, 得3x =z , ∴x ∶y ∶z =x ∶2x ∶3x =1∶2∶3, 应选B . 8、关于x, y 的方程组的解是方程3x+2y=10的解, 那么a 的值为〔 〕.A 、﹣2B 、2C 、﹣1D 、1【答案】B ;【解析】解:此题的实质是解三元一次方程组, 用加减法或代入法来解答.〔1〕﹣〔2〕得:6y=﹣3a, ∴y=﹣,代入〔1〕得:x=2a, 把y=﹣, x=2a 代入方程3x+2y=10,得:6a ﹣a=10, 即a=2.应选B .9、甲、乙、丙三个人各有一些钱, 其中甲的钱是乙的2倍, 乙比丙多1元, 丙比甲少11元, 那么三人共有〔 〕.A 、30元B 、33元C 、36元D 、39元 【答案】D ;【解析】解:设甲乙丙分别有,,x y z 元元元, 那么有:2111x y y z x z =⎧⎪-=⎨⎪-=⎩, 解得:20109x y z =⎧⎪=⎨⎪=⎩, 所以三人共有:39x y z ++=〔元〕.10、为了奖励进步较大的学生, 某班决定购置甲、乙、丙三种钢笔作为奖品, 其单价分别为4元、5元、6元, 购置这些钢笔需要花60元;经过协商, 每种钢笔单价下降1元, 结果只花了48元, 那么甲种钢笔可能购置( ) .A 、11支B 、9支C 、7支D 、5支 【答案】D ;【解析】解:设购置甲、乙、丙三种钢笔分别为x 、y 、z 支, 由题意, 得4566034548x y z x y z ++=⎧⎨++=⎩①②①×4-②×5得x-z =0, 所以x =z, 将z =x 代入①, 得4x+5y+6x =60.即y+2x =12. ∵ y >0, ∴ x <6, ∴ x 为小于6的正整数, ∴ 选D.二、填空题.11、方程组的解为.【答案】.12、, 那么=.【答案】;【解析】解:,①×7﹣②×6得:2x ﹣3y=0, 解得:x=y,①×2+②×3得:11x ﹣33z=0解得:x=3z,∵x=y, x=3z, ∴y=2z, ∴===.故答案为:.13、方程组2345216x y zx y z ⎧==⎪⎨⎪-+=⎩, 假设设=234x y z k ==, 那么k =__________.【答案】2 【解析】设=,234x y zk ==那么x =2k , y =3k , z =4k , 代入5x −2y +z =16得:10k −6k +4k =16, 解得:k =2, 故答案为:2. 14、某车间共有86名工人, 每人平均每天可以加工甲种部件15个, 乙种部件12个或丙种部件9个, 要使加工后的部件按3个甲种部件, 2个乙种部件和1个丙种部件配套, 那么应安排__________人加工甲种部件, __________人加工乙种部件, __________人加工丙种部件. 【答案】36;30;20【解析】设应安排x 人加工甲种部件, y 人加工乙种部件, z 人加工丙种部件.那么由题意得8615391229x y z xz yz⎧++=⎪⎪=⎪⎨⎪⎪=⎪⎩①②③,由②得x =95z ④, 由③得y =32z ⑤,将④⑤代入①, 解得z =20, ∴x =36, y =30.故答案为:36, 30, 20.15、甲、乙、丙三数的和是26, 甲数比乙数大1, 甲数的两倍与丙数的和比乙数大18, 那么甲、乙、丙三个数分别是__________. 【答案】10, 9, 7【解析】设甲数为x , 乙数为y , 丙数为z , 根据题意得:261218x y z x y x z y ++=⎧⎪-=⎨⎪+-=⎩, 解得:1097x y z =⎧⎪=⎨⎪=⎩, 那么甲数是10, 乙数是9, 丙数是7, 故答案为:10, 9, 7.三、解以下方程组.16、〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩ 〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩ 〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩【解析】〔1〕2333215x y z x y z x y z +-=⎧⎪-+=-⎨⎪--=⎩①②③,①+③, 得3x -4z =8④, ②-③, 得2x +3z =-6⑤,联立④⑤, 得348236x z x z -=⎧⎨+=-⎩, 解得02x z =⎧⎨=-⎩,把x =0, z =-2代入③, 得y =-3,所以原方程组的解是032x y z =⎧⎪=-⎨⎪=-⎩.〔2〕2362125x y z x y z x y z ++=⎧⎪-+=-⎨⎪+-=⎩①②③,1097x y z =⎧⎪=⎨⎪=⎩14③+①, 得3x +5y =11④, ③×2+②, 得3x +3y =9⑤, ④-⑤, 得2y =2, 解得y =1,将y =1代入⑤, 得3x =6, 解得x =2, 将x =2, y =1代入①, 得z =-1, 所以原方程组的解为211x y z =⎧⎪=⎨⎪=-⎩.〔3〕126218x y x y z x y z -=⎧⎪++=⎨⎪-+=⎩①②③,将方程①+②得:2x +z =27④, 将方程②+③得:3x +2z =44⑤,将④×3﹣⑤×2得:z =7, 将z 值代入⑤得:x =10, 把x =10代入①得:y =9,∴三元一次方程组的解为 . 四、应用题.1、新定义对有理数x, y 定义新运算x △y=ax+by+c, 其中a, b, c 是常数, 等式右边是通常的加法与乘法运算.1△2=9, 〔-3〕△3=6, 0△1=2, 求〔-2〕△5的值.解:由题意得293362a b c a b c b c ++=⎧⎪-++=⎨⎪+=⎩, 解得253a b c =⎧⎪=⎨⎪=-⎩,所以此新运算为x △y =2x +5y -3, 故〔-2〕△5=2×〔-2〕+5×5-3=18.2、在等式y =ax 2+bx +c 中, 当x =-1时, y =4;当x =2时, y =4;当x =1时, y =2.〔1〕求a , b , c 的值; 〔2〕当x =-2时, 求y 的值.3、某单位职工在植树节当天去植树, 甲、乙、丙三个小组共植树50棵, 乙组植树的棵数是甲、丙两组和的 , 甲组植树的棵数恰好是乙组和丙组的和, 那么每组各植树多少棵?