实验三:存储管理
实验三存储管理实验
实验三存储管理实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】实验三存储管理实验一. 目的要求:1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。
熟悉虚存管理的各种页面淘汰算法。
2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二.实验内容:1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。
为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
算法描述:本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。
如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。
当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。
算法原程序#include ""#include ""#include <>#include <>#define PCB_NUM 5 行程序.");printf("\n\t\t\t0.退出程序.");scanf("%d",&m);switch(m){case1:break;case0:system("cls");menu();break;default:system("cls");break;}}void paixu(struct MemInf* ComMem,int n){int i,j,t;for(j=0; j<n-1; j++)for(i=0; i<n-j-1; i++)if(ComMem[i].size>ComMem[i+1].size){t=ComMem[i].size;ComMem[i].size=ComMem[i+1].size;ComMem[i+1].size=t;}}void paixu2(){int i,j,t;for(j=0; j<4; j++)for(i=0; i<4-j; i++)if(pcbList[i].size>pcbList[i+1].size){t=pcbList[i].size;pcbList[i].size=pcbList[i+1].size; pcbList[i+1].size=t;}}void main(){DD:menu();char ch;int i,j,n,a=0;struct MemInf* ComMem;system("cls");printf("你要分多少个分区呢,请输入数值吧:");scanf("%d",&n);ComMem=(struct MemInf*)malloc(n*sizeof(struct MemInf));printf("请划分内存固定大小分区:\n");ize);if(i==0) ComMem[i].addr=40;ddr=ComMem[i-1].addr+ComMem[i-1].size;tate=0;ize+a;if(a>=INT){printf("超出规定内存范围");ch=getchar();ch=getchar();goto DD;}}paixu(ComMem,n);cbID =1;pcbList[0].RunState =0; ize=30;pcbList[0].RunTime =0;pcbList[0].TolTime =5;pcbList[1].pcbID =2;pcbList[1].RunState =0;pcbList[1].size=15;pcbList[1].RunTime =0;pcbList[1].TolTime =6;pcbList[2].pcbID =3;pcbList[2].RunState =0;pcbList[2].size=50;pcbList[2].RunTime =0;pcbList[2].TolTime =3;pcbList[3].pcbID =4;pcbList[3].RunState =0;pcbList[3].size=120;pcbList[3].RunTime =0;pcbList[3].TolTime =4;pcbList[4].pcbID =5;pcbList[4].RunState =0;pcbList[4].size=125;pcbList[4].RunTime =0;pcbList[4].TolTime =9;ch=getchar();ch=getchar();while(pcbList[PCB_NUM-1].RunTime < pcbList[PCB_NUM-1].TolTime){{for(j=0; j<PCB_NUM; j++){tate ==0&& pcbList[j].RunState==0) ize >= pcbList[j].size) tate =pcbList[j].pcbID ;pcbList[j].RunState=1;}}unTime >=pcbList[j].TolTime) tate == pcbList[j].pcbID){ComMem[i].state =0; unState=2; unState==1&& pcbList[i].RunTime < pcbList[i].TolTime) unTime++;cbID,pcbList[i].size, pcbList[i].RunState,pcbList[i].TolTime ,pcbList[i].RunTime);printf("分区ID\t 分区大小\t 状态\n");for(i=0; i<n; i++)printf("%d\t %d\t\t %d\n",i,ComMem[i].size ,ComMem[i].state );printf("按回车键继续...\n");getchar(); tart=-1;frees[i].length=0;strcpy(frees[i].tag,"free");occupys[i].start=-1;occupys[i].length=0;strcpy(occupys[i].tag,"");}free_quantity=0;occupy_quantity=0;}void writedata() tart);printf("输入第%d个分区的长度:\n",j);scanf("%d",&frees[i].length);}if((fp=fopen(fname,"wb"))==NULL)printf("错误,文件打不开,请检查文件名\n");for(i=0;i<SIZE;i++)if(fwrite(&frees[i],sizeof(struct node),1,fp)!=1)printf("文件写入错误!