解:设甲、乙、丙三个小组分别植树x 棵、y 棵和z 棵.根据题意,得501()4x y z y x z x y z++=⎧⎪⎪=+⎨⎪=+⎪⎩, 解得251015x y z =⎧⎪=⎨⎪=⎩.答:甲、乙、丙三个小组分别植树25棵、10棵和15棵.4、2003年全国足球甲A 联赛的前12轮(场)比赛后, 前三名比赛成绩如下表.胜〔场〕平〔场〕负〔场〕积分大连实德队8 2 2 26 上海申花队 6 5 1 23 北京现代队 5 7 0 22 问每队胜一场、平一场、负一场各得多少分?解:设每队胜一场、平—场、负—场分别得x分, y分, z分根据题意, 得8222665235722x y zx y zx y++=⎧⎪++=⎨⎪+=⎩①②③;由①得4x+y+z=13 ④②一④, 得x+2y=5 ⑤⑤×5-③, 得y=1.把y=1代入⑤, 得x=5-2×1=3, 即x=3.把x=3, y=1代入④, 得z=0.∴310 xyz=⎧⎪=⎨⎪=⎩答:每队胜一场得3分, 平一场得1分, 负一场得0分.5、某工程由甲、乙两队合作需6天完成, 厂家需付甲、乙两队共8700元, 乙、丙两队合作需10天完成, 厂家需支付乙、丙两队共8000元;甲、丙两队合作5天完成全部工程的23, 此时厂家需付甲、丙两队共5500元.(1)求甲、乙、丙各队单独完成全部工程各需多少天?(2)假设要不超过15天完成全部工程, 问由哪队单独完成此项工程花钱最少?请说明理由.解:〔1〕设甲队单独做x天完成, 乙队单独做y天完成, 丙队单独做z天完成, 那么111611110112135x yy zx z⎧+=⎪⎪⎪+=⎨⎪⎪+=⨯⎪⎩, 解得111011151130xyz⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,∴101530xyz=⎧⎪=⎨⎪=⎩.答:甲、乙、丙各队单独完成全部工程分别需10天, 15天, 30天.〔2〕设甲队做一天应付给a元, 乙队做一天应付给b元, 丙队做一天应付给c元, 那么6()870010()80005()5500a bb ca c+=⎧⎪+=⎨⎪+=⎩,解得875575225abc=⎧⎪=⎨⎪=⎩.∵ 10a=8750〔元〕, 15b=8625〔元〕.答:由乙队单独完成此工程花钱最少.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(1)y 是x 的函数吗?为什么?(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置A 种树苗x 棵, 造这片树林的总费用为y 元, 解答以下问题: (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章 反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x 吨, 这批原材料能用y 天, 那么y 与x 之间的函数表达式为〔 〕 A .y =100x B .y =C .y =+100D .y =100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m 3的圆柱形煤气储存室, 那么储存室的底面积S 〔单位:m 2〕与其深度d 〔单位:m 〕的函数图象大致是〔 〕A .B .C .D .3.甲、乙两地相距s 〔单位:km 〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y 〔单位:h 〕关于行驶速度x 〔单位:km /h 〕的函数图象是〔 〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降,此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕100 80 60 40 20压强y〔kPa〕60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200 240 250 400销售量y〔双〕30 25 24 1513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变,密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 1.5〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小, 此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100 125 200 250 …镜片与光斑的距离y/m… 1 …m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mgmg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕400 625 800 1000 (1250)镜片焦距x〔cm〕25 16 10 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.y〔毫克/百毫升〕与时间x〔时〕成正比例;1.5小时后〔包括1.5小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降,此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件,在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是( )A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置A (1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。

三元一次方程组解法举例教学案

三元一次方程组解法举例教学案
6/6

x 2 y 5z 22, ②
x 4 y.

导学说明
讨论: 1.把③代 入①、② 能消去 x 吗? 2.③中不 含有 z,通 过①,② 消去 z,能 和③组成 二元一次 方程组 吗?
反思
4.例题:解方程组
x z 4, z 2 y 1, x y z 1.
3/6
练习:有人问甲、乙、丙三人的年龄,甲说我们三人的年 龄之和为 26,乙说:甲年龄的两倍再加上我的年龄就要比 丙大 18,丙说:我比甲小 1 岁,聪明的你能算出甲、乙、 丙三人的年龄吗?
导学说明
反思
小结: 1.三元一次方程组的概念;
2.解三元一次方程组的基本思想及方法:
作业:
1.解方程组
x y 1
教案流程: 温故知新 1.解二元一次方程组的基本思想是什么?
2.解二元一次方程组的方法有哪些?
3.解方程组
(1)
x y 3, 2x 3y
1;
(用代入法)(2)
2x 4x

3y 2y

5, 1.
(用加减法)
导学说明 反思 温故知 新,课前 独立完 成,课上 口答.
班级:七年级 班 学生姓名:
线
授课人 :

主备人 :

创设情境,提出问题
1/6
小明手头有 12 张面额分别为 1 元、2 元、5 元 写出题目
的纸币,共计 22 元,其中 1 元纸币的数量是 2 元 中的三个
纸币数量的 4 倍.求 1 元、2 元、5 元纸币各多少 相等关
张.
系.
题目中要求几个量?你能设三个未知数,列出三个方程吗?来自2/6探究新知

8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)

8.4 三元一次方程组的解法 人教版数学七年级下册素养提升练习(含解析)