\n");fclose(fp);}void readdata() tart<=frees[t].start)t=j;}frees[free_quantity].start=frees[i].start;frees[free_quantity].length=frees[i].length;frees[i].start=frees[t].start;frees[i].length=frees[t].length;frees[t].start=frees[free_quantity].start;frees[t].length=frees[free_quantity].length;}}void view() tart,frees[i].length,frees[i].tag);printf("\n\n已分配分区表显示如下:\n");printf("起始地址\t长度\t占用作业名\n");for(j=0;j<occupy_quantity;j++)printf("%6dk\t%10dk\t%s\t\n",occupys[j].start,occupys[j].length,occupys[j].t ag);getchar();getchar();}void earliest() ength>=joblength)f=1;}if(f==0){printf("\n当前没有能满足你申请长度的空闲内存,请稍候再试\n");getchar();}else{ ength>=joblength){t=1;}j++;}j--;occupys[occupy_quantity].start=frees[j].start; ag,jobname); occupys[occupy_quantity].length=joblength;occupy_quantity++;if(frees[j].length>joblength){frees[j].start+=joblength;frees[j].length-=joblength;}else{for(i=j;i<free_quantity-1;i++){frees[i].start=frees[i+1].start;frees[i].length=frees[i+1].length;}free_quantity--;}printf("作业申请内存空间成功!\n");getchar();getchar();}}void excellent() ength>=joblength)f=1;}if(f==0){printf("\n当前没有能满足你申请长度的空闲内存,请稍候再试\n");getchar();}else ength>=joblength){t=1;}j++;}j--;for(i=0;i<free_quantity;i++){if(frees[i].length>=joblength&&frees[i].length<frees[j].length) j=i;}occupys[occupy_quantity].start=frees[j].start; ag,jobname);occupys[occupy_quantity].length=joblength;occupy_quantity++;if(frees[j].length>joblength){frees[j].start+=joblength;frees[j].length-=joblength;}else{for(i=j;i<free_quantity-1;i++){frees[i].start=frees[i+1].start;frees[i].length=frees[i+1].length;}free_quantity--;}printf("作业申请内存空间成功!\n");getchar();getchar();}}void worst(){char jobname[20];int joblength,f=0;int i,j;printf("请输入作业名:\n");scanf("%s",&jobname);printf("输入作业的长度:\n");scanf("%d",&joblength);for(i=0;i<free_quantity;i++){if(frees[i].length>=joblength)f=1;}if(f==0){printf("\n当前没有能满足你申请长度的空闲内存,请稍候再试\n");getchar();getchar();}else ength>=joblength){t=1;}j++;}j--;for(i=0;i<free_quantity;i++){if(frees[i].length>=joblength&&frees[i].length>frees[j].length) j=i;}occupys[occupy_quantity].start=frees[j].start; ag,jobname);occupys[occupy_quantity].length=joblength;occupy_quantity++;if(frees[j].length>joblength){frees[j].start+=joblength;frees[j].length-=joblength;}else{for(i=j;i<free_quantity-1;i++){frees[i].start=frees[i+1].start;frees[i].length=frees[i+1].length;}free_quantity--;}printf("作业申请内存空间成功!\n");getchar();getchar();}}void main(){initial();int n;writedata();system("cls");readdata();for(;;){sort();printf("************************************\n"); printf("************************************\n"); printf("** 欢迎使用可变分区存储管理系统 **\n");printf("************************************\n"); printf("** 1.显示空闲表和分配表 **\n");printf("** 2.首次适应算法 **\n");printf("** 3.最佳适应算法 **\n");printf("** 4.最坏适应算法 **\n");printf("** 0.退出系统 **\n"); printf("************************************\n"); printf("************************************\n"); printf("请输入您要选择的项目:\n");scanf("%d",&n);for(;;){if(n<0||n>4){printf("没有这个选项,请重新输入!");scanf("%d",&n);}elsebreak;}switch(n){case0:printf("感谢您的使用!再见!\n");exit(0);case1:view();break;case2:earliest();break;case3:excellent();break;case4:worst();break;}system("cls");}}测试结果:使用首次适应算法的结果:使用最佳适应算法:使用最坏适应算法:内存过满:3、编写并调试一个段页式存储管理的地址转换的模拟程序。