第八章 二元一次方程组*8.4 三元一次方程组的解法基础过关全练知识点1 三元一次方程(组)1.(2023河北唐山遵化期中)下列是三元一次方程组的是( )A.2x=5x2+y=7x+y+z=6-y+z=-22y+z=9=-3C.x+y-z=7xyz=1x-3y=4 D.x+y=2y+z=1x+z=9知识点2 三元一次方程组的解法2.(2021四川遂宁安居期中)解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,以下解法不正确的是( )A.由①②消去z,再由①③消去zB.由①③消去z,再由②③消去zC.由①③消去y,再由①②消去yD.由①②消去z,再由①③消去y3.(2023云南昆明十中期中)解方程组2x-y+3z=1,3x+y-7z=2,5x-y+3z=3,若要使运算简便,则消元时最好( )A.先消去xB.先消去yC.先消去zD.先消常数项4.(2023天津南开期末)已知2x+3y=z,3x+4y=2z+6中的x,y满足x+y=3,则z 的值为( )A.9B.-3C.12D.不确定5.【新考法】请认真观察,动脑筋想一想,图中“?”表示的数是( )A.420B.240C.160D.706.在等式y=ax2+bx+c中,当x=0时,y=-5;当x=2时,y=3;当x=-2时,y=11,则a= ,b= ,c= .7.一个三位数,个位,百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位,十位上的数字的和大2,个位,十位,百位上的数字的和是14,则这个三位数是 .8.解方程组:(1)2x-3y+4z=12, x-y+3z=4,4x+y-3z=-2.(2)【一题多解】x+y=27,①y+z=33,②z+x=30.③9.【新独家原创】一只蜘蛛有8条腿,一只蜻蜓有6条腿和2对翅膀,一只小鸟有2条腿和1对翅膀.现在这三种动物共有14只,共有70条腿和17对翅膀,则每种动物各有几只?10.小明从家到学校的路程为3.3千米,且从家到学校分别为一段上坡路,一段平路和一段下坡路.如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校要用一个小时,从学校到家要用44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米.能力提升全练11.(2023浙江杭州拱墅期中,15,★★☆)若关于x,y的方程组3x+5y=m+2,2x+3y=m满足x、y的和等于3,则m= .12.(2022湖北武汉汉阳期末,14,★★☆)某联赛中A,B,C,D,E五支球队的积分和胜负情况如下表:队名比赛场次胜场平场负场积分A1684428B16016016C16012412D16286aE16b82c从中可知a= ,b= ,c= .13.(2023四川资阳安岳期中,13,★★☆)有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件共需63元;购买甲4件、乙10件、丙1件共需84元,则购买甲、乙、丙各一件共需 元.14.(2022广东深圳龙岗月考,27,★★☆)A、B、C三个阀门,同时开放,1小时可注满水池.只开放A、C两个阀门,1.5小时可注满水池.只开放B、C两个阀门,2小时可注满水池.问:只开放A、B两个阀门,需多少时间才能注满水池?素养探究全练15.【运算能力】阅读材料:我们把多元方程(组)的非负整数解叫做这个方程(组)的“好解”.例如:x=1,y=8是方程3x+y=11的一组“好解”;x=1, y=2, z=3是方程组3x+2y+z=10,x+y+z=6的一组“好解”.(1)求方程x+2y=5的所有“好解”.(2)关于x,y,k的方程组x+y+k=15,x+5y+3k=27有“好解”吗?若有,请求出对应的所有“好解”;若没有,请说明理由.答案全解全析基础过关全练1.DA选项,第二个方程中x2的次数是2;B选项,第一个方程中分母含有未知数;C选项,第二个方程中xyz的次数是3;D选项,方程组中含有三个未知数,且含未知数的项的次数都是1,故D选项中的方程组是三元一次方程组.故选D.2.D解方程组3x-y+z=4①,2x+3y-z=12②,x+y-2z=3③,利用加减法消去同一个未知数,组成二元一次方程组,故解法不正确的是由①②消去z,再由①③消去y.故选D.3.B观察各方程未知数x,y,z的系数发现:未知数y的系数要么相等,要么互为相反数,所以要使运算简便,那么消元时最好先消去y,故选B.4.B由题意,得2x+3y=z①,3x+4y=2z+6②, x+y=3③,①×2-②,得x+2y=-6④,④-③,得y=-9.把y=-9代入③,得x-9=3,解得x=12.把x=12,y=-9代入①,得z=2×12+3×(-9)=-3.5.B设题图中一个篮球表示的数是x,一顶帽子表示的数是y,一双鞋表示的数是z,依题意得x-3y+z=30②,2x-3z=20③,①+②,得2x+3z=140④,③+④,得4x=160,解得x=40,把x=40代入③得2×40-3z=20,解得z=20,把x=40,z=20代入①得40+3y+2×20=110,解得y=10,则方程组的解为x=40, y=10, z=20.故x+yz=40+10×20=240.故选B.6.3;-2;-5解析 根据题意,得c=-5,①4a+2b+c=3,②4a-2b+c=11,③②-③,得4b=-8,解得b=-2,把b=-2,c=-5代入②得4a-4-5=3,解得a=3,∴a=3,b=-2,c=-5.7.275解析 设这个三位数个位上的数字为x,十位上的数字为y,百位上的数字为z.根据题意得x+z=y①,7z=x+y+2②,x+y+z=14③,把①代入③得2y=14,解得y=7,把y=7代入①得x+z=7④,把y=7代入②得7z=x+9⑤,④+⑤得8z=16,解得z=2,把z=2代入④得x+2=7,解得x=5,∴这个三位数为2×100+7×10+5=275.8.解析 (1)x -y +3z =4②,4x +y -3z =-2③,②+③,得5x=2,解得x=25,①+③×3,得14x-5z=6④,把x=25代入④得285-5z=6,解得z=-225.把x=25,z =―225代入②得25―y ―625=4,解得y=-9625.所以原方程组的解为x =25,y =-9625,z =-225.(2)解法一:由①+②+③得2x+2y+2z=90,即x+y+z=45,④④-①,得z=18,④-②,得x=12,④-③,得y=15,所以原方程组的解为x =12,y =15,z =18.解法二:由①+②-③得2y=30,解得y=15,由①+③-②得2x=24,解得x=12,由②+③-①得2z=36,解得z=18,所以原方程组的解为x =12,y =15,z =18.解法三:由①得x=27-y,④把④代入③,得z+27-y=30,即z-y=3,⑤由②与⑤组成方程组,得y +z =33,z -y =3,解得y =15,z =18,把y=15代入④,得x=12,所以原方程组的解为x =12,y =15,z =18.9.解析 设蜘蛛有x 只,蜻蜓有y 只,小鸟有z 只,由题意得x +y +z =14,8x +6y +2z =70,2y +z =17,解得x =3,y =6,z =5.答:蜘蛛3只,蜻蜓6只,小鸟5只.10.解析 设小明家到学校上坡路是x 千米,平路是y 千米,下坡路是z 千米.+y +z =3.3,+y 4+z 5=1,+y 4+x5=4460,解得x =2.25,y =0.8,z =0.25.答:上坡路是2.25千米,平路是0.8千米,下坡路是0.25千米.能力提升全练11.5解析 由题意,得3x +5y =m +2①,2x +3y =m ②,x +y =3③,由①-②得x+2y=2④,联立③④得方程组x +y =3③,x +2y =2④,解得x =4,y =-1,把x =4,y =-1代入②得m=2×4+3×(-1)=5.12.14;6;26解析 设胜一场得x 分,平一场得y 分,负一场得z 分,∴8x+4y+4z=28,16y=16,12y+4z=12,∴x=3,y=1,z=0.a=2x+8y+6z=14,b=16-8-2=6,c=6x+8y+2z=26.故答案为14;6;26.13.21解析 设甲的单价为x元,乙的单价为y元,丙的单价为z元,根据题意,得3x+7y+z=63①, 4x+10y+z=84②,②-①得x+3y=21,∴3x+9y=63,由②得x+(3x+9y)+y+z=84,∴x+63+y+z=84,∴x+y+z=21.14.解析 设单独开放A、B、C三个阀门,分别需要x、y、z小时才能注满水池,易知x,y,z都不为0,+1+×1=1, +×1.5=1, +×2=1,∴1x =12,1y=13,1z=16,∴1x+1y=56,∴开放A、B两个阀门需要的时间为+=1÷56=65(小时),∴开放A、B两个阀门,需65小时才能注满水池.素养探究全练15.解析 (1)当y=0时,x=5;当y=1时,x=3;当y=2时,x=1,所以方程x+2y=5的所有“好解”为x =5,y =0,x =3,y =1,x =1,y =2.(2)有.x +y +k =15,①x +5y +3k =27.②②-①,得4y+2k=12,则k=6-2y.①×3-②,得2x-2y=18,则x=9+y.∵x,y,k 为非负整数,∴当y=0时,x=9,k=6;当y=1时,x=10,k=4;当y=2时,x=11,k=2;当y=3时,x=12,k=0,∴关于x,y,k 的方程组x +y +k =15,x +5y +3k =27的“好解”为x =9,y =0,k =6,x =10,y =1,k =4,x =11,y =2,k =2,x =12,y =3,k =0.。