存储管理实验报告
存储管理实验报告存储管理实验报告引言:存储管理是计算机系统中非常重要的一部分,它负责管理计算机系统中的存储资源,包括内存和外存。
合理的存储管理能够提高计算机系统的性能和效率,保证系统的稳定运行。
本次实验旨在通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。
一、实验目的本次实验的主要目的是通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。
具体目标如下:1. 了解存储管理的基本概念和原理;2. 掌握存储管理的常用方法和技术;3. 分析实验结果,探讨存储管理的优化策略。
二、实验环境本次实验使用了一台配置较高的计算机,具备较大的内存和高速的硬盘。
实验环境如下:1. 操作系统:Windows 10;2. 内存:16GB;3. 硬盘:1TB。
三、实验过程1. 内存管理实验在内存管理实验中,我们使用了一段较大的程序代码进行测试。
首先,我们通过编程语言将程序代码写入内存中,然后通过内存管理技术将程序代码加载到内存的合适位置。
在加载过程中,我们使用了分页和分段两种常用的内存管理技术,并比较了它们的性能差异。
实验结果显示,分页技术相对来说更加高效,能够更好地利用内存资源,提高系统的运行速度。
2. 外存管理实验在外存管理实验中,我们模拟了大文件的读写操作。
首先,我们将一个较大的文件写入硬盘中,然后通过外存管理技术将文件加载到内存中进行读取。
在加载过程中,我们使用了磁盘调度算法和文件系统管理技术,并比较了它们的性能差异。
实验结果显示,磁盘调度算法的选择对系统的读写速度有较大的影响,而文件系统的合理管理能够提高文件的存取效率。
四、实验结果分析通过对实验结果的分析,我们可以得出以下结论:1. 内存管理中,分页技术相对于分段技术更加高效,能够更好地利用内存资源,提高系统的运行速度;2. 外存管理中,磁盘调度算法的选择对系统的读写速度有较大的影响,合理选择磁盘调度算法能够提高系统的性能;3. 文件系统的合理管理能够提高文件的存取效率,减少文件的碎片化,提高系统的整体性能。
存储管理 实验报告
存储管理实验报告存储管理实验报告一、引言存储管理是计算机系统中一个非常重要的组成部分,它负责管理计算机内存的分配、回收和保护。
本次实验旨在通过实际操作,深入理解存储管理的原理和技术,并探索不同的存储管理策略对系统性能的影响。
二、实验目的1. 理解存储管理的基本概念和原理;2. 掌握常见的存储管理算法和策略;3. 分析不同存储管理策略对系统性能的影响。
三、实验环境本次实验使用了一台配置较低的个人电脑,操作系统为Windows 10,内存容量为4GB。
四、实验内容1. 静态分区分配算法静态分区分配算法是最简单的存储管理算法之一。
在实验中,我们使用了最先适应算法(First Fit)和最佳适应算法(Best Fit)进行静态分区分配。
通过对比两种算法的分配效果,我们发现最佳适应算法在减少内存碎片方面表现更好。
2. 动态分区分配算法动态分区分配算法是一种更加灵活的存储管理策略。
在实验中,我们实现了首次适应算法(First Fit)和最佳适应算法(Best Fit)两种动态分区分配算法。
通过观察不同算法的分配效果,我们发现首次适应算法在处理大量小内存块时效率较高,而最佳适应算法在处理大内存块时表现更好。
3. 页面置换算法页面置换算法是虚拟内存管理中的重要组成部分。
在实验中,我们实现了最近最少使用(LRU)算法和先进先出(FIFO)算法两种页面置换算法。
通过模拟内存不足的情况,我们观察了不同算法对系统性能的影响。
结果显示,LRU算法在减少页面置换次数方面比FIFO算法更为优秀。
五、实验结果与分析通过本次实验,我们对不同的存储管理算法和策略进行了实际操作,并观察了它们对系统性能的影响。
实验结果显示,最佳适应算法在静态分区分配中表现更好,而首次适应算法在动态分区分配中效率更高。
在页面置换算法中,LRU 算法在减少页面置换次数方面更为出色。
六、实验总结本次实验通过实际操作,深入理解了存储管理的原理和技术,并探索了不同的存储管理策略对系统性能的影响。
(完整word版)Linux操作系统实验报告 存储管理试验
(3)实现FIFO页面淘汰算法。
(4)实现页故障率反馈模型。
2、实验目的与要求
①(1)用C语言是实现模拟Linux系统中连续内存分配用到的伙伴对算法。
(2)通过链表的形式输出在内存申请和释放过程中内存状态的对比图。
②(1)了解工作集模型的原理及其特点。
printmem();
}
int power(int x,int y){
int k=0,tmp=1;
for(;k<y;k++){
tmp=tmp*x;
}
return tmp;
}
int root(int x,int y){
int result=y,count=0;
while(result!=1){
result=result/x;
merge(tempId,merger);
}else {
return 0;
}
return 1;
}else {
second=second->next;
isFirst++;
}
}
return 1;
}
int freeb(int size){
block * first=(struct block *)malloc(sizeof(struct block));
if((second->start==nextStart || second->start==preStart) && second->loc==0){
merger->size=(first->size)+(second->size);
存储管理实验报告
int m=0;//已分配作业数
int flag;//分配成功标志
int isup,isdow n; //回收区域存在上邻和下邻的标志
int is=0;
struct jcb {
char n ame[10];
char state;
int ntime; //所需时间
给作业占用;另一部分又成为一个较小的空闲区,留在空闲区表中。 为了尽量减少由于
分割造成的空闲区,尽可能分配低地址部分的空闲区,而尽量保存高地址部分有较大的
连续空闲区域,以利于大型作业的装入。 为此,在空闲区说明表中,把每个空闲区按其 地址顺序从低到高登记, 即每个后继的空闲区其起始地址总是比前者大。为了方便查找
为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表
长度——指出从起始地址开始的一个连续空闲的长度。
状态一一有两种状态,一种是 “未分配”状态,指出对应的由起址指出的某个长度的 区域是空闲区;另一种是 “空表目”状态, 表示表中对应的登记项目是空白(无效) 可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个
{
JCB *first;
if(ready==NULL) ready=p;
else{
first=ready;
while(first->li nk!=NULL)
first=first->li nk;
first->li nk=p;
p->li nk=NULL;
}
}
void sort3()/*建立对已分配作业队列的排列函数,直接插在队列之尾*/
实验三、存储管理
操作系统实验-存储管理
实验三存储管理【实验目的和要求】1、请求页式存储管理中页面置换算法模拟设计。
2、了解虚拟存储技术的特点。
3、掌握请求页式存储管理的页面置换算法。
【实验原理】1、存储管理的主要功能之一是合理地分配空间。
2、请求页式管理是一种常用的虚拟存储管理技术。
3、命中率=1-(页面失效次数/页地址流长度)。
本实验页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。
【实验步骤】一、问题描述与分析1、通过随机数产生一个指令序列,共320条指令。
指令的地址按下述原则生成:(1)50%的指令是顺序执行的;(2)25%的指令是均匀分布在前地址部分;(3)25%的指令是均匀分布在后地址部分。
具体的实施方法是:(1)在[0,319]的指令地址之间随机选取一起点m;(2)顺序执行一条指令,即执行地址为m+l的指今;(3)在前地址[0,m+l]中随机选取一条指令并执行,该指令的地址为m’;(4)顺序执行一条指今,其地址为m’ +l;(5)在后地址[m’ +2,319]中随机选取一条指令并执行;(6)重复上述步骤(1)一(5),直到执行320次指令。
2、将指令序列变换成为页地址流(1)页面大小为1K;(2)用户内存容量为4页到32页;(3)用户虚存容量为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10, l9]);……第310条~第319条指令为第31页(对应虚存地址为[310,3191]);按以上方式,用户指令可组成32页。
3、考虑计算并输出下述各种算法在不同内存容量下的命中率。
(1)先进先出的算法(FIFO) ;(2)最近最少使用算法(LRU);其中(1)和(2)必做三、程序设计与调试在VC++6.0环境下进行程序设计和调试。
程序分析:问题1:怎样使模拟的指令随机?答:通过使用C++的rand函数生成随机数,来产生指令,并用算法保证指定指令序列的需求。
存储管理实验报告
存储管理实验报告一、实验目的1.了解存储管理的概念及作用;2.掌握存储管理的基本操作和技术;3.熟悉常见的存储管理工具和方法;4.分析存储管理对系统性能的影响。
二、实验内容1.了解存储管理的基本概念:存储管理是指对计算机中的存储器进行有效管理和利用的一种技术手段。
主要包括内存管理和外存管理两个方面。
2.学习常见的存储管理工具和方法:(1)内存管理方案:连续内存管理、非连续内存管理和虚存管理;(2)外存管理方案:磁盘存储管理、文件系统管理和缓存管理等。
3.实际操作存储管理工具:(1)使用操作系统的内存管理工具,如Windows的任务管理器和Linux的top命令等,查看内存使用情况和进程占用的内存大小;(2)使用磁盘管理工具,如Windows的磁盘管理器和Linux的fdisk命令等,查看磁盘的分区情况和使用状况;(3)使用文件系统管理工具,如Windows的资源管理器和Linux的ls命令等,查看文件和目录的存储和管理状态。
4.分析存储管理对系统性能的影响:(1)使用性能监控工具,如Windows的性能监视器和Linux的sar 命令等,实时监测系统的内存、磁盘和文件系统等性能指标;(2)对比不同存储管理方案的优缺点,分析其对系统性能的影响;(3)根据实验结果提出优化存储管理的建议。
三、实验步骤1.阅读相关文献和资料,了解存储管理的基本概念和原理;2.使用操作系统的内存管理工具,查看当前系统内存的使用情况;3.使用操作系统的磁盘管理工具,查看当前系统磁盘的分区情况;4.使用操作系统的文件系统管理工具,查看当前系统文件和目录的存储和管理状态;5.使用性能监控工具,实时监测系统的内存、磁盘和文件系统等性能指标;6.根据实验结果,分析存储管理对系统性能的影响;7.结合实验结果,提出优化存储管理的建议。
四、实验结果1.使用内存管理工具查看系统内存使用情况,发现部分进程占用内存过高,导致系统运行缓慢;2.使用磁盘管理工具查看系统磁盘分区情况,发现磁盘分区不合理,造成磁盘空间利用率较低;3.使用文件系统管理工具查看文件和目录的存储和管理状态,发现有大量重复和冗余的文件,需要进行清理和整理;4.使用性能监控工具实时监测系统的性能指标,发现内存和磁盘的利用率较高,需要优化存储管理。
计算机操作系统实验三存储器管理
计算机操作系统实验三存储器管理引言存储器管理是计算机操作系统中非常重要的一部分。
它负责管理计算机中的存储器资源,以便有效地分配和管理内存。
在操作系统的设计和实现中,存储器管理的性能和效率对整个系统的稳定性和性能有着重要的影响。
本文档将介绍计算机操作系统实验三中的存储器管理的实验内容及相关的知识点。
我们将从内存分区管理、页式存储管理和段式存储管理三个方面进行讨论。
内存分区管理内存分区管理是一种常见的存储器管理方法,旨在将物理内存分成若干个不同大小的区域,以便为不同的进程分配内存。
在实验三中,我们将学习和实现两种内存分区管理算法:首次适应算法和最佳适应算法。
首次适应算法是一种简单直观的算法,它从内存的起始位置开始查找第一个满足要求的空闲分区。
而最佳适应算法则是通过遍历整个内存空间,选择最合适的空闲分区来满足进程的内存需求。
通过实验,我们将学习如何实现这两种算法,并通过比较它们的性能和效果来深入理解内存分区管理的原理和实现。
页式存储管理页式存储管理是一种将物理内存分成固定大小的页框(page frame)和逻辑地址分成固定大小的页面(page)的管理方法。
在操作系统中,虚拟内存通过将进程的地址空间划分成大小相等的页面,并与物理内存中的页框相对应,实现了大容量的存储管理和地址空间共享。
在实验三中,我们将学习和实现页式存储管理的基本原理和算法。
我们将了解页表的结构和作用,以及如何通过页表将逻辑地址转换为物理地址。
此外,我们还将学习页面置换算法,用于处理内存不足时的页面置换问题。
段式存储管理段式存储管理是一种将逻辑地址分成不同大小的段并与物理内存中的段相对应的管理方法。
在操作系统的设计中,段式存储管理可以提供更灵活的地址空间管理和内存分配。
实验三将介绍段式存储管理的基本原理和实现方法。
我们将学习段表的结构和作用,以及如何通过段表将逻辑地址转换为物理地址。
同时,我们还将探讨段的分配和释放过程,并学习如何处理外部碎片的问题。