最新人教版七下数学 8.4 三元一次方程组的解法

最新人教版七下数学 8.4 三元一次方程组的解法

x+z-y=1
____________
z=3
____________.
2. 今年小新一家三口的岁数总和是80岁,爸爸比妈 妈大3岁,妈妈的岁数恰好是小新岁数的5倍.问:今 年爸爸、妈妈和小新分别几岁?
等量关系: (1) 爸爸年龄 + 妈妈年龄 + 小新年龄 = 80; (2) 爸爸年龄 = 妈妈年龄 + 3; (3) 妈妈年龄 = 小新年龄×5.
“加减”
“加减”
一元一次 方程组
3x+4z=7 ①
例1 解三元一次方程组 解:②×3+③,得11x+10z=35.④
2x+3y+z=9 ② 5x-9y+7z=8 ③
①与④组成方程组 还3x有+4其z=他7 解法解这吗个?方程组,得
11x+10z=35
把x=5,z=
-2代入②,得2×5+3y-2=9,所以
将 a,b,c 将 x、y 看作未知数 代入原式
a-b+c=0

4a+2b+c=3 ②
25a+5b+c=60 ③
a-b+c=0

解:根据题意,得三元一次方程组 4a+2b+c=3 ②
25a+5b+c=60 ③
②-①,得a+b=1,④ ③-①,得4a+b=10,⑤
a+b=1 ④ ④与⑤组成二元一次方程组
y
=
1 3
因此,这个三元一次方程组的解为
x=5
z= -2
x=5
y=1 3
z= -2
解:由①,得
x

七年级数学下册8.4三元一次方程组的解法习题课件(新版)新人教版

七年级数学下册8.4三元一次方程组的解法习题课件(新版)新人教版

02 中档题
x+y=-1, 11.三元一次方程组x+z=0, 的解是( D ) y+z=1 x=-1 x=1 x=0 x=-1 A.y=1 B.y=0 C.y=1 D.y=0 z=0 z=-1 z=-1 z=1
12.( 淄博中考) 如图,在正方形 ABCD的每个顶点上写一个数,把这 个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB 上的数是3,BC上的数是7,CD上的数是12,则AD上的数是( C )
4x+3y=2 A. 7x+5y=3 3x+4y=2 C. 7x+5y=3
4x+3y=2 B. 23x+17y=11 3x+4y=2 D. 23x+17y=11
x+2y=k, 4.已知方程组 的解满足 x+y=3,则 k 的值为( B ) 2x+y=1
x=2, ∴原方程组的解为y=4, z=1.
知识点2 三元一次方程组的简单应用
7.一个三位数,个位、百位上的数字的和等于十位上的数字,百位 上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上 的数字的和是14.则这个三位数是______. 275 6 ,y=___ 8 8.已知-ax+y-zb5cx+z-y与a11by+z-xc是同类项,则x=___ 3 ,z=____.
3x-y+2z=3, 2.观察方程组2x+y-4z=11,的系数特点,若要使求解简便, 7x+y-5z=1 消元的方法应选取( B )
A.先消去x C.先消去z B.先消去y D.以上说法都不对
5x+4y+z=0, ① 3.将三元一次方程组3x+y-4z=11, ②经过步骤①-③和 x+y+z=-2 ③ ③×4+②消去未知数 z 后,得到的二元一次方程组是( A )