操作系统存储管理实验报告
操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
操作系统实验-存储管理
操作系统实验-存储管理操作系统实验-存储管理1、引言1.1 概述在操作系统中,存储管理是一个关键的任务。
它负责将程序和数据加载到内存中,管理内存的分配和回收,并确保不同进程之间的内存互不干扰。
本实验旨在深入了解并实践存储管理的相关概念和算法。
1.2 目的本实验的目的是让学生通过实际操作,了解存储管理的基本原理和常用算法,包括分页、分段和虚拟内存等。
通过实验,学生将学会如何实现内存分配和回收,以及处理内存碎片等问题。
1.3 实验环境- 操作系统:Windows、Linux、MacOS等- 编程语言:C、C++等2、实验步骤2.1 实验准备- 安装相应的开发环境和工具- 创建一个空白的项目文件夹,用于存放实验代码和相关文件2.2 实验一、分页存储管理- 理解分页存储管理的概念和原理- 实现一个简单的分页存储管理系统- 设计测试用例,验证分页存储管理的正确性和有效性2.3 实验二、分段存储管理- 理解分段存储管理的概念和原理- 实现一个简单的分段存储管理系统- 设计测试用例,验证分段存储管理的正确性和有效性2.4 实验三、虚拟存储管理- 理解虚拟存储管理的概念和原理- 实现一个简单的虚拟存储管理系统- 设计测试用例,验证虚拟存储管理的正确性和有效性3、实验结果分析3.1 分页存储管理结果分析- 分析分页存储管理系统的性能优缺点- 比较不同页面大小对系统性能的影响3.2 分段存储管理结果分析- 分析分段存储管理系统的性能优缺点- 比较不同段大小对系统性能的影响3.3 虚拟存储管理结果分析- 分析虚拟存储管理系统的性能优缺点- 比较不同页面置换算法对系统性能的影响4、总结与展望4.1 实验总结- 总结本次实验的收获和体会- 分析实验中遇到的问题和解决方法4.2 实验展望- 探讨存储管理领域的未来发展方向- 提出对本实验的改进意见和建议附件:无法律名词及注释:- 存储管理:操作系统中负责管理内存的任务,包括内存分配、回收和管理等功能。
计算机操作系统实验教程
计算机操作系统实验教程徐 慧中国矿业大学(北京)机电与信息工程学院计算机系二0 0四年四月实验简介 (2)实验一进程管理 (3)一、实验目的 (3)二、实验预备内容 (3)三、实验内容 (3)四、预备知识 (3)五实验指导 (4)实验二进程间的通信 (5)一、实验目的 (5)二、实验预备内容 (5)三、实验内容 (5)四、实验预备知识 (5)五、实验指导 (9)实验三存储管理 (10)一、实验目的 (10)二、实验内容 (10)三、实验预备知识 (10)四、实验指导 (13)实验四文件系统设计 (14)一、实验目的 (14)二、实验内容 (14)三、实验提示 (14)四、实验指导 (14)实验简介1.学时:16学时2.先修课程:计算机导论 ,高级语言程序设计 , 数据结构3.课程性质:专业基础必修课4.适合专业:计算机科学与技术5.内容简介:操作系统上机课程通Linux操作系统各自的编程接口,提供编程实例,由此加深学生对操作系统工作原理的领会和对操作系统实现方法的理解,并且使学生在程序设计方面得到基本的训练。
上机课程主要针对课本重点内容,以提高学生的动手能力,加深学生对相关的内容的理解而展开的实验课程。
在Linux环境下提供了关于操作系统的命令接口程序shell的编制、存储管理相关内容的实路、作业调研系统以及虚拟磁盘文件系统管理4个实验。
实验环境是基于Linux操作系统的。
在计算机软硬件课程的设置上,它起着承上启下的作用。
其特点是概念多、较抽象和涉及面广,其整体实现思想和技术又往往难于理解。
6.参考书:张尧学,史美林 《计算机操作系统课程设计实验指导》 清华大学出版社 2000年实验一 进程管理一、实验目的(1)加深对进程概念的理解,明确进程的程序的区别;(2)可进一步认识并发执行的实质;(3)分析进程争用资源的现象,学习解决进程互斥的方法;(4)了解LINUX系统中进程通信的进本原理;二、实验预备内容(1)阅读LINUX 的sched.h源码文件,加深对进程管理概念的理解;(2)阅读LINUX的fork.c源码,分析进程的创建过程;三、实验内容(1)进程创建编写一段程序,使用系统调用fork()创建两个子进程.(2)进程的控制修改以编写的程序,将每个进程输出一个字符改为输出一句话,观察程序执行时屏幕上出现的现象;(3)编写一段程序实现软中断;(4)进程的管道通信;四、预备知识现代操作系统的重要特点是程序的并发执行,及系统所拥有的资源被共享和系统用户随机地使用系统。
操作系统实验三存储管理实验
实验三、存储管理实验一. 目的要求:通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉虚存管理的各种页面淘汰算法。
通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二. 例题设计一个请求页式存储管理方案。
并编写模拟程序实现之。
产生一个需要访问的指令地址流,它是一系列需要访问的指令的地址。
为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列,使得 50%的指令是顺序执行的,25%的指令均匀地散布在前地址部分,25%的地址是均匀地散布在后地址部分。
为简单起见,页面淘汰算法采用 FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去,而不再判断它是否被改写过,也不将它写回到辅存。
具体的做法可以是:产生一个需要访问的指令地址流;指令合适的页面尺寸(例如以 1K或2K为1页);指定内存页表的最大长度,并对页表进行初始化;每访问一个地址时,首先要计算该地址所在的页的页号,然后查页表,判断该页是否在主存——如果该页已在主存,则打印页表情况;如果该页不在主存且页表未满,则调入一页并打印页表情况;如果该页不在主存且页表已满,则按 FIFO页面淘汰算法淘汰一页后调入所需的页,打印页表情况;逐个地址访问,直到所有地址访问完毕。
存储管理算法的流程图如下:三. 实验题:设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。
为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
对分区的管理法可以是下面三种算法之一:首次适应算法最坏适应算法最佳适应算法编写并调试一个段页式存储管理的地址转换的模拟程序。
首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。
实验报告-存储管理
实验三存储管理一、实验内容:1.数据文件的组织;2.缓冲区管理;3.空闲空间管理;二、实验要求:1.数据文件的组织:i.段页式组织方式;ii.支持基本数据类型,可不支持大对象数据;2.缓冲区管理:i.缓冲区页面组织;ii.缓冲区查找;iii.缓冲区淘汰;3.空闲空间管理:i.空闲空间组织;ii.空闲空间分配;iii.空闲空间回收;三、实验步骤:本实验代码实现使用的是C语言。
1.数据文件的组织:我们借助Oracle里面关于数据存储的概念,划分一个表空间,表空间里面又分为数据段,索引段和数据字典段。
每个段里面又分为等长大小的区,每个区由若干个页(PAGE_PER_EXTENT我们设为200)来组成。
具体的定义在文件tablespace.h里面。
而在页中存储记录时,页头保存这个页中有多少条元组;然后剩余的空间来存储具体的记录:每个记录有记录头,记录头记录这个元组的模式的指针,元组的长度和时间戳;记录体存储具体的属性数据。
而在记录体中存储数据时,我们现在支持三种数据类型:int, char(n), vchar(n)。
考虑到对齐的因素,我们每个属性的数据都从4的整数倍的地址开始存储,所以数据字典里记录的各个属性的偏移量都是4的倍数。
具体到单个元组插入的时候过程是这样的:先读数据字典,找到这个表所在的空间(第一个区间),然后读这个区间头,找到一个有空闲空间的页,然后读出那一页,按照数据字典的解析把该元组插入到这个页中的空闲位置,然后将该页写回到文件中。
具体的文件组织可以用下面的图来表示:数据文件:|文件头|数据段|索引段|数据字典段|数据段:|区间一|区间二|区间三|……|区间:|区间头|页一|页二|页三|……|页:|页头|元组一|元组二|元组三|……|元组:|记录模式指针|长度|时间戳|属性一|属性二|属性三|……|我们所定义的一些头部定义如下所示:struct file_header {int magic_num; /* file magic number */unsigned char bitmap[MAX_EXTENT]; /* record which extent have free space */};struct extent_header {int rec_per_page;int next; /* null is -1 */int bitmap[MAX_DAT_PAGE];};struct index_header {char bitmap[MAX_IDX_PAGE / CHAR_BIT];};struct dict_header {struct {int flag;char tname[20];} table[MAX_TABLE_NUM];};各个头部的主要功能就是记录空闲空间,回收空闲空间。
《操作系统》实验三 存储管理
①先进先出算法(FIFO);
②最近最少使用算法(LRU);
③最佳淘汰算法(OPT);先淘汰最不常用的页地址; ④最少访问页面算法(LFU)。
命中率的算、数据结构
int vmsize /*虚存容量,为32k*/
三、实验内容
1、问题描述
⑴通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成:
①一半的指令是顺序执行的;
②四分之一的指令是均匀分布在前地址部分;
③四分之一的指令是均匀分布在后地址部分。
具体的实施办法是:
①在[0,319]之间选一起点m;
②顺序执行一条指令,即m+1条;
③向前地址[0,m—1]中执行一条指令m′;
(3)算法总体框图(见后图3.1)
(4)FIFO算法与LRU算法框图
④顺序执行一条指令,即m′+1条;
⑤向后地址(m′+2,319)执行一条指令m’’
⑵将指令序列变换成为页地址流。
假设:
①页面大小为1KB;
②用户实存容量为4页到32页;
③用户虚存容量为32KB。
用户虚存容量32KB,每1KB中放10条指令,共320条指令(0∽319)。其中0∽9为0页,10∽19为1页…310∽319为31页。
实验三存贮器管理
一、实验目的
本课题实习的目的用高级语言编写一个程序,模拟实现分页式虚拟存储管理,并对几种常用的页面调度算法(、LRU、FIFO OPT等)进行分析比较,评测其性能优劣,从而加深对虚拟存储管理以及各种调度算法的了解。
二、实验要求
采用一些常用的存贮器分配算法,设计一个存贮器管理模拟系统并调试运行。模拟环境应尽量接近真实。
操作系统实验报告三存储器管理实验
操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。
最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。
最坏适应算法:选择空闲分区中最大的分区进行分配。
2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。
最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。
时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。
五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。
2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。
实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。
编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。
实验3虚拟存储器管理
淮海工学院计算机科学系实验报告书课程名:《操作系统原理》题目:实验三虚拟存储器管理班级:Z软件52学号:***********名:***1、实验目的与要求本实验模拟请求页式虚存管理系统的页面置换情况。
实验程序能模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
并通过为该进程分配不同的实页数,来比较几种算法的稳定性。
2、实验内容或题目本实验要求使用C/C++语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
实验说明:(1)设计中虚页和实页的表示本设计利用C/C++/Java语言的结构体来描述虚页和实页的结构。
在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
(2)关于缺页次数的统计为计算命中率,需要统计在20次的虚页访问中命中的次数。
为此,程序应设置一个计数器count,来统计虚页命中发生的次数。
存储管理实验报告
一、实验目的1. 理解操作系统存储管理的概念和作用。
2. 掌握存储管理的基本算法和策略。
3. 通过实验,加深对存储管理原理的理解,提高实际操作能力。