人教版数学七年级下册《8-4三元一次方程组的解法》教案

人教版数学七年级下册《8-4三元一次方程组的解法》教案

人教版数学七年级下册《8-4三元一次方程组的解法》教案一. 教材分析《8-4三元一次方程组的解法》是人教版数学七年级下册的一章内容。

本章主要介绍了三元一次方程组的解法,包括代入法、加减法和矩阵法。

通过本章的学习,学生能够掌握三元一次方程组的基本解法,并能够运用到实际问题中。

二. 学情分析学生在学习本章内容前,已经学习了二元一次方程组的解法,具备了一定的方程组解法基础。

但是,对于三元一次方程组,学生可能存在一定的困惑和难度。

因此,在教学过程中,需要引导学生理解和掌握三元一次方程组的解法,并通过实例让学生感受到方程组在实际问题中的应用。

三. 教学目标1.知识与技能目标:学生能够理解三元一次方程组的概念,掌握三元一次方程组的解法,并能够运用到实际问题中。

2.过程与方法目标:通过解决实际问题,学生能够自主探究三元一次方程组的解法,培养学生的解决问题的能力。

3.情感态度与价值观目标:学生能够感受到数学与实际生活的联系,增强对数学的兴趣和信心。

四. 教学重难点1.重点:三元一次方程组的解法。

2.难点:三元一次方程组的解法的运用。

五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的学习兴趣,引导学生主动探究三元一次方程组的解法。

2.实例教学法:通过具体的实例,让学生理解和掌握三元一次方程组的解法。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备。

2.教学素材:实际问题实例、解法步骤图解。

七. 教学过程1.导入(5分钟)利用多媒体展示实际问题实例,引导学生思考如何解决该问题。

通过问题的引入,激发学生的学习兴趣,引出本节课的主题——三元一次方程组的解法。

2.呈现(10分钟)通过PPT或者黑板,呈现三元一次方程组的解法:代入法、加减法和矩阵法。

引导学生理解和掌握每一种解法的步骤和应用。

3.操练(10分钟)学生分组讨论和解决问题,教师巡回指导。

人教版三元一次方程组解法举例

人教版三元一次方程组解法举例
8.4三元一次方程组解法举例
什么叫二元一次方程组? 什么叫三元一次方程组?
小明手头有12张面额分别为1元、2 元、5元的纸币,共计22元,其中1元的 纸币的数量是2元纸币数量的4倍。求1 元、2元、5元纸币各是多少张。 解:设1元、2元、5元纸币分别是x张、 y张、z张,根据题意,得
xyz12
x2y5z22
3、一个三位数,个位、百位上的数字的 和等于十位上的数字,百位上的数字的7 倍比个位、十位上的数字的和大2,个位、 十位、百位上的和是14.求这个三位数。
解:设这个三位数个位、十位、百位上的数 字分别为x、y,由题意得
xz y
7z x y 2
x y z 14
解得:
x5 y7
z2
答:这个三位数是572
1、本节课我们学了什么内容?
2、解三元一次方程组的基本思 路
课本P116习题8.4第1、2题 P117习题8.4第4、5题
2
解:设这三个数分别为x、y、z,有题意得
x y z 35
2x y 5
1y 1z
3
2
解得
x 10 y 15
z 10
答:这三个数分别为10、15、10
下表所示为装运甲、乙、丙三种蔬菜的重量及利润。
某汽运公司计划装运甲、乙、丙三种蔬菜到外地销售 (每辆汽车按规定满载,且每辆汽车只能装一种蔬菜) (1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问 装运的汽车各多少辆? (2)计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B 地销售,如何安排装运,可使公司获得的100个百元的 利润?
abc 0
4a 2b c 3
解得
25 5b c 60
a3 b 2 c 5