二、实验环境1. 操作系统:Windows 102. 软件环境:虚拟机软件VMware Workstation 153. 实验平台:Linux系统三、实验内容1. 存储管理概述2. 页式存储管理3. 段式存储管理4. 分段分页存储管理5. 存储管理算法四、实验步骤1. 页式存储管理实验(1)设置虚拟内存:在Linux系统中,使用`cat /proc/meminfo`命令查看内存信息,然后使用`vmstat`命令查看虚拟内存的使用情况。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟页式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中页面的分配、置换和回收过程。
2. 段式存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟段式存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
3. 分段分页存储管理实验(1)设置虚拟内存:同页式存储管理实验。
(2)编写实验程序:使用C语言编写一个简单的程序,模拟分段分页存储管理过程。
(3)运行实验程序:编译并运行实验程序,观察程序运行过程中段页的分配、置换和回收过程。
4. 存储管理算法实验(1)编写实验程序:使用C语言编写一个简单的程序,模拟不同的存储管理算法(如FIFO、LRU、LFU等)。
(2)运行实验程序:编译并运行实验程序,观察不同算法在页面分配、置换和回收过程中的表现。
五、实验结果与分析1. 页式存储管理实验实验结果表明,页式存储管理可以将大程序离散地存储在内存中,提高内存利用率。
但页式存储管理也存在页面碎片问题,导致内存碎片化。
2. 段式存储管理实验实验结果表明,段式存储管理可以将程序按照逻辑结构划分为多个段,提高了内存的利用率。
实验3(存储管理)
实验3(存储管理)《操作系统》实验实验3存储管理实验3存储管理一、目的与要求1.目的提高内存管理的效率始终是操作系统研究的重要课题之一,虚拟存储技术是用来提高存储容量的一种重要方法,所以,本项实验的目的是让学生独立地设计几个常用的存储分配算法,并用高级语言编写程序对各种算法进行分析比较,评测其性能的优劣,从而加深对这些算法的了解。
2.要求本实验要求学生用c语言独立编写分区分配算法、回收算法、请求式分页分配算法。
在请求式分页分配算法中,通过程序的执行结果来分析计算不同页面淘汰算法情况下的访问命中率,并以此来比较各种算法的优劣,同时,还要求分析改变页面大小和实际存储容量对计算结果的影响,为选择好的算法,合适的页面尺寸和实存容量提供依据。
本实验的计算机时间为2~4学时。
二、实验内容1.分区分配算法本实验要求采用首次适应算法和最佳适应算法两种分区分配的内存管理算法。
(1)建立分区描述器:分区描述器可根据自己编写程序的需要来建立,描述器本身所包含的内容以描述清楚内存分区情况为准。
(2)建立空闲内存队列:为两种不同的布局策略(第一种自适应和最佳自适应)建立相应的队列结构。
(3)用c语言编写实现首次适应算法和最佳适应算法的程序。
(4)用c语言编写回收算法。
2.请求分页存储管理算法本实验要求采用请求式分页存储算法,淘汰算法采用先进先出算法fifo和最近最少使用页面淘汰算法(lru)。
将逻辑空间大小设置为128K,页面大小分别设置为2、4、6、8、10、12、14和16K,内存容量设置为8到64页。
(1)先进先出算法fifo:该算法的实质是选择作业中在主存驻留时间最长的一页淘汰,这种算法容易实现,例如分配一个作业的存储块数为m,则只需建立一张m个元素的队列表q(0)、q(1)、…、q(m-1)和一个替换指针。
这个队列是按页调入主存的一页。
如图4-1所示,某时刻调入主存四个块,(即m=4),它们按页进入主存的先后顺序为4、5、1、2,当需要置换时,总是淘汰替换指针所指向的那一页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三:存储管理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】一、实验名称实验三:存储管理[1]Windows Server 2003内存结构[2] Windows Server 2003虚拟内存二、 [1]实验目的1)通过实验了解windows Server 2003内存的使用,学习如何在应用程序中管理内存、体会Windows应用程序内存的简单性和自我防护能力。
2)了解windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和windows为使用内存而提供的一些扩展功能。
三、 [1]实验内容四、 [1]实验步骤Windows提供了一个API即GetSystemInfo() ,以便用户能检查系统中虚拟内存的一些特性。
程序5-1显示了如何调用该函数以及显示系统中当前内存的参数。
步骤1:登录进入Windows Server 2003 。
步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。
步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序。
程序5-1:获取有关系统的内存设置的信息步骤4:单击“Build”菜单中的“Compile ”命令,并单击“是”按钮确认。
系统对进行编译。
步骤5:编译完成后,单击“Build”菜单中的“Build ”命令,建立可执行文件。
操作能否正常进行如果不行,则可能的原因是什么答:操作能正常进行。
_____________________________________________________ 步骤6:在工具栏单击“Execute Program” (执行程序) 按钮,执行程序。
运行结果 (分行书写。
如果运行不成功,则可能的原因是什么?) :1) 虚拟内存每页容量为:2) 最小应用地址: 0x000100003) 最大应用地址为: 0x7ffeffff4) 当前可供应用程序使用的内存空间为:5) 当前计算机的实际内存大小为:阅读和分析程序5-1,请回答问题:1)理论上每个windows应用程序可以独占的最大存储空间是:____4GB____2)在程序5-1中,用于检索系统中虚拟内存特性的API函数是: DWORD 提示:可供应用程序使用的内存空间实际上已经减去了开头与结尾两个64KB的保护区。
虚拟内存空间中的64KB保护区是防止编程错误的一种Windows方式。
任何对内存中这一区域的访问 (读、写、执行) 都将引发一个错误陷井,从而导致错误并终止程序的执行。
也就是说,假如用户有一个NULL指针 (地址为0) ,但仍试图在此之前很近的地址处使用另一个指针,这将因为试图从更低的保留区域读写数据,从而产生意外错误并终止程序的执行。
五、 [1]实验结论通过本次实验我了解windows Server 2003内存的使用,同时学习了如何在应用程序中管理内存。
在实验的过程中,体会到了Windows应用程序内存的简单性和自我防护能力。
对于Windows sever 2003的内存结构有了一定的了解。