三元一次方程组的解法(习题卷)(无答案) 人教版数学七年级下册

三元一次方程组的解法(习题卷)(无答案) 人教版数学七年级下册

8.4 三元一次方程组的解法(习题卷)人教新版数学七年级下册一.选择题1.一家宾馆有二人间、三人间、四人间3种客房,一个由20人组成的旅行团准备同时租住这3种客房共7间,如果每个房间都住满,可供选择的方案有()A.1种B.2种C.3种D.4种2.一只船有一个漏洞,水以均匀速度进入船内.发现漏洞时,船内已经进入了一些水,如果以12个人淘水,3h可以淘完,如果以5个人淘水,10h才能淘完.现在要想在2h内淘完,需要()人.A.17B.18C.20D.213.三元一次方程组,消去未知数z后,得到的二元一次方程组是()A.B.C.D.4.已知实数x、y、z满足3x+7y+z=5,4x+10y+z=3,则x+y+z=()A.9B.10C.12D.不确定5.为了使学生既能获得足够的营养又能保持良好的身材,艺海舞蹈学校欲为学生配制营养餐,下表给出甲、乙、丙三种食物的维生素A,维生素B的含量及成本:若餐厅欲将三种食物混合成100kg的营养餐,设所用甲、乙、丙的分量依次为x,y,z,若营养餐至少需含44000单位的维生素A及48000单位的维生素B,若考虑使成本最低,则x,y,z 的取值为()甲乙丙维生素A(单位/kg)400600400维生素B(单位/kg)800200400成本(元/kg)654 A.x=30kg,y=30kg,z=40kg B.x=30kg,y=20kg,z=50kgC.x=20kg,y=30kg,z=50kg D.x=50kg,y=20kg,z=30kg6.某商店甲、乙、丙三种商品每件单价分别为2元,3元,5元.某人必须买这三种商品若干件,买完后他共付钱20元,后来此人发现其中有种商品买多了,退还两件这种商品,但营业员只有10元一张的钱,没有零钱退,此人只得将其它两种商品购买的数量作了调整,使总价格保持不变.这时,此人所购得的三种物品中,乙种商品的件数是()A.1B.2C.3D.47.方程x+y+z=7的正整数解有()A.10组B.12组C.15组D.16组8.如果方程组的解也是方程4x+y+2a=0的解,那么a的值是()A.﹣B.C.﹣2D.29.下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解10.已知,都是关于x,y的方程y=﹣3x+c的一个解,则下列对于a,b的关系判断正确的是()A.a﹣b=3B.a﹣b=﹣3.C.a+b=3D.a+b=﹣3二.填空题11.近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行(每辆车座位数不少于20),甲型巴士每辆车的乘载量是乙型巴士的2倍,丙型巴士每辆可乘坐40人.现在旅游公司有甲、乙、丙型巴士若干辆,预计该集团公司安排甲型、丙型巴士共计11辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共376人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型巴士,且有辆乙型巴士多出5个空位,这样甲、乙两种型号巴士共计装载259人,则该集团公司共有名员工.12.某校去年租借了三架无人机A,B,C用于体育节航拍,无人机A,B,C飞行平均速度之比为1:8:3,飞行时间之比为2:1:2.今年继续租借,但根据航拍需求,对三架无人机飞行平均速度和时间均作了调整.无人机B的平均速度比去年低了,无人机C的平均速度为去年的.A,C两架无人机的飞行总路程增加,而无人机B飞行总路程减少.无人机C增加的路程是无人机A增加路程的2倍,且占今年三架无人机总路程的20%.无人机A增加的路程与无人机B减少的路程之比为7:15,则今年无人机B与无人机C的飞行时间之比为.13.某个“卡通玩具”自动售货机出售A、B、C三种玩具,A、B、C三种玩具的单价分别是3元/个、5元/个,6元/个,工作日期间,每天上货量是固定的,且能全部售出,其中,A 玩具的数量(单位:个)是B玩具数量的2倍,B玩具的数量(单位:个)是C玩具数量的2倍.某个周六,A、B、C三种玩具的上货量分别比一个工作日的上货量增加了50%,70%、50%,且全部售出.但是由于软件出错,发生了一起错单(即消费者按某种玩具一个的价格投币,但是取得了另一种玩具1个),结果这个周六的销售收入比一个工作日的销售收入多了958元,则这个“卡通玩具”自动售货机一个工作日的销售收入是元.14.万盛是重庆茶叶生产基地和名优茶产地之一,以“重庆第一泡•万盛茶飘香”为主题的采茶制茶、品茶赏茶,茶艺表演活动在万盛板辽湖游客接待中心开幕,活动持续两周,活动举办方为游客准备了三款2021年的新茶:清明香,云雾毛尖、滴翠剑茗.第一批采制的茶叶中清明香、云雾毛尖、滴翠剑茗的数量(盒)之比为2:3:1.由于品质优良宣传力度大,网上的预订量暴增,举办方加紧采制了第二批同种类型的茶叶,其中清明香增加的数量占总增加数量的,此时清明香总数量达到三种茶叶总量的,而云雾毛尖和滴翠剑茗的总数量恰好相等.若清明香、云雾毛尖、滴翠剑茗三种茶叶每盒的成本分别为500元、420元,380元,清明香的售价为每盒640元,活动中将清明香的供游客免费品尝,活动结束时两批茶叶全部卖完,总利润率为16%,且云雾毛尖的销售单价等于另外两种茶叶销售单价之和的,则滴翠剑茗单价为元.15.现有A、B、C三种型号的产品出售,若A售3件,B售4件,C售1件,共得315元:若A售5件,B售7件,C售1件,共得420元.问售出A、B、C各一件共得元.三.解答题16.在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=5时,y=60;当x=0时,y=﹣5.求a2+2ab+c2的值.17.解方程组:(1);(2);(3).18.(1)解方程组:;(2)已知x、y、z满足方程组(y≠0),求x:y.19.[阅读理解]在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化繁为简.(1)解方程组解:(1)把②代入①得:x+2×1=3把x=1代入②得:y=0所以方程组的解为(2)已知,求x+y+z的值.解:(2)①+②得:10x+10y+10z=40③③÷4得x+y+z=4[类比迁移](1)直接写出方程组的解.(2)若,求x+y+z的值.[实际应用]打折前,买36件A商品,12件B商品用了960元.打折后,买45件A商品,15件B商品用了1100元,比不打折少花了多少钱?20.解下列方程或方程组:(1);(2).。