二、[2]实验目的1)通过实验了解Windows Server 2003内存的使用,学习如何在应用程序中管理内存,体会Windows应用程序内存的简单性和自我防护能力。
2)学习检查虚拟内存空间或对其进行操作。
3)了解Windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。
三、[2]实验内容与实验步骤1. 虚拟内存的检测清单5-2所示的程序使用VirtualQueryEX()函数来检查虚拟内存空间。
步骤1:登录进入Windows Server 2003。
步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。
步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序。
清单5-2 检测进程的虚拟地址空间清单5-2中显示一个walkVM()函数开始于某个进程可访问的最低端虚拟地址处,并在其中显示各块虚拟内存的特性。
虚拟内存中的块由VirsualQueryEX()API定义成连续快或具有相同状态(自由区,已调配区等)的内存,并分配以一组统一的保护标志(只读、可执行等)。
步骤4:单击“Build”菜单中的“Compile ”命令,并单击“是”按钮确认。
系统对进行编译。
步骤5:编译完成后,单击“Build”菜单中的“Build ”命令,建立可执行文件。
操作能否正常进行如果不行,则可能的原因是什么答:操作能正常运行。
___________________________________________________ 步骤6:在工具栏单击“Execute Program” (执行程序) 按钮,执行程序。
1)分析运行结果(如果运行不成功,则可能的原因是什么)按committed,reserved,free等三种虚拟地址空间分别记录实验数据,其中“描述”是对该组数据的简单描述,例如,对下列一组数据:可描述为:具有READWRITE权限的已调配私有内存区。
将系统当前的自由区(Free)虚拟地址空间填入表3-3中。
答:该程序从主函数Main()出发,调用void WalkVM(HANDLE hProcess)函数,void WalkVM(HANDLE hProcess)函数获得系统信息,分配应用程序内存地址空间。
然后开始做循环,从函数运行开始每次获得下一个虚拟程序内存块的信息,之后计算块的结尾及大小,然后再显示块的大小与位置,状态,显示保护方式(void ShowProtection(DWORD dwTarget)),将文件名显示出来,移动块指针获得下一块,依次这样循环下去,直至结束。
2. 虚拟内存的分配与释放能正确使用系统函数GetMeoryStatus()和数据结构MEMORY_STATUS了解系统内存和虚拟存储空间使用情况,会使用VirsualAlloc()函数和VirsualFree()函数分配和释放虚拟内存空间。
步骤1:在VC 环境下选择Win32 Console Application建立一个控制台工程文件,选择An application that Supports MFC。
步骤2:编辑并编译完成后,单击“Build”菜单中的“Build ”命令,建立可执行文件。
操作能否正常进行如果不行,则可能的原因是什么答:操作能正常进行。
______________________________________________________ 步骤3:在工具栏单击“Execute Program”按钮,执行程序。
分析程序的运行结果1) 请描述运行结果 (如果运行不成功,则可能的原因是什么?) :答:运行结果如下:Current Memory Status is :Total Physical Memory is 2047 MBAvailable Physical Memory is 2047 MBTotal Page File is 4095 MBAvailable Page File is 4095 MBTotal Virtual Memory is 2047 MBAvailable Virsual memory is 2031 MBMemory Load is 22 %Now Allocate 32M Virsual Memory and 2M Physical MemoryCurrent Memory Status is :Total Physical Memory is 2047 MBAvailable Physical Memory is 2047 MBTotal Page File is 4095 MBAvailable Page File is 4095 MBTotal Virtual Memory is 2047 MBAvailable Virsual memory is 1997 MBMemory Load is 22 %Now Release 32M Virsual Memory and 2M Physical MemoryCurrent Memory Status is :Total Physical Memory is 2047 MBAvailable Physical Memory is 2047 MBTotal Page File is 4095 MBAvailable Page File is 4095 MBTotal Virtual Memory is 2047 MBAvailable Virsual memory is 2031 MBMemory Load is 22 %Press any key to continue2) 根据运行输出结果,若要改变分配和回收的虚拟内存和物理内存的大小,要改变程序代码的语句,分别为:答:要改变的分配虚拟内存的程序代码语句为:if (BaseAddr==NULL) printf("Virsual Allocate Fail.\n");str=(char *)malloc(1024*1024*2);GetMemSta();要改变的回收虚拟内存的程序代码语句为:if (::VirtualFree(BaseAddr,0,MEM_RELEASE)==0)printf("Release Allocate Fail.\n");free(str);3) 根据运行输出结果,对照分析5-2程序,可以看出程序运行的流程吗?请简单描述:答:程序开始运行,分配虚拟内存为32M,物理内存为2M,后进行虚拟内存释放,释放了32M虚拟内存,2M物理内存。
四、 [2]实验结论通过本次实验了解windows Server 2003的内存结构和虚拟内存的管理,较为清楚的理解了在windows sever 2003中虚拟内存的检测以及其内存分配和内存释放的运行过程。
进而了解进程堆和windows为使用内存而提供的一些扩展功能。
在程序运行的过程中,首先会检测到需要使用的虚拟内存,其次通过调用函数去分配当前部分所需要的虚拟内存大小,之后进行虚拟内存的分配,最后,运行结束,释放虚拟内存。
在这整个过程中,能够节约内存的使用,增加了处理事务的效率。