人教版七年级数学下册8.4三元一次方程组解法导学案(无答案)

人教版七年级数学下册8.4三元一次方程组解法导学案(无答案)

课题:8.4三元一次方程组解法课型:新授课 总47节 时间:星期二【学习目标】1.了解三元一次方程组的概念,理解解三元一次方程组的基本思路,2.会解三元一次方程组,掌握三元一次方程组的解法及其步骤。

【学习重、难点】三元一次方程组的解法预 习 篇1、请快速写出方程组23y x x y =⎧⎨+=⎩的解:x y =⎧⎨=⎩ ; 2、请快速写出方程组31x y x y +=⎧⎨-=⎩的解:x y =⎧⎨=⎩ ; 3、 以上两个方程组都是 方程组,第一个方程组用 法较便捷,第二个方程组用 法较便捷,不管那一种方法,它们的目的都是为了 ,从而把二元一次方程组转化为 方程来解。

学 习 篇(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?请观察方程组1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩这个方程组有什么特点?一般地,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做 方程组。

三元一次方程组如何解呢?对比二元一次方程组的解法,你想到了解决办法了吗? 方法:把三元一次方程组变为 方程组或 方程来解。

尝试解三元一次方程组:12 (1)2522 (2)4 (3)x y z x y z x y ++=⎧⎪++=⎨⎪=⎩解:把(3)分别代入(1)、(2)得:(4)(5)把方程(4)、(5)组成方程组⎧⎨⎩解这个方程组,得y z =⎧⎨=⎩把y = 代入(3),得x =因此,三元一次方程组的解为x y z =⎧⎪=⎨⎪=⎩小结:解三元一次方程组的基本思想方法是:将三元一次方程组通过或______化为__________,然后再次消元将二元方程组化为一元一次方程。

训 练 篇1.解方程组:273330x y y z x z +=⎧⎪+=⎨⎪+=⎩2.解三元一次方程组:31233325x y z x y z x y z +-=⎧⎪-+=⎨⎪+-=⎩【学习反思】:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8、4三元一次方程组解法举例
二、学习目标:1、了解三元一次方程组的定义;
2、掌握三元一次方程组的解法;
3、进一步体会消元转化思想.
三、自学探究:
1.复习导入
(1)解二元一次方程组的基本方法有哪几种?
(2)解二元一次方程组的基本思想是什么?
2、探究:
甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.
思考:题目中有几个未知数?含有几个相等关系?你能根据题意列出几个方程?
这个方程组有三个未知数,每个方程的未知数的次数都是1,并且一共有三个方程,像这样的方程组,就是我们要学的三元一次方程组.
思考:怎样解这个三元一次方程组呢?你能不能设法消云一个或两个未知数,把它化成二元一次方程组或一元一次方程?
有几种解法?
3、归纳:
解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即
消元消元
问题1:解三元一次方程组
问题2 在等式中,当x=-1时y=0;当x=2时,y=3;当x=5时,y=60.求a、
b、c的值.
分析:把a,b,c看作三个未知数,分别把已知的x,y值代入原等式,就可以得到一个三元一次方程组.
四、自我检测
教材p114 练习1、2
五、学习小结
1.三元一次方程组的解法;
2、解多元方程组的思路――消元
3、解题前要认真观察各方程的系数特点,选择最好的解法,当方程组中某个方程只含二元时,一般的,这个方程中缺哪个元,就利用另两个方程用加减法消哪个元;如果这个二元方程系数较简单,也可以用代入法求解.
4、注意检验
六、反馈检测。

相关文档
最新文档